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A minimal model is presented to explain changes in frequency, shape, and
amplitude of Ca2C oscillations in the neuroendocrine melanotrope cell of
Xenopus Laevis. It describes the cell as a plasma membrane oscillator with
in�ux of extracellular Ca2C via voltage-gated Ca2C channels in the plasma
membrane. The Ca2C oscillations in the Xenopus melanotrope show spe-
ci�c features that cannot be explained by previous models for electrically
bursting cells using one set of parameters. The model assumes a KCa-
channel with slow Ca2C-dependent gating kinetics that initiates and ter-
minates the bursts. The slow kinetics of this channel cause an activation
of the KCa-channel with a phase shift relative to the intracellular Ca2C con-
centration. The phase shift, together with the presence of a NaC channel
that has a lower threshold than the Ca2C channel, generate the character-
istic features of the Ca2C oscillations in the Xenopus melanotrope cell.

1 Introduction

Cells of multicellular organisms communicate with each other to control
and coordinate their activities. This communication takes place by way of
various types of �rst messengers, such as neurotransmitters, hormones, and
growth factors. First messengers speci�cally contact a cell via receptors that
subsequently transduce the extracellular signals into speci�c (intra-) cellular
responses such as protein synthesis, secretion, or contraction. In this trans-
duction process, a relatively small number of second-messenger molecules
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are involved, such as cAMP, inositol trisphosphate, and Ca2C ions. Among
the second messengers, to date much attention is being paid to the role of the
intracellular Ca2C concentration ([Ca2C ]i) (Berridge, 1998; Bito, 1998; Neher,
1998). In many secretory cells, including neurons and neuroendocrine cells,
[Ca2C ]i changes in the form of Ca2C oscillations are thought to control se-
cretory events (Stojilkovic & Catt, 1992; Shibuya & Douglas, 1993; Berridge,
1998). In some cases these oscillations depend on the in�ux of extracellular
Ca2C via voltage-gated Ca2C channels in the plasma membrane and on Ca2C

release from intracellular stores. In others, the in�ux of extracellular Ca2C is
the only cause of the Ca2C oscillations (Stojilkovic & Catt, 1992; Scheenen,
Jenks, Roubos, & Willems, 1994; Scheenen, Jenks, Willems, & Roubos, 1994;
Stojilkovic, Tomic, Kukulijan, & Catt, 1994). In the latter cell type, the Ca2C

in�ux depends on the electrical state of the plasma membrane.
Several models have been proposed for the mechanism by which Ca2C

oscillations are coupled to bursting electrical membrane activity, such as for
the pancreatic b-cell (Chay & Keizer, 1983) and the R15 neuron in Aplysia
(Chay, 1990; Canavier, Clark, & Byrne, 1991). However, although these mod-
els describe the electrical behavior of the cells, relatively little attention has
been paid to the characteristics of the Ca2C oscillations. Recently, several
interesting details have been reported on Ca2C oscillations in the melan-
otrope cell of the amphibian Xenopus Laevis (Scheenen, Jenks, van Dinter,
& Roubos, 1996; Koopman, Scheenen, Roubos, & Jenks, 1997; Lieste et al.,
1998). This neuroendocrine cell type is located in the intermediate lobe of
the pituitary gland and secretes a-melanophore-stimulating hormone (a-
MSH), which stimulates the dispersion of the pigment melanin in dermal
melanophores. This process enables the animal to adjust the gray intensity
of its skin to the light intensity of the environment (background adapta-
tion). The Xenopus melanotrope cell is an established and extensively stud-
ied object for investigations of the ways in which environmental stimuli are
transduced into physiologically meaningful responses (Loh & Gainer, 1977;
Maruthainar, Loh, & Smyth, 1992; Artero, Fasolo, Andreone, & Franzoni,
1994; Roubos, 1997; Jenks et al., 1998). Many of the various steps in this
transduction process are known in great detail and can be experimentally
approached and quantitatively manipulated both in vivo and in vitro. Var-
ious neuronal messengers, such as thyrotropin-releasing hormone (TRH),
corticotropin-releasing hormone (CRH), acetylcholine, serotonin (all exci-
tatory) and dopamine, neuropeptide Y (NPY), and c -aminobutyric acid
(GABA) (all inhibitory) control the secretion of a-MSH from the Xenopus
melanotrope cells (for reviews see Roubos, 1997; Jenks et al., 1998). All of
these factors exert their effect on a-MSH secretion by affecting the Ca2C

oscillatory dynamics (Shibuya & Douglas, 1993; Scheenen, Jenks, Roubos,
& Willems, 1994; Scheenen, Jenks, Willems, & Roubos, 1994). Recently, we
showed that the Ca2C oscillations are coupled to membrane action potential
bursting (Lieste et al., 1998). Imaging of the [Ca2C]i oscillations with high
temporal resolution has revealed that the oscillation patterns may differ in
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Figure 1: Characteristic features of Ca2C oscillations in the Xenopus melanotrope
cell: (i) steps during the rise phase, (ii) plateau phase, (iii) exponential decline
phase, (iv) abrupt transition from decline to rise phase. The cell has been loaded
with the membrane permeable probe fura-2/AM and �uorescence emission was
monitored at 520 nm (SD 15 nm; described in Lieste et al., 1998). Changes in
[Ca2C ]i are expressed as ratio signals of fura-2 �uorescence after excitation at
360 nm and 380 nm (F360/F380).

frequency, amplitude, and shape. In more detail, the Ca2Coscillatory pattern
of this cell is characterized by various other features such as (i) repetitive
steps during the rise phase, (ii) a plateau phase, (iii) an exponential decline,
and (iv) an abrupt transition from the decline phase to the rise phase of the
next Ca2C peak (Scheenen et al., 1996; Koopman et al., 1997; Lieste et al.,
1998), as illustrated in Figure 1.

The aim of this study is to develop a mathematical model that describes
the detailed features of Ca2C oscillations in the Xenopus melanotrope cell
and links these features to the electrical behavior of its plasma membrane.
For this purpose we have taken the Chay-Rinzel model (Chay & Rinzel,
1985) as a starting point. This model provides a qualitative description of
Ca2C oscillations with steps in the rise phase as a result of the coupling
between bursting electrical membrane activity and [Ca2C]i. However, it
cannot explain properties (ii)–(iv) of the Xenopus melanotrope as described
above. Therefore, we have replaced in the model the original Ca2C -sensitive
KC-channel by a KCa-channel with Hodgkin-Huxley kinetics that are Ca2C

dependent and are slow compared to the kinetics of the voltage-gated chan-
nels. Furthermore, we have added an NaC channel that has a lower thresh-
old than the Ca2C channel. These modi�cations enable us to describe Ca2C

oscillations with the features that are characteristic for the melanotrope cell
of Xenopus Laevis, as depicted in Figure 1. Whereas the model describes
and explains the characteristics of the Ca2C oscillations and the relationship
between electrical membrane activity and Ca2C oscillations in this neuroen-
docrine cell, it also provides insight into the physiological parameters of the
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cell that can account for the variations in the pattern of the Ca2C oscillations.
This is highly relevant from a biological point of view, as it is assumed that
variations in this pattern re�ect different physiological states of this Xenopus
neuroendocrine signal transducer cell (Koopman et al., 1997).

2 Model

2.1 Plasma Membrane Oscillator. In this section we describe the model
to explain intracellular Ca2C oscillations in the melanotrope cells of Xenopus
Laevis. The model consists of a set of eight coupled, nonlinear differential
equations and is based on a excitable membrane model proposed by Chay
and Rinzel (1985). It contains a Hodgkin-Huxley-type formalism (Hodgkin
& Huxley, 1952) for the generation of action potentials, a differential equa-
tion that describes the dynamics of [Ca2C ]i, and a differential equation that
describes the Ca2C -dependent kinetics of a KCa-channel that provides the
coupling between [Ca2C ]i and the electrical activity. Spontaneous Ca2C ac-
tion potentials are generated in a bursting manner. Each action potential
gives rise to a rapid in�ux of Ca2C through voltage-gated Ca2C channels
and causes a small increase in [Ca2C]i (a “step”) (Koopman et al., 1997).
During a burst of action potentials, a number of steps are generated, which
results in a sequential and accumulative increase in [Ca2C]i. In the time pe-
riods between the bursts of action potentials, Ca2C is removed from the cell
by a Ca2C removal mechanism.

In the model, the fast kinetics of voltage-gated ion channels are combined
with the slow kinetics of a KCa-channel that is progressively activated by an
increase in [Ca2C ]i. Activation (deactivation) of this slow KC channel causes
a hyperpolarization (depolarization) of the plasma membrane. The activa-
tion and deactivation result in the stop and the start, respectively, of a burst
of action potentials. On the basis of this concept for a plasma membrane
oscillator, it is possible to describe the several characteristic features of the
Ca2C oscillations of the melanotrope cell, as given in the introduction.

2.2 Model Equations. The membrane potential (V) of an excitable cell
is given by

Cm
dV
dt

D ¡ Iion (2.1)

where Cm represents the membrane capacitance, and Iion the sum of the
ion currents through the various ion channels. In this model the total ion
current consists of �ve components:

Iion D ICa,HH C INa,HH C IK,HH C IL C IK,Ca, (2.2)

with the Hodgkin-Huxley type currents: ICa,HH, a voltage-gated Ca2C cur-
rent; INa,HH, a voltage-gated NaC current; IK,HH, a voltage-gated KC current;
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and IL, a leak current, that incorporates the contributions of all the ion cur-
rents (e.g., Cl¡ currents) not explicitly included in the model. The current
IK,Ca represents a slow KC current that is activated by [Ca2C ]i.

ICa,HH, INa,HH, IK,HH, and IL are modeled similarly to the ion currents in
the original Hodgkin-Huxley scheme that describes the generation of action
potentials (Hodgkin & Huxley, 1952). The currents are expressed in terms
of a voltage-dependent conductance multiplied by the difference between
the membrane voltage and the Nernst potential for the particular ion:

ICa,HH D NgCa,HHm3h(V ¡ VCa )

INa,HH D NgNa,HHp3q(V ¡ VNa)

IK,HH D NgK,HHn4(V ¡ VK)

IL D NgL(V ¡ VL), (2.3)

where NgCa,HH, NgNa,HH, NgK,HH, and NgL are the maximal conductances per unit
area for the voltage-gated Ca2C , voltage-gated NaC , voltage-gated KC , and
leak channels, respectively. The symbols m, h, p, q, and n represent the prob-
abilities to be in an open state for the m-, h-, p-, q-, and n-gates, respectively.
VCa , VNa, VK , and VL are the Nernst potentials for Ca2C , NaC , KC , and leak
ions, respectively, which are assumed to be constant in this study.

The time evolution of the probabilities m, h, p, q, and n is described by
the following �rst-order differential equation, introduced by Hodgkin and
Huxley:

dy
dt

D ay(1 ¡ y) ¡ byy, (2.4)

where y stands for m, h, p, q, or n and ay and by are the activation and
deactivation rates, respectively. The voltage dependencies of ay and by have
qualitatively the same form as in the original Hodgkin-Huxley equations,
but are shifted along the V-axis in accordance with the Chay-Rinzel model.
These shifts of the voltage dependencies of ay and by result in the periodic
generation of action potentials by the membrane. (The detailed expressions
for ay and by, used in this study are given in Table 2.)

The spontaneous activity of the membrane, as described above, can be
blocked by a hyperpolarizing current. Alternating activation and deactiva-
tion of this current will generate bursts of action potentials. In this model,
a slow potassium current, IK,Ca , which is activated by Ca2C , plays the role
of the hyperpolarizing current. IK,Ca is given by

IK,Ca D NgK,CaP(V ¡ VK), (2.5)

where NgK,Ca is the maximal conductance per unit area for KCa-channel, P is
the probability for the channel to be in an open state, and VK is the Nernst
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potential for KC . The time evolution of P depends on [Ca2C ]i and is modeled
by

dP
dt

D aP(1 ¡ P) ¡ bPP, (2.6)

with aP and bP being theactivationand deactivation rate, respectively.Equa-
tion 2.6 is analogous to equation 2.4. However, the rates in equation 2.6 are
not voltage-dependent but are described by

aP D uo [Ca2C]i ¡ [Ca2C ]basal

bP D uc, (2.7)

with uo and uc constants, and [Ca2C ]basal the basal level of [Ca2C ]i. The pa-
rameters uo and uc determine how P responds to an oscillating [Ca2C]i signal.
If both parameters are large relative to the rate of change of [Ca2C ]i, P will
closely follow changes in [Ca2C ]i and therefore will be almost in phase with
[Ca2C ]i. If the values of uo and uc are small relative to the rate of change of
[Ca2C ]i, P will lag changes in [Ca2C ]i and will be out of phase with respect
to [Ca2C]i for periodic changes in [Ca2C]i. Note that for large values of uo
and uc the probability P for the KCa-channel to be in an open state can be
replaced by its value at equilibrium,

P1 D
aP

aP C bP
D

[Ca2C ]i ¡ [Ca2C ]basal

[Ca2C ]i ¡ [Ca2C ]basal C uc
uo

, (2.8)

which, for [Ca2C ]basal D 0, is the expression that was used by Chay and
Rinzel (1985) for the open probability for the KCa-channel in their model.

The change in [Ca2C ]i depends on the in�ux of Ca2C through the Ca2C

channels during an action potential and on the removal of free Ca2C from
the cytoplasm. Various mechanisms can be responsible for this removal, like
a plasma-membrane-bound Ca2C -ATPase that pumps Ca2C out of the cell,
mitochondrial uptake, and other �xed or mobile Ca2C binding sites. Because
the precise mechanisms underlying the ef�ux of Ca2C in the melanotrope
cell are unknown, the removal mechanism is modeled as simply as possible,
by a linear �ow proportional to kCa([Ca2C ]i ¡ [Ca2C ]basal) with kCa the rate
constant for the removal of Ca2C . The equation that describes the change of
free Ca2C in the cytoplasm is therefore given by

d[Ca2C ]i

dt
D f ¡ 3

2rF
ICa,HH ¡ kCa [Ca2C]i ¡ [Ca2C]basal , (2.9)

where the term ¡3/(2rF) re�ects the scale factor to go from current per unit
area to ion concentration for an ion with a double valence. This scale factor
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is calculated by taking the ratio of the cell surface area to the cell volume,
with r the radius of the cell, and by dividing it by the Faraday constant F
and by a factor of two because of the double valence of Ca2C . The parameter
f determines how fast [Ca2C ]i changes in time and is de�ned by

f D
d[Ca2C ]i

d[Ca2C ]T
, (2.10)

with [Ca2C ]T the total Ca2C concentration inside the cell, i.e., the bound-
plus-free cytosolic Ca2C concentration (excluding [Ca2C ] in stores) (Chay,
1990). In the case of fast buffering (faster than a millisecond), the inverse of
parameter f can be expressed by

f ¡1 D 1 C
[B]
KB

1

1 C
[Ca2C ]i

KB

2

¼ 1 C
[B]
KB

(2.11)

where [B] represents the buffer concentration and KB its dissociation con-
stant (Chay, 1990). The second part of equation 2.11 is valid only if KB À
[Ca2C ]i.

The set of eight coupled differential equations described in equations 2.1,
2.4, 2.6, and 2.9 was solved numerically, using the “lsode” method of the
mathematical software MapleV release 5, by Waterloo Maple Inc., except for
Figures 3 through 5, where we used the fourth-order Runge-Kutta method
in a program written in C++ code.

3 Results

Figure 2 shows the response characteristics of the model as a function of
time for [Ca2C ]i (see Figure 2A), the membrane potential V (see Figure 2B),
and the fraction P of open KCa-channels (see Figure 2C). Figures 2A and 2B
provide a clear illustration of the coupling between the membrane potential
and the Ca2C oscillations. The speci�c features of the Ca2C oscillations in the
Xenopus melanotrope cell, as given in Figure 1, are present in this simulation:
steps in the rise phase of the Ca2C peak (1), a plateau phase (2), an expo-
nential decline phase (3), and an abrupt transition from the decline phase
to the rise phase (4). Figure 2A also shows the increase in Ca2C removal be-
tween the steps during the rise phase. The values for the parameters used in
the simulations are listed in Table 1. In the following, we will discuss these
features in more detail.

3.1 Coupling of [Ca2C ]i and Membrane Potential. Within each burst,
the action potentials appear with a progressively increasing time interval.
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Figure 2: Simulation of spontaneous Ca2C oscillations coupled to electrical
bursting in the Xenopus melanotrope cell. In the calculated Ca2C signal, the
characteristic features of the Ca2C oscillations in the Xenopus melanotrope cell
are present: (i) steps in the rise phase, (ii) plateau phase, (iii) exponential decline,
(iv) abrupt transition, (v) upregulation of Ca2C removal, (vi) coupling between
the plasma membrane action potentials, and the Ca2C steps (A). Corresponding
burst of action potentials (B). Fraction of open KCa-channels (C).
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Table 1: Parameter Values.

Cm D 1 m F/cm2

NgCa,HH D 2600 m S/cm2

NgNa,HH D 780 mS/cm2

NgK,HH D 2400 m S/cm2

NgL D 9.98 m S/cm2

NgK,Ca D 18 m S/cm2

VCa D 100 mV

VNa D 60 mV

VK D ¡75 mV

VL D ¡50.95 mV

V0 D 50 mV

Vn D 30 mV

Vp D 60 mV

Vq D 55 mV

r D 8.9 m m

f D 0.064

T D 17±C

F D 9.65 ¢ 104 C/mol

kCa D 6.2 s¡1

uo D 0.01 (m M ¢ s)¡1

uc D 0.003 s¡1

V0 D ¡52 mV

P0 D 0.251

[Ca2C ]i,0 D 0.13 m M

[Ca2C ]basal D 0.1 m M (in Figures 1 to 2 and 5 to 9)

[Ca2C ]basal D 0 m M (in Figures 3 to 5)

The sequenceof actionpotentials isdue to thecombined effect of thevoltage-
dependent Ca2C , NaC , KC , and leak channels. Each action potential causes
a transient Ca2C in�ux, as described by the �rst term at the right-hand
side of equation 2.9. The second term at the right-hand side of equation 2.9
describes the removal of Ca2C , which is proportional to [Ca2C ]i. The se-
quential accumulation of Ca2C ions in the cell causes an increase in [Ca2C ]i.
After several step increments, the mean [Ca2C]i reaches a plateau due to
the balance between the in�ux and the removal of Ca2C . This is caused by
the fact that Ca2C removal is proportional to [Ca2C ]i and by the increase of
the interval between subsequent action potentials. Once the generation of
action potentials is stopped, there is no in�ux of Ca2C anymore, and only



122 L. N. Cornelisse et al.

Table 2: Expressions for Activation (a) and De-
activation (b) rates for Probabilities n, m, h, p,
and q, Characterizing the Dynamics of the Var-
ious Ion Channels.

an D w2
(¡(V C Vn ) C 10)

e
¡(VCVn )C 10

10 ¡1
, bn D w25e

¡(VC Vn )
80

am D w20
(¡(V C V 0 ) C 25)

e
¡(VCV 0 )C25

10 ¡1
, bm D w800e

¡(VCV0 )
18

ah D w14e
¡(VCV 0 )

20 , bh D w
200

e
¡(VCV 0 )C30

10
C1

ap D w20
(¡(V C Vp) C 25)

e
¡(VCVp )C25

10 ¡1
, bp D w800e

¡(VC Vp )
18

aq D w14e
¡(VCVq)

20 , bq D w
200

e
¡(VCVq)C30

10
C 1

w D 3(T¡6.3)/10. See Table 1 for parameter values.

the right-hand term in equation 2.9 is different from zero, resulting in an
exponential decline of [Ca2C ]i.

The KCa-channels in our model areprogressivelyactivated by thebuildup
of [Ca2C ]i (see equation 2.6 and Figure 2C). Theactivated KCa-channels cause
a hyperpolarization of the plasma membrane. This results in an increase in
the time interval between the action potentials and �nally stops the sponta-
neous generation of action potentials. In the resulting silent period of mem-
brane activity, [Ca2C ]i decreases. As a result of this decrease, the fraction
of activated KCa-channels P, which lags [Ca2C]i, decreases. This eventually
leads to depolarization of the membrane, and action potential bursting is
resumed. Thus, the periodic suppression of the spontaneous generation of
action potentials as a result of the alternating activation and deactivation
of the KCa-channels causes the bursting behavior of the membrane and the
resulting [Ca2C ]i oscillations.

3.2 Dynamic Analysis of Models. In order to obtain insight into the
qualitative properties of our model and to make a comparison between the
properties of our model and the properties of the Chay-Rinzel model, we
have applied a fast-slow analysis of the various dynamic features of the
model. The main difference between our model and the Chay-Rinzel model
refers to the parameter for the slow process, which controls the bursting. In
the Chay-Rinzel model, the slow parameter is [Ca2C ]i, which is directly cou-
pled to electrical membrane activity. The dashed line in the phase-plane plot
in Figure 3A shows the steady states of the fast subsystem of theChay-Rinzel
model for �xed values of the control parameter [Ca2C ]i. This curve has three
branches, where the upper and lower branches represent the stable states.
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Figure 3: Fast-slow analysis for the Chay-Rinzel model: trajectory (solid line),
periodic branches (heavy lines), and steady states (dashed curve) in the [Ca2C ]i-
V phase plane (A), Ca2C oscillations in a small range above basal level (B). For
further explanation, see text.

The upper branch denotes the regime for stable oscillatory states (limit cy-
cles). The maximum and minimum values for the membrane potential in
this regime are denoted by the heavy lines. The middle branch represents
the unstable states, and the lower branch represents the stable steady state.
Bursting occurs when the fast subsystem jumps between the two stable
states. The transitions are controlled by the slow parameter [Ca2C ]i. During
the active phase of the Chay-Rinzel model, there is an in�ux of Ca2C , and
the cycles, corresponding to action potentials, continue. As a consequence,
[Ca2C ]i increases until the system crosses the middle branch representing
the unstable states. Then the limit cycle behavior stops, and the system will
show a relaxation to the lower branch. Meanwhile [Ca2C ]i decreases until
the system leaves the lower branch and jumps to the upper branch, which
initiates a new sequence of action potentials. This type of behavior has been
classi�ed as square bursting (Wang & Rinzel, 1995). Note that the changes
in [Ca2C ]i (see Figure 3B) lack an exponential decline phase that returns to
basal level and a plateau phase, phases that are characteristic for the activity
of the melanotrope cell.

In our model, we are dealing with two slow parameters. The �rst is pa-
rameter P, which is the slow parameter that controls the bursting; it depends
on the second slow parameter [Ca2C ]i, which is again coupled to the electri-
cal membrane activity. The 3D plot in Figure 4A reveals the relation between
membrane potential V, [Ca2C ]i, and P. Figure 4B shows the projection on
the P-V plane. As in Figure 3A, the dashed curve represents the stable and
unstable steady states. Importantly, the trajectory in the P-V plane differs
from the trajectory in Figure 3A. In Figure 3A, [Ca2C]i decreases between
two action potentials, whereas in Figure 4B the slow parameter P increases
steadily during the sequence of action potentials. Figure 4C, which gives the
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Figure 4: Fast-slow subsytem analysis of our model. (A) 3D-plot of trajectory in
P-[Ca2C ]i-V phase space. (B) Projection of the trajectory (solid line) and steady
states for different values of P (dashed curve) in the P-V plane. (C) Projection
in the [Ca2C ]i-V plane. (D) Projection in the P-[Ca2C ]i plane. (E) Simulated Ca2C

oscillations.

relation between V and [Ca2C ]i, is qualitatively similar for the Chay-Rinzel
model and our model. However, in Figure 4C, the cycles tend to approx-
imate a limit cycle in the [Ca2C ]i-V plane. This limit cycle behavior in the
[Ca2C ]i-V plane corresponds to the plateau phase (see Figure 4E), where
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the parameter P increases (see Figure 4D) until the trajectory in the P-V
plane crosses the line with unstable steady states, which ends the oscillat-
ing pattern of action potentials. When the burst of action potentials stops,
[Ca2C ]i decreases exponentially according to equation 2.9. After the burst
of action potentials, parameter P continues for some time to increase due to
the slow dynamics (see equation 2.6). After some time P starts to decrease
(see Figure 4D) until the action potentials start again.

3.3 The NaC Channel. In our model the NaC channel is responsible for
the depolarization that leads to the abrupt transition of the [Ca2C ]i signal
from the decline to the rise phase. It opens at a membrane potential that is
about 10 mV below that of the Ca2C channel. Such a lower threshold is in
agreement with experimental data (J. R. Lieste, unpublished data) and is
implemented by a 10 mV larger voltage shift Vp for the activation variable
p of the NaC channel compared to the voltage shift V0 for the activation
variable m for the Ca2C channel. When the membrane is hyperpolarized
after a burst of action potentials, the NaC current together with the leak
current starts to depolarize the membrane very slowly. As a result of the
slow depolarization of the membrane, the NaC current starts to increase
slowly, while the Ca2C current remains almost zero due to a higher threshold
of the Ca2C channels. At a certain point (near ¡54 mV) the NaC current starts
to increase more rapidly and thereby initiates a rapid depolarization. Once
the depolarization reaches the threshold for the Ca2C channels, the Ca2C

current is activated rapidly, resulting in a sharp increase in [Ca2C]i.
Without the NaC channel, the small depolarizing current at the onset

of a new burst would be generated by the Ca2C channel. In the case that
the decline phase reaches such low levels that the ef�ux proportional to
[Ca2C ]i becomes very small, the Ca2C in�ux due to this depolarizing current
may exceed the ef�ux. This becomes evident as a smooth rising of [Ca2C ]i
resulting in a smooth transition. Because the Chay-Rinzel model does not
display exponential declines that come close to the basal level for [Ca2C ]
(see Figure 3B), the problem of abrupt transitions does not apply. Therefore,
we compare our model with a minimal model for square-wave bursting
(Rinzel & Ermentrout, 1998), which displays smooth transitions. This model
is qualitatively the same as the Chay-Rinzel model, but uses simpler kinetics
for the fast subsystem. Like theChay-Rinzel model, this model has a voltage-
dependent Ca2C current as an inward current. The different behavior at the
transition from decline to rise phase between the Rinzel-Ermentrout model
and our model is illustrated best by looking at the [Ca2C]i-ICa phase plane.

In Figure 5A we plot the trajectory of this model in the [Ca2C ]i-ICa plane.
In order to represent time in this graph we added circles at equidistant time
steps on top of the traces in the plane. When [Ca2C ]i becomes small, the
trajectory slows down, resulting in a higher density of circles. For small
values of [Ca2C ]i, the trajectory slowly increases its speed while [Ca2C ]i is
increasing again. This results in a smooth transition from the decline to the
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Figure 5: Trajectory of the Morris-Lecar model in the [Ca2C ]i-ICa plane (A), re-
sulting in a smooth transition from decline to rise phase for [Ca2C ]i (B). Trajectory
for our model in the [Ca2C ]i-I plane of ICa and INa (C), resulting in an abrupt tran-
sition from decline to rise phase for [Ca2C ]i (D). For both models the circles in
the trajectories are plotted with time steps D t D 0.02 Tp . With Tp the period of
one Ca2C peak.

rise phase, as depicted in Figure 5B. For our model, both the trajectories for
INa and ICa are plotted in the [Ca2C]i-I plane, with equidistant time steps, in
Figure 5C. When [Ca2C ]i decreases, both trajectories slow down. At some
point (near [Ca2C ]i D 0.05 m M) ICa remains fairly constant, while INa starts to
increase slowly. Near [Ca2C ]i D 0.04 m M INa starts to increase rapidly. This
is the start of a new action potential, which subsequently causes a rapid
increase of ICa . This illustrates the abrupt transition from the decline to the
rise phase, as shown in Figure 5D.

Recent experiments with combined measurements of action currents and
[Ca2C ]i have revealed a blockage of electrical membrane activity of the cell
and a return of [Ca2C ]i to basal level in NaC-free medium (NaC replaced
by N-methyl-D-glucamine; NMDG) (Lieste et al., 1998) (see also Figure 6A).
Under these conditions, electrical activity can be induced again by applying
a depolarizing 20 mM KC pulse extracellularly. This induced activity gen-
erates a large Ca2C peak due to the continuous �ring at a higher frequency
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Figure 6: Effect of extracellular NaC with or without a depolarizing KC pulse,
on the electrical activity of the plasma membrane and the [Ca2C ]i (after Lieste
et al., 1998) (A). Simulation of the experiment in Figure 3A. The NaC removal is
modeled by VNa D 0 mV and the depolarizing KC pulse by VK D ¡68 mV (B).
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than under normal conditions. After returning to NaC free medium without
20 mM KC , the membrane activity is blocked again, and [Ca2C ]i returns in
an exponential way to its basal level.

This experiment can be simulated with our model, as illustrated in Fig-
ure 6B. In the simulation the removal of NaC is modeled by setting the
Nernst potential for NaC to a value close to 0 mV. This is done because
during the washout of the normal bathing solution with NaC free medium,
the concentration of NaC is assumed to drop to very low values similar
to the concentration of NaC inside the cell. This results in a blockage of
the electrical activity and in a return of [Ca2C]i to basal level. The effect of
the depolarizing KC -pulse is simulated by increasing the Nernst potential
for KC from ¡75 mV to ¡68 mV. It can be observed that a 20 mM KC pulse
leads to a larger shift in VK than that performed in the simulation. However,
recent experiments have con�rmed that a less strong KC pulse of 5 mM is
suf�cient to induce a Ca2C transient in silent cells similar to that of Figure 6A
(Scheenen, personal communication). The membrane starts to generate ac-
tion potentials again, with a high frequency, resulting in a large Ca2C peak.
Setting the VK to ¡75 mV again, but leaving VNa at 0 mV, stops the �ring
of action potentials and results in an exponential decline of [Ca2C ]i to the
basal level.

3.4 Parameter Dependence of the Ca2C Oscillations. Various parame-
ters in our model affect the shape and frequency of the Ca2C oscillations.
In this section we will investigate the effect of four important parameters,
uo and uc in equation 2.7, and kCa and f in equation 2.9, and to what extent
these parameters can account for the variation of patterns in one cell and
among different cells. In Figures 7 through 9 the [Ca2C]i is shown in the �rst
column (A). The corresponding graphs of the fraction of open KCa-channels
P are shown in the second column (B), and the membrane potential V is
given in the third column (C). All parameter settings are the same as in
Figure 2, unless explicitly stated otherwise.

Figure 7 shows the results for different parameter values of uo. Since
the rate of active KCa-channels, dP/dt, is a function of both the positive term
uo([Ca2C]i ¡[Ca2C ]basal)(1 ¡P) and the negative term ¡ucP in the right-hand
side of equation 2.6, increasing uo will have the same effect qualitatively as
decreasing uc: an enhancement of the activation of the KCa-channel for the
same levels of [Ca2C ]i. Therefore, we will discuss the case only for uo.

For slow activation (uo D 0.005 (m M s)¡1), the simulated [Ca2C]i shows a
continuous sequenceof Ca2C steps,which, after some initial settling time, re-
mains at a constant level above basal level. The mean level of [Ca2C ]i reached
after about 20 steps re�ects a balance between in�ux and removal of Ca2C

in equation 2.9. The corresponding electrical activity is a continuous �ring
of action potentials. After the initial settling, the fraction of open channels
is constant, which implies a balance between activation and deactivation
in equation 2.6. The product of uo with the plateau level of [Ca2C]i results
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Figure 7: Results for different values of parameter uo on the internal Ca2C con-
centration (A), fraction of open KCa-channels (B), and the membrane poten-
tial (C).

in an activation of the KCa-channels that is large enough to decrease the
frequency of the action potential �ring but not large enough to stop mem-
brane activity. For larger values of uo (uo D 0.008 (m M s)¡1 and higher) the
activation of the KCa-channel is increased, which leads to hyperpolarization
that is strong enough to end the burst of action potentials. This is necessary
to obtain the bursting and oscillating behavior of the cell as described in the
previous section. Increasing uo also decreases the number of steps in a Ca2C
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Figure 8: Results for different values of parameter kCa on the internal Ca2C

concentration (A), fraction of open KCa-channels (B), and the membrane poten-
tial (C).

peak and increases the length of the decline phase. The latter is related to a
shorter burst and a longer interburst interval of the membrane potential.

The simulations for different removal rates kCa are shown in Figure 8.
The upper panel of Figure 8 shows the [Ca2C ]i in the case of fast pumping
of Ca2C (kCa D 9.92 s¡1). After an initial settling, it shows a continuous
sequence of Ca2C steps at a constant level above basal level. The pattern is
very similar to the upper panel in Figure 7A, but the mean level of [Ca2C]i
is lower. This is due to the stronger removal compared to that in Figure 7,
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which settles the balance between in�ux and ef�ux in equation 2.9 at a
lower [Ca2C ]i level. The corresponding graph of the membrane potential
(see Figure 8C) shows a continuous �ring of action potentials. The fraction
of activated KCa-channels is constant, and it is large enough to decrease the
frequency of action potential �ring but not large enough to stop membrane
activity.

Decrease of the removal rate kCa results in a smaller value for the second
term kCa[Ca2C]i on the right-hand side of equation 2.9. The resulting smaller
ef�ux allows a faster buildup of [Ca2C ]i during the rise phase and a slower
decrease of [Ca2C ]i in the decline phase. This is re�ected by a faster activation
of the KCa-channel and a slower deactivation. As a consequence, the number
ofsteps per peakandthe frequency of theoscillations are reduced for smaller
removal rates kCa . Moreover, the frequency of the Ca2C oscillations is also
decreased due to the higher levels of activation of the KCa-channels that are
reached, which requires more time to deactivate them.

The results for different values for parameter f are shown in Figure 9. In
the case of strong buffering (small f ) the change of free Ca2C , relative to the
change of the total amount of Ca2C in the cell, is small. Therefore, in this case,
each action potential gives a small contribution to the buildup of the Ca2C

peak (see equation 2.9 and the upper panel of Figure 9). Due to this slow
increase of [Ca2C ]i the activation of the KCa-channels is slow, which causes
long bursts of action potentials. The fact that f is small in equation 2.9 also
accounts for the slow decrease of free Ca2C . This causes slow deactivation of
the KCa-channels and therefore long interburst intervals. When thebuffering
becomes weaker (i.e., when f is increased; lower panels in Figure 9), the
steps in the rise phase of the Ca2C peaks increase, yielding a faster buildup
of [Ca2C ]i. This leads to faster activation of the KCa-channels, resulting in
shorter bursts. Furthermore, faster deactivation, due to faster decrease of
[Ca2C ]i, yields shorter interburst intervals.

4 Discussion

We present a minimal model to explain the various characteristic features of
Ca2C oscillations and the electrical bursting of the neuroendocrine melan-
otrope cell in the pituitary gland of Xenopus Laevis. Two important aspects
of the model are new compared to previous models for bursting cells. These
aspects concern the relatively slow Ca2C -dependent Hodgkin-Huxley kinet-
ics for the Ca2C -sensitive KC -channel, and the action of the NaC channel.
They are necessary to reveal the speci�c features of the Ca2C oscillations
as measured in the Xenopus melanotrope cell. These features are (1) steps
(typical range 1 to 10) in the rise phase of a Ca2C peak, (2) a plateau phase at
the end of the rise phase, (3) an exponential decline, (4) an abrupt transition
from decline to rise phase, (5) an increase in the removal rate of Ca2C during
the rise phase, and (6) the coupling between the plasma membrane action
potentials and the Ca2C steps.
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Figure 9: Results for different values of parameter f on the internal Ca2C concen-
tration (A), fraction of open KCa-channels (B), and the membrane potential (C).

Various models by Chay and Kreizer (1983), Chay and Rinzel (1985),
Chay (1990, 1996), and Canavier et al. (1991) have been proposed to explain
the electrical bursting activity of the plasma membrane coupled to oscilla-
tions of [Ca2C ]i. These models describe the electrical behavior of the various
bursting cell types but pay little attention to speci�c characteristics of the
Ca2C oscillations. They have in common that the ion channels that hyper-
polarize (depolarize) the plasma membrane in order to terminate (initiate)
bursts of action potentials are directly activated (inactivated) by [Ca2C]i.
This implies that their activity is in phase with [Ca2C ]i. As a consequence,
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these models can only describe Ca2C oscillations in a relatively small range
above basal level, which is the level where the [Ca2C]i will return to after
blocking the electrical activity of the membrane (Canavier et al., 1991: 100
up to 200 nM above basal level with amplitude of 100 up to 200 nM; Chay,
1996: 500 nM above basal level with amplitude of 100 nM; and Chay and
Rinzel, 1985: 300 nM above basal level with amplitude of 20 nM). The Ca2C

oscillations in the Xenopus melanotrope cell have amplitudes in the order of
300 nM (Shibuya & Douglas, 1993) and they return to basal level after each
Ca2C peak (Lieste et al., 1998).

In general, the buildup of a Ca2C peak in the Chay and Canavier mod-
els is by a large number of steps corresponding to the number of action
potentials in each burst. If the number of steps in the Ca2C peaks is fewer
than 10, the Ca2C peaks show no plateaus. In the Xenopus melanotrope cell
plateaus are generally observed after three to four steps. In the Chay and
Canavier models, it is not possible to vary the length of the decline phase
without changing the slope of the exponential decline. However, in the Xeno-
pus melanotrope, there is a strong variability in the lengths of the decline
phases of the Ca2C peaks while the slopes can be described with the same
exponential.

The model we propose here is based on the Chay-Rinzel model (1985),
modi�ed in such a way that it describes the speci�c features of the Ca2C

oscillations in the melanotrope cell. The assumptions in our model and the
parameter dependence of the Ca2C oscillations will be discussed in the next
two sections.

4.1 Assumptions of the Model. The KCa-channel. We have replaced the
KCa-channel in the Chay-Rinzel model by a KCa-channel that has Hodgkin-
Huxley gating kinetics that are relatively slow with respect to the gating
kinetics of the voltage-sensitive channels in the model. The activation pro-
cess of the KCa-channel in our model is purely Ca2C -dependent with a rela-
tively long time constant, such that the channel activity lags the changes in
[Ca2C ]i, resulting in a phase shift between [Ca2C ]i and the slow KCa-channel
activity. The proposed gating kinetics for the KCa-channel, which initiates
and terminates the bursts of action potentials, lead to new results compared
to the previous models for bursting cells by Chay and Rinzel (1985), Chay
(1990, 1996) and Canavier et al. (1991): the model simulates Ca2C peaks with
a variable number of steps in the typical range of 1–10; the peaks start at
basal level, approaching in some peaks, but not in all, a plateau level; and
the [Ca2C ]i then returns exponentially to its basal level.

Various mechanisms can account for the slow kinetics of the KCa-channel.
A possible candidate for this mechanism is Ca2C -dependent phosphoryla-
tion of the channel as proposed by Goldbeter (1996). In this terminology
P in equation 2.6 stands for the fraction of phosphorylated channels. The
term uo([Ca2C ]i ¡ [Ca2C ]basal) is the Ca2C -dependent conversion rate from
the dephosphorylated state to the phosphorylated state, which is in fact the
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activity of the protein kinase. Parameter uc is the conversion rate from the
phosphorylated state to the dephosphorylated state, or the activity of the
phosphatase. There is ample evidence that some KCa-channels can be reg-
ulated in this way. For instance, the a-subunit of the BK channel (“Big KC

channel”) displays putative phosphorylation sites (Vergara, Latorre, Mar-
rion, & Adelman, 1998). Furthermore, modulation of BK channels by phos-
phorylation is reported by Reinhart and Levitan (1995). They showed that
the endogenous protein kinase activity is protein kinase C (PKC)-like. The
increase in open probability due to phosphorylation occurs gradually over
a period of minutes. This is in the same order of magnitude as the time
constant for the channel kinetics of the KCa-channel in our model, which is
given by tP D 1/ (uo([Ca2C]i ¡ [Ca2C ]basal) C uc) and which is about 4 min-
utes. An explanation of the dynamics of the melanotrope cell required the
introduction of the slow kinetics of the KCa-channel. The dynamics of this
channel are roughly in agreement with the dynamics of phosphorylation.
However, the simple �rst-order differential equations (equations 2.6 and
2.7) to model this process may seem somewhat unrealistic. Since detailed
experimental data are lacking, this simple approximation was suf�cient for
the purpose of this study and for this developing model of the Xenopus
melanotrope cell.

NaC channel. In the models of Chay and Rinzel (1985) and Canavier et
al. (1991), which lack a NaC channel, the transitions from the decline to the
rise phase are smooth for the Ca2C oscillations that have an oscillation time
of several seconds. The introduction in the model of a NaC channel, with
a lower threshold than the Ca2C channel, explains the abrupt transition
from the decline to the rise phase, as measured in the melanotrope cell.
Independent evidence for a role of NaC channels comes from experiments
by Lieste et al. (1998), which have shown that removal of extracellular NaC

eliminates the electrical activity of the plasma membrane and blocks the
Ca2C oscillations. As a result, the [Ca2C]i returns to basal level. Restoration
of the electrical activity can be obtained by applying a depolarizing KC pulse
extracellularly adding KCl, resulting in a large Ca2C peak. We are able to
simulate this experiment with the model, whereas models that lack a NaC

channel and are therefore insensitive to NaC removal cannot reproduce
these experimental results.

Ca2C stores. In the cytoplasm, various stores are present that bind and
release Ca2C , such as the endoplasmic reticulum and the mitochondria
(Pozzan, Rizzuto, Volpe, & Meldolesi, 1994). Experiments in the Xenopus
melanotrope cell where these Ca2C stores were manipulated show only mi-
nor modulatory effects on the Ca2C oscillations, suggesting that stores are
not involved in the generation of Ca2C oscillations (Scheenen et al., 1994a,
1994b; Koopman et al., 1997). Therefore, our minimal model does not incor-
porate these Ca2C stores as a source of Ca2C . In this sense, the cell can be
considered as a plasma membrane oscillator because the Ca2C oscillations
are determined by the plasma membrane activity only.
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Ca2C dynamics. The assumption in the model of Ca2C removal propor-
tional to [Ca2C ]i via the term kCa([Ca2C ]i ¡ [Ca2C ]basal) is in good agreement
with the experimental observations (Lieste et al., 1998). It adequately de-
scribes both the exponential decline and the increasing removal rate during
the rise phase of the Ca2C peak. Because the cell is modeled as one compart-
ment, the distribution of Ca2C is assumed to be homogeneous throughout
the cell and also during changes in [Ca2C ]i due to ef�ux and in�ux of Ca2C

across the membrane. This is a plausible assumption, considering that the
time interval between two steps and the time needed for Ca2C to travel
from the membrane throughout the whole cell is on the order of a second
(Scheenen et al., 1996). Therefore, the distribution of Ca2C in the cell will
homogenize between two Ca2C steps, which follow each other by intervals
of about 1 second.

In the model, the buffering of Ca2C is incorporated in the parameter f
as described in equation 2.11. The exact buffer parameters for the Xenopus
melanotrope cell are not known. However, we assume that these are not
signi�cantly different from the standard values in other cell types (Nowycky
& Pinter, 1993). Therefore, we assume an equilibrium coef�cient KB of 5 m M
and a buffer concentration [B] of 0.5 mM. This results in a value for f of
nearly 0.01, which is close to the values used in our simulations.

4.2 Dependence of the Oscillation Pattern on uo, uc, kCa , and f . In our
model four crucial parameters control the shape and frequency of the Ca2C

oscillations. Two of these, uo and uc, affect the length of the rise and the
decline phase (and thus the frequency, amplitude and the number of steps
in each Ca2C peak) without changing the exponent of the decline phase.
Decreasing (increasing) the removal rate kCa decreases (increases) the fre-
quency, amplitude, number of steps per Ca2C peak, and slope of the decline
phase. The parameter f , which expresses the change of free Ca2C with re-
spect to the change in the total intracellular Ca2C concentration, affects the
frequency, number of steps per peak, and amplitude of both the Ca2C step
and the Ca2C peak.

Summarizing, we have constructed a mathematical model that not only
neatly simulates all characteristics of theCa2C oscillation pattern in the Xeno-
pus melanotrope cell, but also provides the possibility of testing the effects
of neuronal factors (�rst messengers, such as neurotransmitters and neu-
ropeptides) on this pattern via the parameters uo, uc, and kCa . This approach
is of biological relevance, as it is assumed that changes in the oscillation
pattern re�ect differential regulations by various known regulatory neuro-
transmitters and neuropeptides (e.g., NPY, dopamine, GABA, TRH, CRF,
and acetylcholine) of various cellular key processes, such as gene expres-
sion, protein biosynthesis, and secretion. We expect that application and
further development of our model will stimulate neurobiological research
on the role of neuronal factors in the control of cellular secretory processes.
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