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Abstract

We show that large ensembles of (neural network) models, obtained e.g. in bootstrapping or sampling from (Bayesian) probability

distributions, can be effectively summarized by a relatively small number of representative models. In some cases this summary may even

yield better function estimates. We present a method to find representative models through clustering based on the models’ outputs on a data

set. We apply the method on an ensemble of neural network models obtained from bootstrapping on the Boston housing data, and use the

results to discuss bootstrapping in terms of bias and variance. A parallel application is the prediction of newspaper sales, where we learn a

series of parallel tasks. The results indicate that it is not necessary to store all samples in the ensembles: a small number of representative

models generally matches, or even surpasses, the performance of the full ensemble. The clustered representation of the ensemble obtained

thus is much better suitable for qualitative analysis, and will be shown to yield new insights into the data.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In neural network analysis we often find ourselves

confronted with a large ensemble of models trained on one

database. One example of this is resampling, which is a

popular approach to try and obtain better generalization

performance with nonlinear models. Individual models are

trained on slightly different samples of the available data

set, which are generated e.g. by bootstrapping or cross-

validation (Efron & Tibshirani, 1993). Another example can

be found in the Bayesian approach, which creates a

probability distribution over all possible models, which

may be sampled from by Markov Chain Monte Carlo

(MCMC) procedures (Neal, 1996).

In both cases a considerable number of network

representations, or models, may be needed to catch the

fine nuances of the system. For complex problems, the

number of models may even be too high to keep a good

overview of the ensemble and special transformations will

be required to summarize it, preferably without loss of

information. The clustering procedure that we will present

will help to understand such problems better, and may be a

valuable tool in their analysis.

Clustering can be seen as the representation of a large

collection W by a smaller collection of representative

entities, M. The components of W and M may be anything:

locations on a map, people, words, models, etc. The type of

the elements may even vary from set W to set M, or within

sets (Cadez, Gaffney, & Smyth, 2000). The only require-

ment is that there exists a distance function DðW ;MÞ

indicating how much sets W and M differ from each other, or

rather how much information is lost in the conversion from

W to M.

Since W and M may contain any kind of elements, the

method of clustering may well be used to find a workable

representation of any oversized ensemble of (neural

network) models. Taking the elements of W to be the

models in the original (large) ensemble, represented in the

case of neural networks by their weights, biases and overall

structure (number of hidden layers, transfer functions, etc.)

M can be a smaller set of networks best representing the

features contained in W.

In Section 2 we will review the clustering method

outlined by Rose, Gurewitz, and Fox (1990). Their method,

based on the principles of deterministic annealing as first

described by Jaynes (1957), was shown to yield good results
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for the clustering of two-dimensional data with a Euclidean

distance function. We will generalize this method for use

with other data types and distance functions, and use it to

cluster models (e.g. neural networks). In Section 3 we

describe the algorithms that we use to implement the

method.

Although clustering in weight space has been used in

network analysis (Rüger & Ossen, 1996), model clustering

as described in this article is, to the best of our knowledge, a

new approach. In our approach the distance function

DðW ;MÞ is based on model outputs instead of model

parameters. We feel this approach is more intuitive, since

model outputs on a known database provide a more direct

representation of the models’ characteristics than the more

abstract model parameters themselves.

The expression of the distance in terms of model outputs,

combined with a suitable distance formula (e.g. sum-

squared distance), further allows us to lower the compu-

tation time required to perform clustering considerably. We

accomplish this by expressing not only the distance, but also

the representative models themselves in terms of their

outputs. We will show in Section 3 how this leads to an

algorithm that is much faster than one finding representative

models in terms of their model parameters. The final result,

however, needs to be in the form of representative models,

and not model outputs. In Section 4 we discuss several

methods to make the translation from model outputs to

model parameters. We compare the methods in terms of

computation time and quality of the obtained

representatives.

We apply our method on two databases in Section 6.2.

The first, containing the well-known Boston housing data,

serves as a benchmark problem to study the effect of

bootstrapping. We apply the clustering algorithm that is

described in this article on ensembles of models obtained

through bootstrapping, and use the resulting clusters to

illustrate the effect of bootstrapping in terms of bias/

variance reduction.

The other database concerns the prediction of single-

copy newspaper sales in the Netherlands. This can be

represented as a series of parallel tasks (outlets at different

locations), which we optimize through multitask learning.

In multitask learning (Heskes, 1998) one is presented with a

(preferably large) number of parallel tasks, e.g. predicting

student test results for students in a series of schools, or

survival analysis on patients in a series of hospitals. Such a

series of tasks can be represented by a series of models, each

trained on one of the tasks. Although any one of these

models may be overfitting its training data to some extent,

the ensemble of all models may yield a good estimation of

the underlying function. We show that a clustered

representation of this ensemble can give valuable new

insights into the nature of the problem. Also, the knowledge

about the grouping of the models into tasks may allow the

clustered solution to reach a significantly lower prediction

error than the full ensemble.

2. Clustering by deterministic annealing

2.1. Notation

Suppose we have NW models, fully characterized through

their parameters wi, i ¼ 1;…;NW : We define NM other

models, which we will refer to as cluster centers, denoted

ma, a ¼ 1;…;NM : Dðwi;maÞ is the distance of model i to

cluster center a. The distance need not be symmetric, i.e.

Dðw;mÞ may be different from Dðm;wÞ:1 We do, however,

require that Dðw;mÞ $ 0 and Dðm;mÞ ¼ 0: The models

considered in the present article are feedforward models that

are optimized through supervised training.

We assume distances of the form

Dðwi;maÞ ¼
X

m

dðyðwi; x
mÞ; yðma; x

mÞÞ; ð1Þ

for some distance measure dðy1; y2Þ; where yðwi; x
mÞ is the

output of a model with parameters wi on an input xm. Each

model is supposed to have the same input. Since, once the

inputs xm are given, the clustering procedure depends on the

models wi only through the outputs yðwi; x
mÞ; we can

compute these outputs in advance.

2.2. The derivation of ‘free energy’

We define variables pia as the probability that model i

belongs to cluster a. The distances between models wi and

cluster centers ma are given by Dðwi;maÞ: We assume that

the models wi are given, but that the probabilities pia and

cluster centers ma are still free to choose. One of the goals of

clustering is to put the cluster centers such as to minimize

the average distance of the models to the cluster centers, i.e.

to find a low average energy

Eð{m}; {p}Þ ¼
X

ia

piaDðwi;maÞ; ð2Þ

where {m} and {p} represent the full sets ma and pia ;ia: In

this framework the average energy is the average over the

distances between models and cluster centers, weighted by

pia. For fixed cluster centers ma minimizing the average

energy would correspond to assigning each model to its

nearest cluster center with probability one. A proper way to

regularize this is through a penalty term of the form

Sð{p}Þ ¼ 2
X

ia

pia log pia; ð3Þ

the discrete version of the Shannon entropy, which is the

only quantity which is positive, increases with increasing

uncertainty, and is additive for independent sources of

uncertainty (Jaynes, 1957). Maximizing S({p}) therefore

favors a state of total chaos, i.e. pia ¼ pi0a0 ;i;i0;a;a0 ; which

1 Note that Dðw;mÞ is not a distance function in the mathematical sense,

but rather a measure of the difference between w and m. However, since the

concept of clustering is intuitively best understood in terms of positions and

distances, we will still refer to D(w, m) as a distance.
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corresponds to the notion that we have no prior knowledge

about the structure of the clusters.

We introduce a regularization parameter T, weighting the

two different terms, to arrive at the ‘free energy’

Fð{m}; {p}Þ ¼ Eð{m}; {p}Þ2 TSð{p}Þ:

Minimizing Fð{m}; {p}Þ can be seen as a search for the best

compromise between a low average distance (minimizing

Eð{m}; {p}ÞÞ and keeping a reasonable amount of chaos in

the system (maximizing S({p})). For any choice of model

centers ma the probabilities pia minimizing the free energy

Fð{m}; {p}Þ read (under the constraint
P

apia ¼ 1 ;i)

piaðmÞ ¼
e2bDðwi ;maÞ

X

a0

e2bDðwi ;ma 0 Þ
ð4Þ

with b ¼ 1/T. Substitution of this result into the free energy

then yields

Fð{m}Þ ¼ Fð{m}; {pð{m}Þ}Þ ¼
X

i

log
X

a

e2bDðwi ;maÞ: ð5Þ

Eq. (5) is equivalent to the result presented in Rose et al.

(1990). The main difference between our derivation and the

derivation made by Rose et al. is the role of the parameter b.

Here, as in Buhmann and Kühnel (1993), it is just a

regularization parameter that can be chosen in advance. In

Rose et al. (1990) an average energy kEl is defined, such that

(like in statistical physics theory) b is a Lagrange multiplier

that must be tuned to ensure that kEl stays constant.

3. Annealing and the EM algorithm

The annealing process finds cluster centers ma minimiz-

ing the free energy F({m}) for increasing values of b. We

start with b close to zero and a large number of cluster

centers ma:
2 Such a low value of b will strongly favor the

entropy part of the free energy, resulting in a solution where

all ma are identical (so pia ¼ pi0a0 ;i;i0;a;a0 :) When the new

ma have been found, we increase b and again minimize the

free energy. These steps are repeated until the balance

between average energy and entropy has shifted enough to

warrant multiple clusters; at this point a phase transition

occurs, and the cluster centers are divided over two separate

solutions. More and more clusters will appear when b is

increased further, until we have reached a satisfactory

number of clusters and we terminate the process.

We find cluster centers ma (for each value of b ) through

minimization of the free energy F({m}). This corresponds to

solving a series of coupled equations:

›Fð{m}Þ

›ma

¼
X

i

pia

›Dia

›ma

¼ 0 ;a; ð6Þ

where the equations for different ma are interdependent

through the normalization of pia, which is a function of all

ma. We solve this system of equations using an expectation-

maximization (EM) algorithm, a full description of which

can be found in (Rubin, 1991).

In the expectation step of the EM algorithm the

probabilistic assignments pia, as given by Eq. (4), are

calculated. In the maximization step we find new cluster

centers m0
a such that:

m0
a ¼ argmax

ma

X

i

piaFð{m}Þ ;a

¼ argmax
ma

X

i

piaDðwi;maÞ ;a: ð7Þ

A solution for m0
a can be obtained from any gradient descent

algorithm on
P

i piaDðwi;maÞ starting from the current ma.

Our aim is to summarize an ensemble of neural networks

through a smaller set of networks with a similar architecture,

and Eq. (7) is expressed in terms of the parameters of these

networks. However, the above description also applies to

‘model free’ clustering, solely based on the outputs on

examples xm. The maximization step for model free

clustering (where we now maximize with respect to

ya ¼ ½yðma; x
1Þ; yðma; x

2Þ;…; yðma; x
NÞ�) can be very

simple: for suitable distance functions (e.g. the sum-squared

error or the cross-entropy error3) it is simply

y0
a ¼

X

i

piayi: ð8Þ

Model based clustering can still benefit from this simplified

maximization step. We simply ignore the model parameters

wi during (parts of) the clustering process, and use the

corresponding model outputs yi for model free clustering.

Obviously, the ‘cluster outputs’ need to be translated

back to model parameters in the end (through optimization

on the cluster center outputs ya and inputs xm), but we may

still gain a tremendous speed-up of the annealing process. In

Section 4 we discuss several alternative procedures to

combine model free clustering and translation back to

model parameters.

4. Computational issues

Deterministic annealing. The annealing process starts at

b ¼ 10 (for the data examined in the present article). We

first allow two clusters, which are initiated by adding

random noise to the average of the model outputs over a full

ensemble of models. After the EM algorithm described in

Section 3 has converged, we either accept the new cluster

(the single cluster centered around the average model

output is split into two clusters), or we ‘merge’ the two

2 The number of cluster centers is infinite in theory; in practice we

implement a sufficiently large number of clusters at each point in the

process. The exact choice for this number will be elaborated in Section 4.

3 dðyðwi; x
mÞ; yðma; x

mÞÞ

¼ yðwi; x
mÞlog

yðwi; x
mÞ

yðma; x
mÞ

þ ½1 2 yðwi; x
mÞ�log

1 2 yðwi; x
mÞ

1 2 yðma; x
mÞ

:
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clusters back into one. This decision is based on a

comparison of the distance between the two cluster centers

to the distance between the models in the corresponding

clusters. If the former is relatively small, the two cluster

centers merge, otherwise a new cluster is accepted. For the

initial, low value of b, the two clusters always merge. The

annealing parameter b is increased by 1 after each merging

or acceptation of a new cluster. After the first phase

transition (when the algorithm has accepted two separate

clusters), we split each of the corresponding representative

model outputs in two by adding random noise. Thus we

allow the next transition into three or four clusters to occur.

Generally, only one new cluster is gained in each transition.

When the algorithm does ‘skip’ intermediate numbers of

clusters (e.g. goes from three clusters to five clusters after

one increment of b ), the increase in b (Db) is temporarily

lowered until all intermediate cluster numbers are found, or

Db drops below 0.01. This steady growth from one to a

maximum number of clusters can be compared to ‘greedy

mixture learning’ (Vlassis & Likas, 2002).

When to retrain. A downside of model free clustering of

elements that are in fact models is that cluster centers are

found directly in the space of model outputs. Such cluster

centers generally do not have a generating model of the

same architecture as the models in the ensemble. We

therefore need a retraining step to translate the cluster

centers back to actual models. To retrain a ‘cluster model’,

we split the model’s outputs, which were found in the

clustering process, and the corresponding inputs into a

training set and a validation set. Retraining then proceeds in

exactly the same way that the original networks were

trained: we minimize the mean squared error on the training

set, and stop training when the error on the validation set

starts to increase. We can make several choices for the point

in the process where we make this translation:

1. Retrain after clustering. The simplest option is to

perform the entire clustering process solely in terms of

model outputs, and train back the actual representative

models at the end, when all cluster centers are found. In

doing this however, we disrupt the clustering we found:

the models obtained through retraining may not be the

optimal representatives, even though the cluster centers

in terms of outputs were. Therefore, after retraining we

could implement a short reclustering sequence, where

now in each EM-step we retrain the networks to fit the

cluster center outputs. Model free clustering then serves

as an ‘initialization’ for model based clustering.

2. Cluster in terms of parameters. The other extreme is to

perform clustering in model space entirely, varying only

the parameters of the representative models. Although

this makes each step considerably more time consuming,

it does prevent the cluster centers from wandering into

areas of output space that cannot be reached by the actual

models. Cluster centers obtained from the previous

approach that do stray into this area may be very difficult

to approximate by the applied models. In this case the

final approximations may not only take a lot of extra

time, but (e.g. due to local minima near the initialization

for retraining the model) may also yield qualitatively

inferior results.

3. Retrain during clustering. A reasonable compromise

might be to retrain the model after every N EM-steps,

where N is large enough not to unacceptably slow down

the process, but small enough to keep the cluster centers

in the right area. N can be kept constant throughout the

clustering process, or vary, when for example we retrain

for each new value of b, or each time a new cluster is

accepted. In Section 6.3 we compare several approaches

in terms of computation time and accuracy.

5. Bootstrapping and multitask learning

In bootstrapping, instead of training one model on the

complete (training) data, we resample the data set multiple

times, and train one model for each resampling. Resampling

is done by drawing N samples from a training set of N

instances, where each instance may be drawn more than

once. In this way, the ensemble of models reflects the

variability of the data under review. Breiman (1996)

describes how bootstrap ensembles can be used for

prediction through a procedure called bagging (bootstrap

aggregating). If the data contains only global similarities,

the models in the ensemble will be centered around one

average model, and bootstrapping only serves to obtain a

more unbiased version of this model. If, however, the data

contains multiple local similarities, bootstrapping provides

a way to include corresponding local summaries in the final

predictions, which is impossible for any one model. In both

cases, instead of using the entire ensemble, we may need

only the local summaries, and a way to weigh them. This is

provided by the clustering algorithm described in the

previous sections. The cluster based prediction on a new

input xn reads:

~yn ¼
X

a

payðma; x
nÞ; with pa ¼

1

N

XN

i¼1

pia; ð9Þ

a weighted sum over the representative model outputs,

where the weights are determined by the ‘effective’ number

of models in each cluster.

Multitask learning, or ‘learning to learn’, makes use of

the fact that a series of similar tasks may share a common

underlying structure. Instead of learning each of these tasks

separately, the tasks are forced to share their knowledge,

and learn from each other. One way to implement this is a

‘hard sharing’ of part of the model parameters (Caruana,

1997). In this article we allow knowledge sharing through

clustering (see (Cadez et al., 2000) for a similar approach).

For each of the tasks we train one or more models, which will

generally be strongly biased to the part of the training set
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corresponding to that task. Task clustering can then be

applied to represent strongly similar tasks by a common

cluster center. A predicted new output for task t, ~ynt ; changes

slightly to include knowledge of the partition of the data into

tasks:

~ynt ¼
X

a

ptayðma; x
n
t Þ; with pta ¼

1

nt

X

i[t

pia; ð10Þ

where nt is the number of models trained for task t, and where

the weights pta for task t depend only on the corresponding

models trained on this task.

Note that we apply the same model clustering procedure

to two very different topics. The models obtained in

bootstrapping are interchangeable, and cannot a priori be

assigned to different clusters. The models for multitask

learning are each trained on a specific task, and can

therefore be ‘labeled’. This difference is apparent in Eqs. (9)

and (10), where in the former all models contribute, whereas

in the latter a model’s contribution depends on its label.

6. Results

6.1. Description of the data

Boston housing. The Boston housing problem concerns

the prediction of housing values in the suburbs of Boston,

based on 13 inputs including e.g. per capita crime rate and

nitric oxides concentration. The database contains 506

examples. For more information, see (Harrison & Rubin-

feld, 1978). We preprocessed the data by scaling each

variable (both input and output) to have zero mean and unity

variance.

Prediction of newspaper sales. We also apply our

method on a database of single-copy sales figures for one

of the major Dutch newspapers. The database contains the

numbers of newspapers sold on 156 consecutive Saturdays,

at 343 outlets in The Netherlands. Inputs include recent

sales (24 to 26 weeks), last year’s sales (251 to 253

weeks), weather information (temperature, wind, sunshine,

precipitation quantity and duration) and season (cosine and

sine of scaled week number). The responses are the realized

sales figures. All covariates and responses are scaled per

outlet to have zero mean and unit standard deviation.

6.2. Clustering and prediction

Methods. For both databases we trained ensembles of

neural networks. These networks had one hidden layer and

biases on the hidden and output units. The hidden units had

hyperbolic tangents as transfer functions; the output units

were linear. For the Boston housing data we trained

ensembles of models with numbers of hidden units varying

from 1 to 14 (one type of model in each ensemble). For the

newspaper data we only trained networks with two hidden

units, since we know from past experience that these yield

the best results for this particular data set.

The clustering algorithm was applied to 10 independent

ensembles of 50 models, obtained by bootstrapping. To

create an ensemble of models we made a random 2:1 split of

the database, where the larger part was used for training

(training set) and the smaller for testing the final result (test

set). Each of the 50 models was optimized on a random

resampling of the training set: for a set of ntrain samples we

took ntrain random draws where each data item (an input

with its corresponding output) could be drawn more than

once. This resampled set was used for the actual

optimization (for which we applied a conjugate gradient

method), and the undrawn part of the training set was used

to implement early stopping. Larger ensembles did not

improve performance, smaller ensembles yielded inferior

results.

The clustering algorithm was performed for each

ensemble. We predicted the outputs in the smaller part of

the database (the test set) through Eqs. (9) and (10). The

predictions on the Boston housing data were compared to

prediction through bagging (taking the average over the

outputs of all models in the ensemble on a new input). For

the newspaper data, for each split of the data we also trained

one network similar to those described previously, with two

hidden units, but with one output for each task (outlet). This

means that all tasks shared the same input-to-hidden weights

of the network, but had independent hidden-to-output

weights. See Caruana (1997) for similar work. All

prediction results are rated through their sum-squared

error on the test set.

Boston housing. We modeled the Boston housing

problem by bootstrapping with multilayered perceptrons

with their numbers of hidden units varying from 1 to 14. The

models within one bootstrap ensemble always had the same

numbers of hidden units. Each ensemble was clustered up to

the point where no more improvement in sum-squared error

was gained by adding more cluster centers. Fig. 1 shows the

sum-squared error for the clustered ensemble as a function

of the number of cluster centers, for the full ensemble

(through bagging) and the average sum-squared error of

single models in the ensemble, for models with 2, 8, 12 and

14 hidden units. It can be seen that for more complicated

models (more hidden units) less cluster centers are needed

to match the performance of the full ensemble. This

progression from many cluster centers to one can be

understood in terms of bias and variance.

In general, we can say that errors due to (large) variance

occur when a model can in fact adequately represent the

(hypothetical) data generating function, but still optimizes

to the wrong model because of the limited amount of

training data. Errors due to bias, on the other hand, occur

when the model is not sufficiently sophisticated to match

the data generating function, and must settle for the closest

approximation. For one simple model it is impossible to

give an adequate representation of the hidden (complex)
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function underlying the data. Bootstrapping in this case

serves to find an ensemble of models that, when put

together, can closely approximate this function. Since in this

case the bootstrapping ensemble contains multiple signifi-

cantly different models, multiple cluster centers are required

to represent the ensemble. Bootstrapping then serves to

reduce the bias in the model, since the summation over

multiple networks in fact yields a more complex model.

One sufficiently complex model however, may be

sufficient to represent the unknown function that generated

the data. In this case, bootstrapping serves to reduce the

overfitting that may occur when one such model is trained

on the full data. Although for complicated models many

bootstrap samples may be needed to obtain a low variance

estimation, in the end the full ensemble can be represented

by just one cluster center. More discussion on the

effectiveness of bootstrapping and ensemble learning can

be found in Domingos (1997) and Breiman (1998).

One MLP with 14 hidden units appears to be sufficiently

complex to describe the Boston housing problem: the one

cluster representation performs as well as the full ensemble.

Clustering of the two hidden units ensemble appears not to

be able to match the performance of the full ensemble. We

expect this failure to be due to the fact that in this case,

where a large number of representative models is needed,

the annealing process needs to reach relatively high values

of b. In this regime the algorithm gets too ‘greedy’, and

rather than detecting new, relevant clusters, it creates cluster

centers that coincide with models in the ensemble, as can be

seen in the lower part of the upper left panel in Fig. 2.

Prediction of newspaper sales. Prediction error for the

newspaper data (Fig. 3) decreases strongly until the 3-

cluster solution, and then slowly converges to a minimum,

which is significantly lower than the error made by the

multitask learning network (one output for each outlet, and

shared input-to-hidden weights). Averaging over all models

in the full ensemble (as in bootstrapping) yields rather poor

results in this case. The clustering obtained on the news-

paper data does not only improve prediction, but also

reveals an interesting structure, which was hidden in the

data. Fig. 4 shows the outlets in Holland that are assigned to

Fig. 1. Boston housing data: prediction error as a function of the number of

clusters for models with two (upper left panel), eight (upper right panel), 12

(lower left panel) and 14 hidden units (lower right panel). The lower

horizontal lines in each plot indicate the prediction error corresponding to

the full bootstrap ensemble. The upper horizontal lines indicate the average

error made by the single models in the ensemble. The error bars are

calculated based on the difference between the error of the reduced

ensembles (cluster centers) and the full ensemble.

Fig. 2. Clustering of the Boston housing data. Each panel plots the principal

components of the outputs of both bootstrap models (crosses) and

representative models (circles). For the two hidden units ensemble we

show the seven cluster solution, six clusters for the eight hidden units

ensemble and three for the remaining ensembles. Note that in the two

hidden unit ensemble representative models and bootstrap models start to

coincide.

Fig. 3. Clustering of the newspaper data. The left panel plots the principal

components of the outputs of both bootstrap (dots) and representative

models (circles). The right panel shows the prediction error as a function of

the number of clusters. The horizontal line represents the prediction error

that is made by the multitask learning network (one output for each outlet),

the other dashed line shows the K-means clustering results, the solid line

shows the results from the clustering method described in the present

article. The error bars are calculated based on the difference between the

prediction error corresponding to averaging over the cluster centers and

those made by the larger network.
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clusters 1, 2 and 3 with probability pia . 0.9. It can be seen

that the outlets in the first cluster tend to be near the beach,

and in the eastern part of Holland, touristic spots without

many large cities. The outlets in cluster 2 center around the

‘Randstad’ (Amsterdam and other relatively large Dutch

cities). The outlets in cluster 3 are spread all around, and can

be considered ‘undetermined’. Fig. 5 (a Hinton diagram

(Bishop, 1995)) plots the ‘sensitivity’ (the derivative of the

model output with respect to a model input, averaged over a

set of training samples) of the representative models for

each cluster. The figure clearly shows that the first of these

models (corresponding to the ‘touristic’ cluster) is

especially sensitive to the inputs corresponding to last

year’s sales and season, whereas for the second model (‘city

cluster’) short term sales are weighed more heavily.

The third, ‘undetermined’ model features much less

pronounced sensitivities. This clustering, which makes

intuitive sense, was obtained without any information with

respect to city size or level of tourism.

Other methods. Model clustering can in many cases be

implemented through less involved clustering algorithms,

such as K-means or nearest-neighbor clustering. We

repeated the model clustering process and predictions

described in the previous paragraphs, where this time we

applied K-means clustering to the model outputs, instead of

deterministic annealing. The performance of the simpler K-

means clustering method on the Boston housing database

was not significantly worse than that of the more involved

method. Note however, that in this case only 50 data vectors

were clustered; more complex databases may still benefit

from the more involved algorithm described in Section 3.

See Miller and Rose (1996) for examples.

The newspaper example, however, does benefit from

the more involved algorithm. The prediction error, shown

in Fig. 3, is significantly higher after K-means clustering.

This effect is partly due to the fact that deterministic

annealing yields a ‘soft’ clustering, where in the case of

multitask learning for each task we get a distribution over

the full set of clusters, instead of a hard assignment to one

cluster; when for the deterministic annealing method we

assign each task to its ‘most likely’ cluster (i.e. task t is

assigned to the cluster a corresponding to the highest pta),

its performance becomes significantly worse (but is still

better than the performance of K-means). The other part

of the improvement most probably is due to the larger

number of samples, which makes a more complex

clustering algorithm more effective.

We also looked at a selection method, as an alternative to

clustering. This alternative would use a (small) selection of

models from the existing ensemble instead of cluster

centers. We made a random 2:1 split of the original training

data into a training set and a validation set, and trained an

ensemble on the training set. We selected models from this

ensemble through a method much like the ‘Tabu method’

(Roli, Giacinto, & Vernazzo, 2001). Here, we start out with

a random selection of n models from the ensemble (n being

the number of models we eventually want to have in our

selection; in our case 1 # n # 7). In each step we consider

all possible subsets created through removing one model

from the selection and adding another (out of the ensemble)

to it, and accept the subset with the lowest sum-squared

error on the validation set. This process is continued for a

fixed number of steps, and continues even when

the validation error rises from one set to the other.

Eventually, we accept that selection that over the course

of the algorithm showed the lowest validation error.

Although this method may often be less time consuming

than the clustering method, the results in terms of prediction

Fig. 4. Geographical clustering of the newspaper outlets. Circles mark outlets assigned with weight larger than 0.9 to either the ‘seasonal’ cluster (left panel),

the ‘short term’ cluster (middle panel) or the ‘undetermined’ cluster (right panel).

Fig. 5. Sensitivity of the representative models to the model inputs. White squares represent positive dependencies, black squares negative dependencies.

Larger squares represent stronger effects.
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error were significantly worse than those of the method

described in the present article in each instance except for

the Boston housing example with two hidden units, where

they were equivalent.

6.3. The influence of frequent retraining

The results from Section 6.2 were obtained by retraining

the models at the end of the clustering procedure. We

mentioned in Section 4 that the moment and frequency of

retraining the representative models may have its influence

on the final solutions. Therefore, we repeated the above

simulations on newspaper sales for clustering with more

frequent retraining, where we tried retraining either for each

new b or after addition of each new cluster. Table 1 shows

the simulation time and prediction error for each of these

approaches. The values are averages over 10 independent

runs, as in Section 6.2. Simulations on the Boston housing

data yielded similar results. It can be seen that, at least for

the databases used in the present article, retraining at the end

of the clustering procedure has no adverse effect on the

quality of the method’s predictions, and takes significantly

less computation time. Still, other databases might produce

other results.

As a benchmark we also applied the original EM

algorithm outlined in Section 3, i.e. where the maximization

step itself involves fitting the model parameters of the

cluster centers. Even here, where we do not loose any

accuracy due to retraining, the results are still not

significantly better, whereas the computation time is

considerably longer than for any of the retraining methods.

7. Discussion

In the present article (which elaborates on our earlier

work in Bakker and Heskes (1999)) we have presented a

method to summarize large ensembles of models to a small

number of representative models. We have shown that

predictions based on a weighted average of these repre-

sentatives can be as good as, and sometimes even better

than, predictions based on the full ensemble. We believe

that this method provides an extremely useful addition to

any method featuring an ensemble of models, such as

bootstrapping, sampling of Bayesian posterior distributions

or multitask learning. The method is not only valuable in

terms of predictive quality, but also on a more abstract level.

This improvement was apparent on the newspaper data,

where different clusters of models brought out different

aspects of the data.

A considerable body of literature exists on the subject of

the ‘overproduce and choose’ paradigm, where in the first

step a (too) large ensemble of models is trained, and in the

second a selection or combination of these models is made

to optimize performance (Perrone & Cooper, 1993;

Partridge & Yates, 1996; Hashem, 1996; Sharkey, Sharkey,

Gerecke, & Chandroth, 2000; Roli et al., 2001). Roli et al.

(2001) have implemented a clustering algorithm for

classifiers, where distance between two classifiers depends

on the probability that both misclassify the same pattern.

This concept of ‘methodological diversity’ plays an

important role in most methods in this field; in the present

article we have implemented this concept in the entropy

term (Eq. (3)), which makes sure cluster centers are

optimally diverse. Note that our method is in fact

unsupervised, which makes the clustering part less depen-

dent on the availability of supervised data; if model inputs

can be generated artificially, the data set used for clustering

can be made arbitrarily large.

In the present article we have chosen the clustering

procedure outlined by Rose et al. (1990) to perform model

clustering. Alternative clustering procedures can of course

be considered and, as shown in Section 6.2, may sometimes

yield equivalent results. We do, however, stress the

importance of using a ‘natural’ distance function based on

model outputs rather than a more arbitrary distance based on

model parameters.

At this point we wish to underline that in the present article

we do not claim to outperform the above mentioned authors

in terms of prediction error. The present article is meant to

show that model clustering, through any desired clustering

algorithm, is able to produce a fitting ‘summary’ of any large

ensemble of models. In the present article we have taken

bootstrapping ensembles for an example, but ensembles

obtained from sampling a Bayesian posterior distribution, or

indeed from any source, can in theory be summarized just as

well. The strength of such summaries lies mainly in the fact

that they make qualitative analysis easier than it would be on

the full ensemble. We demonstrated this through two

examples: in the Boston housing example we used the

summaries to analyze the bootstrapping process in terms of

bias/variance, in the newspaper example we discovered a

division of outlets into ‘seasonal’ outlets and ‘short term’

outlets. We feel therefore, that the model clustering method

described in this article can make a valuable contribution in

the field of qualitative data analysis (data mining).

Cadez et al. (2000) have done related work on model

clustering. An important difference between our work and

(Cadez et al., 2000) is that we cluster trained models, slowly

increasing the number of clusters, where in Cadez et al.

Table 1

Average sum-squared error on the test set and required computation time

for different moments of retraining. The models in the clustered ensembles

concerned the newspaper data. Clustering continued until three clusters

were found

Method Sum-squared error Required time (min)

Retrain afterwards 0.897 ^ 0.011 9.0 ^ 1.6

Retrain per cluster 0.897 ^ 0.005 11.7 ^ 2.2

Retrain per b 0.897 ^ 0.005 28 ^ 4

Cluster on parameters 0.897 ^ 0.005 116 ^ 19
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(2000) clustering and training are combined into a

generative model with a fixed number of clusters.

We addressed the problem of retraining a model with a

desired architecture from a cluster center expressed in

outputs on a data set. Although we recognize that a risk

exists in letting the cluster centers run free in output space,

we showed that at least for the databases considered in the

present model retraining at the end of the clustering

procedure does not lead to the wrong representative models.

For cases where this method may not be correct, we have

suggested saver, yet more time consuming methods where

the models are retrained at clearly marked points in the

process.

In the present article we have applied model clustering to

gain better predictions and, for the newspaper project, to

detect hidden structure in the data. Other applications can be

found e.g. in the comparison of networks which do not have

the same structure, but are trained to perform the same task.

If the network outputs depend strongly on the network’s

structure, different models are likely to be assigned to

different cluster centers. If, however, two differently

structured networks produce similar outputs, there will be

clusters inhabited by both types of networks.

Our model clustering method may also have useful

applications for (Bayesian) sampling: in this case, an

ensemble of models is obtained through sampling from a

probability density function which cannot (easily) be

expressed analytically. Model clustering can be used to

find clusters in this ensemble of samples, and make

subsequent analysis easier.

Another application would be the detection of sym-

metries in a network (Rüger & Ossen, 1996) through study

of the differences between clustering based on a distance

function dependent on the outputs of the networks and

clustering in weight space directly (e.g. with a Euclidean

distance function).
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