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Abstract

Several studies have shown that human motor behavior can be successfully described using optimal control theory, which
describes behavior by optimizing the trade-off between the subject’s effort and performance. This approach predicts that
subjects reach the goal exactly at the final time. However, another strategy might be that subjects try to reach the target
position well before the final time to avoid the risk of missing the target. To test this, we have investigated whether
minimizing the control effort and maximizing the performance is sufficient to describe human motor behavior in time-
constrained motor tasks. In addition to the standard model, we postulate a new model which includes an additional cost
criterion which penalizes deviations between the position of the effector and the target throughout the trial, forcing arrival
on target before the final time. To investigate which model gives the best fit to the data and to see whether that model is
generic, we tested both models in two different tasks where subjects used a joystick to steer a ball on a screen to hit a
target (first task) or one of two targets (second task) before a final time. Noise of different amplitudes was superimposed on
the ball position to investigate the ability of the models to predict motor behavior for different levels of uncertainty. The
results show that a cost function representing only a trade-off between effort and accuracy at the end time is insufficient to
describe the observed behavior. The new model correctly predicts that subjects steer the ball to the target position well
before the final time is reached, which is in agreement with the observed behavior. This result is consistent for all noise
amplitudes and for both tasks.
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Introduction

In the past decade, it has become clear that many properties of

human motor coordination can be well explained using the

framework of stochastic optimal feedback control [1–4]. Success-

ful applications have been reported for the manipulation of

objects [1,5], the stability to accuracy trade-off [6], bimanual

responses to perturbations [7], visual feedback during hand

movements [8,9], cooperation between players [10], risk

sensitivity [11,12], and adaptation [13–15]. This framework uses

optimization techniques to find a control law that minimizes a

cost function associated with the actions necessary to perform a

specific task. This cost function is closely related to what the

system is trying to achieve. For sensorimotor control, the cost

function therefore includes a component which is related to the

effort necessary to complete the goal. The value of this effort-

related penalty component, the control cost, increases quadrat-

ically with the magnitude of the control signal. In addition, the

cost function generally includes a component related to the

performance of the task. For goal directed movements, task

performance can be modeled by including an end cost which

penalizes the squared difference between the position of the

effector (e.g., hand or cursor on a screen) and the goal at the end

of the trial [16]. This end cost component thus reflects the

accuracy in achieving the goal.

In daily life we have to make decisions based on limited

information from a noisy environment. Not only must we decide

what the optimal sequence of actions should be, we must also

decide when these actions should be executed. This is especially

true for motor tasks in which subjects are required to complete the

task within a particular time interval. For example, a tennis player

has to hit the ball at the right angle and within a narrow time

interval where the ball is within the reach of the player. Several

studies have investigated such time-constrained motor tasks [5–

7,9,11–13]. Typically, the observed behavior has been modeled by

minimizing a weighted combination of the control cost and the

end cost, which corresponds to minimizing the effort and

maximizing the task performance. Such a model predicts that

subjects arrive on target exactly at the final time. Another strategy

might be that subjects try to reach the target position well before

the final time to avoid the risk of missing the target. To test this, we

have investigated whether minimizing the effort and maximizing

the task performance is sufficient to predict human motor behavior

in time-constrained sensorimotor tasks. In addition to this standard

model, we postulate a new model that includes an additional cost

criterion which penalizes deviations between the position of the

effector and the target throughout the trial, forcing arrival on

target well before the final time.

To investigate which model gives the best fit to the data and

whether that model is generic, we tested the models in two
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different time-constrained tasks. In the first task, subjects had to

control a joystick to move a ball on a screen to hit a target at the

end of a fixed time interval. In the second task, the single target

was replaced by two targets. Now subjects were asked to steer the

ball to one of the targets. They were free to choose which one.

Previous work has shown that the subject’s behavior may depend

on the level of uncertainty in the task [11,12]. Therefore, we

superimposed noise with different amplitudes on ball position to

introduce uncertainty about future ball positions. This allowed us

to investigate the ability of the models to predict motor behavior in

two different tasks and at different levels of uncertainty.

The results show that a simple cost function representing a

trade-off between effort and performance is insufficient to describe

the observed behavior in our experiment. The model that we

propose predicts that subjects steer the ball to the target position

well before the final time is reached, which is in agreement with

the observed behavior. This result is consistent for all noise

amplitudes and for both tasks.

Methods

Subjects
We have tested subjects in two different tasks. Twelve subjects

(seven males) aged between 21 and 28 years participated in these

tasks. Four of them (labeled as S1–S4) took part in the one-target

task, four (S9–S12) in the two-target task and four (S5–S8) in both

tasks. All subjects were right-handed and none of them had any

known neurological or motor disorder. All subjects were naive

regarding the purpose of the experiment. Subjects gave written

informed consent prior to the start of the experiment according to

institutional guidelines of the local ethics committee. We have

submitted the protocol for our experiments to the ‘‘Commissie

Mensgebonden Onderzoek’’ (or CMO, translated: ‘‘Committee

for research on human subjects’’) of the Radboud University

Medical Center Nijmegen, which approved the experiments in our

study.

Experimental procedures
Subjects were seated in a chair, such that their eyes were located

70 cm in front of a 160|160 cm2 rear-projection screen. A white

ball and one or two white targets on a dark background were rear

projected on the screen with an LCD projector (JVC DLA-S10)

with a refresh rate of 75 Hz. The ball and target were represented

by a dot with a diameter of 1.5 cm and a vertically oriented bar

with a size of 0:5|4 cm2, respectively. The ball moved from the

left to the right at a constant velocity and subjects could control the

vertical velocity of the ball by a joystick. The joystick could only

move up- or downward in a range between {55 and 55 deg. The

length of the joystick handle was 17 cm. Joystick output was

measured at a sample rate of 75 Hz. To avoid a bias in the ball’s

movement when the joystick was near the neutral position, the

output was set to zero for excursions in the range between {2 and

2 deg. Above (below) this threshold, the velocity signal increased

(decreased) linearly with joystick excursion angle.

The size of the computer generated animated scene on the

screen was 147|109 cm2. We defined a coordinate system with

time t in the horizontal direction, where the left and right

boundaries of the animation corresponded to the start (t~0) and

end (t~tf ) of each trial. The range ½0,tf � corresponded to a

distance of 147 cm. The vertical direction was represented by

normalized coordinates y[½{1,1�, where y~{1 and y~1
defined the lower and upper boundary of the animation,

respectively. The maximum excursions of the joystick correspond-

ed to a control u~z1 (upward) and u~{1 (downward).

In the one-target task, the target was located in the middle at the

right of the screen (y~0, see Figure 1a). The ball started at the left

side of the screen at a random vertical position between {0:5 and

0.5 and moved at a constant horizontal velocity of 49 cm/s to the

right, reaching the right boundary after three seconds (tf ~3 s).

The subject’s task was to hit the target by steering the ball up- or

downwards. Thus, the subject was unable to manipulate the

horizontal position of the ball. No instruction was given as to

whether the movement should meet any criteria, except to hit the

target with the ball.

Gaussian white noise was superimposed on the vertical position

of the ball to introduce uncertainty about future positions. Thus, in

the absence of a control signal the displacement of the ball

described a Wiener or ‘random walk’ process. At each time step,

the vertical position yt at time t was updated according to

ytzdt~ytzutdtzdjt, with ut the subject’s control signal at time t
(units s{1), dt the time step size (13.3 ms), and djt~+

ffiffiffiffiffiffiffi
ndt
p

pseudo-random Gaussian white noise at time t with amplitude n
(units s{1). Subjects were tested in four consecutive blocks with

Figure 1. Schematic of the tasks. (a) In the one-target task (left
panel), subjects had to control a joystick to move a ball on a screen to
hit a target (rectangle) at time t~3 s. The ball (circle) started at a
random vertical position between {0:5 and 0.5 at the left of the screen
and moved at a constant horizontal velocity to the right. Subjects could
move the ball up- or downwards. Gaussian white noise was
superimposed on the vertical ball position to introduce uncertainty
about future ball positions. The dashed line illustrates the trajectory of
the ball. (b) In the two-target task (right panel), two targets were
present at vertical positions {0:5 and 0.5. The ball started at vertical
position y~0 at the left of the screen. Subjects were asked to steer to
one of the targets and they were free to choose which one. All other
experimental conditions were exactly the same as for the one-target
task. (c) Ball position time traces (100 trials) of subject S6 performing the
one-target task with noise amplitude n~0:009. (d) Same for the two-
target task. (e) Control signal time traces corresponding to the ball
position time traces in panel c (100 trials) of subject S6 performing the
one-target task with noise amplitude n~0:009. (f) Same for the two-
target task.
doi:10.1371/journal.pone.0033724.g001
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100 trials each, with a noise amplitude n of consecutively 0 (no

noise), 0.009, 0.04, and 0.08. For each noise amplitude, the same

pseudo-random sequences were used such that each subject was

subjected to exactly the same noise realizations. Each block with

100 trials was preceded by five trials to familiarize subjects with the

task. These five trials were not included in the data analysis.

In the two-target task, we replaced the single target by two

targets at vertical positions {0:5 and z0:5 (see Figure 1b). In

each trial, the ball started at vertical position y~0. Subjects were

now asked to steer the ball to one of the targets. They were free to

choose which one. All other experimental conditions were exactly

the same as for the one-target task.

Standard model with end cost only
We used stochastic optimal feedback control to predict the

subject’s control and corresponding position of the ball for each

noise amplitude and for both tasks. The dynamics of the control

problem was described by the stochastic differential equation

dy~udtzdj ð1Þ

with y0 and yf the initial and final ball position along the vertical

axis. Equation 1 shows that a change in vertical position y was

caused by a control action u and noise dj. We defined a cost

function with two components. First, we included the cumulative

control cost proportional to the integral of the square of the

control during the trial, which is defined by

Cu~

ðtf

0

1

2
Quu(t)2dt, ð2Þ

where Qu is a positive constant. Second, we added an end cost

proportional to the squared difference between the ball’s end

position yf and the target position y�, which is defined by

Cf ~
1

2
Qf (yf {y�)2, ð3Þ

where Qf is a positive constant. The optimal control problem was

to find the control sequence u(t) which minimizes the sum of the

control cost Cu and the end cost Cf . For the one-target task, the

optimal control solution can be solved analytically [17]. Because

the dynamics was stochastic (except for the case with noise

amplitude n~0), we consider the expectation value of the cost

function over all possible future realizations of the Wiener process,

which we minimize over all possible controls:

Ctotal~
1

2
Qf (yf {y�)2z

ðtf

0

1

2
Quu2dt

� �
y0

, ð4Þ

where the first and second component represent the end cost and

control cost, respectively. The subscript y0 on the expectation

value indicates an expectation over all stochastic trajectories

starting in y0. For this problem, the optimal cost-to-go J(y,t) at

time t and position y can be computed exactly [17], and is given

by

J(y,t)~nQu ln
s

s1

� �
z

s2
1

2s2
Qf (y{y�)2, ð5Þ

with s2~n(tf {t) and 1=s2
1~1=s2zQf =(Qun). The optimal

control is proportional to the partial derivative of J(y,t) to y [17]:

u(y,t)~{
1

Qu

LJ(y,t)

Ly
~{K(t)(y{y�) ð6Þ

with

K(t)~
1

Qu=Qf ztf {t
(Qu=Qf §0): ð7Þ

where tf is the trial duration (final time). Equations 6 and 7 show

that the optimal control u increases with increasing deviation from

the final position y{y�, and with t getting closer to tf . Note that

these theoretical predictions imply that the optimal control is

independent of the noise amplitude n.

To derive the optimal control solution for the two-target task we

consider the same dynamical system as for the one-target task

(equation 1). In the second task the system had to reach one of two

targets at locations y�~{a and za at a future time tf . For this

task, the end cost is defined by

Cf ~
1

2
Qf (Dyf D{a)2 (Qf §0): ð8Þ

The optimal control is given by

u�(y,t)~{K(t) yza sign(y)
{y{(y,t)zyz(y,t)

y{(y,t)zyz(y,t)

� �
ð9Þ

with

y+(y,t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(t)Qu

Qf

s
exp({

K(t)

2n
(jyj+a)2)

(
1

2
z

1

2
erf (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qf

2n(tf {t)K(t)Qu

s
m+(y,t)))

and

m+(y,t)~
K(t)Qu

Qf

(+DyDzQf Q{1
u a(tf {t)): ð10Þ

(see Appendix S1 for the derivation). The optimal control in the

noiseless condition (n~0) is obtained by taking the limit n?0
which gives

u�(y,t)~{K(t)(y{a sign(y)): ð11Þ

For n~0, this model shows that the optimal strategy would be

to steer the ball in a straight line from the initial position to the

nearest target by exerting a constant control, in agreement with

the prediction of deterministic optimal control [18].

Extended model with position cost
The standard model described above assumes that the optimal

control solution can be found by minimizing a cost function with a

control cost and end cost component, which corresponds to a

compromise between minimizing the subject’s effort and maxi-

mizing the performance. In this study, we investigate whether such

Optimal Control in Time-Constrained Tasks
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a model is sufficient to account for human motor control in a task

where subjects have to reach a goal within a particular time

interval ½0,tf �. Therefore, we extended the standard model by

introducing an additional cumulative cost that penalizes deviations

between ball position and target position during the trial. This cost

criterion tends to steer the ball to the vertical target position y�

well before the final time tf and is defined by

Cy~

ðtf

0

1

2
QyV (y(t))dt, ð12Þ

where

V (y(t))~(tanh(D(y(t){y�)))2 ð13Þ

for the one-target task where the target was located at y�~0, and

V (y(t))~
(tanh(D(y(t)za)))2 if y(t)ƒ0

(tanh(D(y(t){a)))2 if y(t)w0

(
ð14Þ

for the two-target task where the two targets were located at

y�~{a and a. The parameters Qy and D have positive values. V

is zero when the ball’s vertical position is equal to the target

position. It increases approximately quadratically when the

distance between ball and target is small and less than

quadratically for larger distances. The position cost is constrained

to a finite value when the distance between ball and target is large,

eliminating the effect of outliers. This particular shape of V was

chosen because previous experiments on sensorimotor learning

showed that subjects implicitly use a cost function which is

subquadratic for large errors [19], i.e., outliers tend to be ignored.

This extended model minimizes the expected cost that is now

given by

Ctotal~
1

2
Qf y2

f z

ðtf

0

1

2
Quu(t)2dtz

ðtf

0

1

2
QyV (y(t))dt

� �
y0

: ð15Þ

The optimal expected cost-to-go at time t and position y can be

written as

J(y,t)~{l lnhexp({
1

l
Cf (yf ){

1

l

ðtf

t

1

2
QyV (y(t’))dt’)iy ð16Þ

where Cf is the end cost function, l~Qun, and y satisfies the

uncontrolled dynamics dy~dj [17]. The optimal control was

calculated by taking the gradient of the optimal expected cost-

to-go. A closed form solution for the optimal expected cost-to-

go in general does not exist. Therefore, we inferred the optimal

control solution approximately by taking the following

approach. From the dynamic programming principle [20]

and equation 16 it follows that the optimal expected cost-to-go

satisfies

J(y,t)~

{l lnhexp({
1

l
J(ytzDt,tzDt){

1

l

ðtzDt

t

1

2
QyV (y(t))dt)iy

ð17Þ

for any time step 0vDtƒtf {t. We approximated this

equation by

J(y,t) &{l lnhexp({ 1
l J(ytzDt,tzDt))iyz

1

2
QyV (y)rDt

~{l ln

ð?
{?

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pnDt
p exp({

1

l
J(y0,tzDt){

(y0{y)2

2nDt
)dy0z

1

2
QyV (y)Dt:

ð18Þ

We set Dt~1=75 s since the sample rate in the experiments was

75 Hz. With equation 18, we computed the optimal expected cost-

to-go at any time prior to the end time, starting at the end time

where J(y,tf )~Cf (yf ), and then going backwards in time steps of

size Dt. We approximated the spatial integral in equation 18 by a

sum which was obtained by discretizing space into steps of size

dy’~0:007. The optimal control was derived by taking the

gradient of the optimal expected cost-to-go:

u(y,t)~{
1

Qu

LJ(y,t)

Ly
: ð19Þ

Since the cost function of this model contains the position cost

as an additional component, we call this model the ‘extended

model’. We call the model with end cost only the ‘standard model’.

The extended model gives the same solution as the standard model

if the position cost parameter Qy is zero (equations 12 and 13). For

Qyw0, the extended model gives solutions which cannot be

obtained by the standard model.

Data analysis
In most of the trials, subject S5 showed a fragmentary,

discontinuous control signal in which periods of high control were

alternated with periods of no control throughout the trial. This was

especially true for the noiseless condition. The other subjects

showed a rather smooth, continuous control signal in most of the

trials. Since the optimal control models assume a continuous

control signal, subject S5 was excluded from the analysis.

For each task, subject, and noise amplitude we determined the

model performance of the extended model with position cost and

that of the standard model with end cost only using a 100-fold

cross-validation. From each block with 100 trials, 50 trials were

randomly drawn. From this subset of 50 trials, 45 trials were

randomly selected to train both models to find the optimal model

parameters. This was done by minimizing the mean square error

(MSE) between the optimal control u� according to the model and

the actual control u in the training data:

MSE~
1

Ns

XNs

s~1

1

Nt

Xtb
t~ta

(us(tzt){u�(ys(t),tDH))2 ð20Þ

where us(tzt) is the control according to the data at time tzt in

trial s, ys(t) is the position of the ball at time t in trial s,

u�(ys(t),tDH) is the model control at time t and position ys(t) given

the model parameters H, and Ns~45 represents the number of

trials. For both models we set Qu~1, resulting in H~Qf for the

standard model and H~fQf ,Qy,Dg for the extended model. We

introduced a sensorimotor delay t of 200 ms to take into account

the time that it typically took for subjects to respond to changes in

ball position during the task [21,22]. The results did not depend

crucially on the value of the time delay (see Discussion). The

summation over time t runs from ta~0:8 s to tb~2:8 s, which

Optimal Control in Time-Constrained Tasks
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corresponds to Nt~150 since the sample rate was 75 Hz. The

lower bound of 0.8 s was chosen to include only responses well

after the subjects’ reaction time, which had a median value of

0.47 s (25th and 75th percentile was 0.31 s and 0.68 s, respective-

ly). The upper bound of 2.8 s was chosen to account for the

sensorimotor delay (0.2 s). Each model was tested on the

remaining five trials, yielding a test error for the standard and

the extended model. The test error was computed from equation

20, with summation over the test samples (Ns~5), and given the

model parameters H that minimized the mean square error

between the model and the training data.

The paired difference between the test errors of both models

was considered as an estimate of the performance of the extended

model with position cost relative to the standard model with end

cost only. Therefore, we performed a two-sided sign test under the

null hypothesis that the paired differences ‘test error of standard

model’ minus ‘test error of extended model’ have median zero,

against the alternative that they do not have median zero at the

5% significance level.

Results

Responses in the one-target task
In the one-target task, subjects were asked to steer a virtual ball

from the left side of the screen toward a single goal at the right

(Figure 1a). As an example, figure 1 shows the ball position (panel

c) and corresponding control (panel e) of a representative subject

(S6) for n~0:009. Each line represents a single trial (total 100

trials) starting at a position y in the range between {0:5 and 0.5.

The average observed behavior was obtained by averaging the

single trials for each subject and condition (Figure 2). Since the

task was symmetric relative to y~0, we did not find systematic

differences in behavior between trials starting at yv0 and yw0 for

the majority of subjects and conditions (see below). Therefore, we

calculated the average over trials (solid gray line) by first inverting

the sign of the position and corresponding control signal for trials

starting at yv0 and then taking the average over all trials. The

shaded area represents the standard deviation. Subject S4 showed

different behavior between trials starting at yw0 and trials starting

at yv0 for nw0. Therefore, the results of this subject should be

interpreted as the average behavior between trials starting at yw0
and trials starting at yv0.

Since subjects could only manipulate the vertical position of the

ball, they always reached the horizontal target position (i.e., the

right boundary of the screen) at t~3 s. However, they were free in

choosing the time at which they reached the vertical target

position y�~0. The time at which subjects reached the vertical

target position differed substantially among subjects. This

difference in behavior is most pronounced when considering the

average ball trajectories for the noiseless condition (n~0, first row).

Subject S6 is an example of a subject who reached y�~0 very

early (at about 1.5 s) which was well before the final time of 3 s,

resulting in an average ball trajectory that was curved. The

corresponding control (fifth row) peaked just before t~1 s and

gradually decayed, reaching values close to zero after about 1.5 to

2 s. Subject S7 shows different behavior. This subject reached the

target very close to the deadline tf ~3 s by exerting a more or less

constant control. The other subjects (S1–S4, S8) showed

intermediate behavior, i.e., they reached y�~0 between 1.5 and

3 s.

The strategy subjects used to steer the ball toward the target is

consistent across different noise levels for the majority of subjects

(S1–S3, S6–S8). Subject S4 is an exception to this consistency since

they reached the vertical target position relatively early in the

noiseless condition, but reached the target close to the final time

when the noise was increased (nw0). Note that all subjects had a

reaction time of about 0.5 s before they started moving the ball.

Model performance for the one-target task
The black dashed and solid line in Figure 2 represent the

average model fit of the standard model and of the extended

model with position cost, respectively. In the first 0.5 s, the control

was set to zero to account for the subjects’ reaction time. The

majority of subjects reached the vertical target position well before

the final time of 3 seconds. This behavior is inconsistent with the

standard model (dashed line) which predicted a constant control

and a straight trajectory reaching the target approximately at

tf ~3 s. The predictions by the extended model (solid line) were in

close agreement with the curved ball trajectory. This means that

the position cost, which is a function of the distance between the

ball and the target position during the trial, is essential to fit the

behavior of the majority of the subjects.

Subject S7 (all noise levels) and subjects S4(nw0) ended at the

vertical target position close to the final time by applying a more or

less constant control. This strategy was consistent with the

standard model, where subjects minimized the control cost and

end cost, but not the position cost. Fitting both models to the data

of these subjects gave more or less the same result for both models.

The reason is that for these cases the optimal value for parameter

Qy in the extended model (see equation 15) was close to zero,

which reduced the extended model to the standard model.

To investigate whether the extended model with position cost

gave a better prediction of the data than the standard model with

end cost only, we computed the test error for each model which

provided a measure how well the model fitted the data (see Methods

for details). Figure 3 shows the test error of the standard model

minus the test error of the extended model (‘test error difference’)

for all subjects and noise amplitudes. Values are given as the

median over 100 validation runs. The lower and upper error bars

represent the 25th and 75th percentile, respectively. Thus, a

positive value means that the extended model gave a better

prediction than the standard model. A value of zero means that

there was no difference between the models. Conditions for which

the extended model gave a significantly better prediction than the

standard model are indicated by �(pv0:05) or ��(pv0:01).

For all subjects and noise amplitudes, the predictions by the

extended model were better in agreement with the data than the

predictions by the standard model, even when the test error

difference was close to zero. The reason is that we used a non-

parametric sign-test, which ranks the values according to their sign

without making any assumptions on the underlying distribution.

The results of Figure 3 reveal conditions for which the test error

difference was positive and conditions for which this value was

virtually zero. A positive test error difference means that including

the position cost in the model improved the model prediction,

corresponding to the strategy of steering the ball toward the

desired target position well before the final time. A test error

difference near zero means that the standard model with end cost

only is sufficient to describe the observed behavior and that

subjects steer the ball in a straight line reaching the target

approximately at the time limit.

For subject S1–S3, S6 and S8 the test error difference was

clearly positive for all noise amplitudes. Thus, for these subjects the

behavior in the one-target task can best be described by a model

which includes the position cost in its cost function, irrespective of

the level of uncertainty in the task. Subject S4 showed a positive

test error difference for n~0, whereas for nw0 this value was

virtually zero. Thus, this subject chose different strategies based on
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the level of uncertainty. For subject S7, the test error difference

was virtually zero for all noise amplitudes, which means that

including the position cost hardly improved the model prediction.

This behavior was consistent across all noise amplitudes.

Responses in the two-target task
In the previous sections, we found that a standard optimal

control model with a control cost component and end cost

component was insufficient to describe the behavior found in the

one-target experiment for the majority of subjects. We found that

the extended model gave a good fit of the data of the one-target

experiment. Here, we investigate whether the extended model

could also correctly predict the behavior in other time-constrained

tasks. Therefore, we designed a second task in which subjects had

to move the ball to either of two targets (see Methods for details).

We selected a new group of seven subjects (S6–S12), three of

which (S65–S8) also participated in the one-target task. The

remaining four subjects (S9–S12) were naive with respect to the

aim and procedure of the experiment to check whether the results

of the second task could have been influenced by participation in

the first task. As an example, Figure 1 shows the ball position

(panel d) and corresponding control (panel f) of a representative

subject (S6) for n~0:009. Each line represents a single trial (total

100 trials) starting at a position y~0.

The average observed behavior was obtained by averaging the

single trials for each subject and condition (Figure 4). Since the

task was symmetric relative to y~0, we did not find systematic

differences in control for trials in which subjects aim for the upper

and lower target, except for the sign. The only exception was

subject S8 who steered the ball to the upper target only in the

noiseless condition. We took the average over trials after inverting

the sign of the position and corresponding control signals aiming

for the lower target (y~{0:5), as if all trials were made to the

upper target (y~z0:5). The gray line and shaded area represent

the mean and standard deviation over 100 trials, respectively.

Figure 2. Behavior and model predictions for the one-target task. Top panels: average ball position displayed as mean (gray solid line) and
standard deviation (gray shaded area) for all noise amplitudes (rows) and subjects (columns). The black dashed and solid line represent the average fit
of the standard model and the extended model, respectively. Bottom panels: same for the control signal. Subject S5 was discarded (see Methods).
doi:10.1371/journal.pone.0033724.g002
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The time at which subjects reached the vertical target position

differed substantially among subjects. This difference in behavior is

most pronounced when considering the average ball trajectories for

the noiseless condition (n~0, first row). Subject S6 is an example of

a subject who reached y�~0 very early (at about 2 s) which was well

before the final time of 3 s, resulting in an average ball trajectory

that was curved. The corresponding control (fifth row) peaked at

about t~1 s and gradually decayed, reaching values close to zero

after about 1.5 to 2 s. Subject S9 and S10 shows different behavior.

These subjects reached the target very close to the deadline tf ~3 s,

resulting in a straight path, by exerting a more or less constant

control. The other subjects (S7, S8, S11, S12) showed intermediate

behavior, i.e., they reached y�~0 between 1.5 and 3 s.

The strategy subjects used to steer the ball toward the target is

consistent across different noise levels for subjects S6, S8 and S12.

Subjects S7 and S11 reached the vertical target position relatively

early in the noiseless condition, but reached the target close to the

final time when the noise was increased (nw0). Subject S9 shows the

opposite behavior. Subject S10 is consistent across different noise

levels except for n~0:009 where this subject started moving the ball

toward the target relatively late in the trial. All subjects had a

reaction time of about 0.5 s before they started moving the ball.

Model performance for the two-target task
The black dashed and solid line in Figure 4 represent the

average model fit of the standard model and of the extended

model with position cost, respectively. In the first 0.5 s, the control

was set to zero to account for the subjects’ reaction time. In this

task, we found similar results as for the one-target task. The

majority of subjects reached the vertical target position well before

the final time of 3 seconds, which was inconsistent with the

standard model (dashed line) but consistent with the extended

model (solid line). This means that also for the two-target task, the

position cost is essential to fit the behavior of the majority of the

subjects. In some conditions subjects ended at the vertical target

position close to the final time (e.g. S9, S10 for n~0; S7, S10 for

n~0:08), which was consistent with the standard model where

subjects minimized the control cost and end cost, consistent with

the standard model where subjects minimized the sum of control

cost and end cost, and where no position cost appeared.

To investigate whether the extended model gave a better

prediction of the data than the standard model, we repeated the

analysis that we used for the one-target task. Figure 5 shows the

test error of the standard model minus the test error of the

extended model for all subjects and noise amplitudes. Values are

given as the median over 100 validation runs. The lower and

upper error bars represent the 25th and 75th percentile,

respectively. Conditions for which the extended model gave a

significantly better prediction than the standard model are

indicated by ��(pv0:01).

For all subjects and noise amplitudes, the predictions by the

extended model were significantly better in agreement with the

data than the predictions by the standard model, even when the

test error difference was close to zero. This result is in agreement

with that of the one-target task (see Figure 3). For subjects S6, S8,

S11 and S12 the test error difference was clearly positive for all

noise amplitudes, corresponding to a strategy in which the ball was

steered toward the desired target position well before tf ~3 s.

Subject S10 showed a test error difference close to zero for all

noise amplitudes, corresponding to a strategy in which the ball

moved in a straight line and arrived at the target position

approximately at tf ~3 s. For subject S7, the test error difference

was close to zero for n~0:08, but positive for the other noise

amplitudes. Considering the group of subjects which participated

in both experiments (i.e., S6–S8), we conclude that for S6 and S8,

the behavior in the two-target task was similar as for the one-target

task.

Discussion

In this study, we used optimal control theory to predict human

motor behavior in two different time-constrained motor tasks. We

investigated whether minimizing the usual cost function consisting

of a control and end cost component is sufficient to describe the

observed behavior. Therefore, we tested eight subjects in the one-

target task in which they had to hit a target at a final time of

t~3 s. As a null hypothesis, we postulated the standard model

which assumes that subjects minimize the integrated quadratic

control and the squared distance between the ball and the target at

the end of the trial. We extended the standard model by including

a position cost component in the cost function, which penalized

deviations between the position of the ball and the target

throughout the trial. This cost component ensures that subjects

steer the ball to the target position well before the final time. Both

models were trained on a subset of the data to compute the model

parameters, and tested on the remaining data to obtain the model

performance. The results show that the majority of subjects steer

the ball such that they reach the vertical target position well before

the final time. This behavior was consistent across different noise

levels. For all subjects and noise levels, the predictions by the

Figure 3. Model performance for the one-target task. Test error
of standard model minus test error of extended model for all subjects
and noise amplitudes. Values are given as the median over 100 cross-
validation runs. The lower and upper error bars represent the 25th and
75th percentile, respectively. A positive value means that the extended
model gave a better fit than the standard model. A value of zero means
that there was no difference between the models. Conditions for which
the extended model gave a significantly better prediction than the
standard model are indicated by �(pv0:05) or ��(pv0:01). Subject S5
was discarded (see Methods).
doi:10.1371/journal.pone.0033724.g003
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extended model were better in agreement with data than the

predictions by the standard model. This result rejects our

hypothesis that a simple cost function representing a trade-off

between effort and performance is sufficient to describe the

observed behavior. To investigate whether the extended model is

generic, we tested another group of subjects in the two-target task

in which they had to hit one of two targets at the fixed final time.

For this task, the predictions by the extended model were also in

good agreement with the experimental data, much better than for

the standard model.

Recently, Nagengast et al. [11] used a similar task in which

subjects controlled a virtual ball undergoing Brownian motion

(noise) towards a target that had to be reached at a final time of

one second. Subjects were required to minimize an explicit cost

that was a combination of the final positional error of the ball (end

cost) and the integrated control cost. They proposed the use of a

risk sensitive optimal controller that incorporated movement cost

variance either as an added cost (risk-averse controller) or as an

added value (risk-seeking controller). This raises the question

whether our results could also be explained by risk sensitivity.

Therefore, we fitted the risk sensitive model of Nagengast et al. to

our data. For the conditions with stochastic dynamics (nw0), we

reproduced their finding that this risk sensitive model fitted the

data better than the risk-neutral model, which is equal to the

standard model in this study (see Appendix S1). However, in our

experiment, we also included a noiseless condition (n~0) in which

the movement of the ball was completely deterministic. For the

noiseless condition, a risk sensitive model gives exactly the same

predictions as a risk-neutral model. Our results show that for the

noiseless condition, a risk-neutral model that minimizes the control

and the final positional error is insufficient to predict the observed

behavior. Thus, our results cannot be explained by risk sensitivity.

How can we explain that subjects show a different behavior in

the task of Nagengast et al. and our one-target task, while both

tasks were rather similar? In the experiment of Nagengast et al.,

subjects received feedback about the control cost and end cost

during each trial, and about the average total cost across trials.

Their subjects were requested to minimize the sum of the control

Figure 4. Behavior and model predictions for the two-target task. See figure 2 for details.
doi:10.1371/journal.pone.0033724.g004
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cost and end cost, corresponding to the standard model. If subjects

would steer the ball to the vertical target position before the final

time, their control cost would increase. Since subjects were

requested to minimize the control cost and end cost, they adjusted

their behavior such that it was in agreement with the standard

model. In addition, although their task was very similar to ours,

the dynamics of the system differed substantially. We used a first

order dynamics to relate the control to the ball position, that is, a

control action changed the vertical velocity of the ball (equation 1).

Nagengast et al. [11] used a second order dynamics in which a

control action acted as a force on a frictionless mass (the ball)

causing it to accelerate or decelerate. In our experiment, subjects

could move the ball with the joystick toward a desired position,

which could then be maintained by simply exerting no control. In

their experiment, subjects could move the ball toward a desired

position, but in order to maintain that position, subjects had to

decelerate the ball by exerting control opposite to the movement

direction. This may have affected the subjects’ control strategy.

Braun et al. [23] have used a cumulative position-dependent

cost function to model reaching tasks. In their study no final time

was assumed, but instead, the movement time resulted as a

consequence of the cumulative position cost. Even though they

used an infinite horizon model, it suggests that the cumulative

position cost may have the same effect as in our study. Therefore,

we implemented an infinite horizon model in our experiments (see

Appendix S1). We found that the optimal control in the infinite

horizon model is similar to the optimal control in the finite horizon

model. This demonstrates that introducing a position cost

consistently predicts that subjects steer the ball such that it arrives

at the vertical target position before the final time, irrespective of

the time horizon.

In our experiment, we asked subjects to hit the target but we did

not gave any instructions as to whether the movement should meet

any criteria. This raises the question why subjects would minimize

the position error over time. Todorov [2] stated that the cost that

is relevant to the sensorimotor system may not directly correspond

to our intuitive understanding of ‘the task’ and so its detailed form

should be considered a relatively free parameter. Thus, the explicit

instruction to the subjects of the task’s goal may not necessarily

reflect the goal that the sensorimotor system implicitly tries to

achieve. This is consistent with our results showing that the

subjects’ strategy can be predicted by a model that also minimizes

the position cost, although this was not an explicit aim of the task.

However, this does not explain what the cause of this position

cost might be. One likely explanation is that maintaining a

constant control throughout the trial is more difficult than

producing a large control in the beginning of the trial and some

corrective movements at the end. Thus, if the trial duration is

large, a control strategy which spreads the control equally over the

available time would probably be extremely difficult to achieve,

even though that this strategy is the optimal strategy according to

the standard model. The trial duration in our experiments was set

to 3 s, which is rather long for a typical hand or arm movement.

This suggests that a relatively long trial duration cause subjects to

move faster toward the target compared to short trial durations.

This hypothesis could be tested in future work. An alternative

explanation is that subjects avoid the risk of missing the target and

therefore steer the ball toward the target before the final time.

One can argue that including a third component in the cost

function of the extended model will by itself give a better

prediction since it adds two additional free parameters compared

to the standard model (i.e., Qf for the standard model; Qf , Qy and

D for the extended model; Qu~1 for both models). However, the

model predictions do not depend on the number of free

parameters since we applied cross-validation to both models.

The additional free parameters in the extended model could cause

so-called overfitting when these parameters were not relevant for

the task. In that case, the extended model would give a worse fit

than the standard model, resulting in negative values of the test

error differences in figures 3 and 5. At the contrary, these figures

show that on average, the extended model gives a significantly

better prediction than the standard model.

The extended model includes one fixed parameter, the

sensorimotor delay t, which was set to 200 ms (see Methods). To

investigate the sensitivity of the model to this parameter, we also

did the cross-validation procedure for t~150 ms, which was equal

to the value chosen by Nagengast et al. [11]. Similar to the

extended model with t~200 ms, we calculated the test error of

the standard model minus the test error of the extended model,

yielding 100 error values for each of 64 conditions (8 subjects|4

noise amplitudes|2 tasks). For each condition, we tested whether

the median obtained by the model with t~150 ms was equal to

the median obtained by the model with t~200 ms (Mann-

Whitney U-test). For six conditions, we found a significant

difference (0:02vpv0:05). For the remaining 58 conditions, the

difference was not significant (pw0:05). These results show that

the extended model is not sensitive to the precise value of the

sensorimotor delay within the range of 150 to 200 ms for the

majority of conditions tested in this study.

In our model, we included a quadratic end cost and a position

cost which was quadratic only locally (around the target position)

and leveled off further away from the target to reduce the effect of

outliers. Note that in this experiment, the difference in model

prediction between a quadratic or a locally quadratic end cost

function will be small, since the ball’s final position is scattered

Figure 5. Model performance of the two-target task. See figure 3
for details.
doi:10.1371/journal.pone.0033724.g005
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around the target position (see figures 2 and 4, first row) which is

within the quadratic region of both functions. The position cost,

however, depends on the ball position relative to the target

position throughout the trial. Initially, the ball’s position is in

general relatively far from the desired target position, resulting in

large errors. For sensorimotor learning, it has been shown that

people use a cost function which increases approximately

quadratically for small errors but less than quadratically for large

errors [19]. Therefore, we used a tanh2-function (equation 13 and

14) which fulfills these criteria and which sets an upper bound on

the position cost.

For the two-target task, the standard model gives an additional,

more subtle theoretical prediction. In the beginning of the trial, it

is best to steer towards y~0 (between the targets) and delay the

choice which target to aim for if the noise amplitude is large. In

our experiments, the standard model predicts only a very small

control toward y~0 in the first 0.5 seconds, even for the highest

noise amplitude (n~0:08). Thus, according to the standard model

this so-called symmetry breaking is barely measurable in our

experiments. Moreover, the symmetry breaking vanishes when the

position cost is introduced. This explains why we found that

subjects never steered the ball away from the target towards y~0

during the first part of the trial, even not for the highest noise

amplitude.

The results of our study show that a model that only minimizes

control effort and maximizes performance cannot describe human

motor behavior in a time-constrained sensorimotor task. A model

that also accounts for the deviation from the goal throughout the

task execution gives a significantly better fit the observed behavior.

Supporting Information

Appendix S1 Risk sensitive and infinite horizon models.
In this appendix, we derive a risk sensitive optimal control model

for the one-target and two-target task. We discuss the model

performance. As an alternative to the finite horizon models

presented in this study, we discuss the application of infinite

horizon models.
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