Dynamics of activity fronts in a continuum mean field model of cortex
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Introduction
The functional organization of cortex appears to be roughly columnar, with the laminar sub-
structure of each column organizing its microcircuitry. These columns tessellate the two-
dimensional cortical sheet with high density, e.g., 2,000 cm’ of human cortex contain 10° to 10°
macrocolumns, comprising about 10° neurons each. Continuum mean field models (cMFMs)
describe the mean activity of such columns by approximating the cortical sheet as continuous
excitable medium [1,2]. cMFMs can generate rich patterns of emergent spatiotemporal activity
[3]. This has been used to understand phenomena from visual hallucinations to the generation of
EEG and fMRI BOLD signals [4,5]. Pattern boundaries are here defined as the interface between
low and high states of average neural activity.

cMFMs support travelling patterns as well as the formation of intricate structures. Here we
derive equations of motion for the pattern boundaries of a simple cMFM, showing that their
normal velocities can be computed from boundary integrals. The solutions of these exact, but
dimensionally reduced, equations for activity fronts are in excellent numerical agreement with
the full nonlinear integral equation. A linear stability analysis of the dynamics of the interfaces
allows us to understand mechanisms of pattern formation arising from instabilities of spots,
fronts and stripes. We further test these results against partial differential equations (PDEs)
equivalent to the original integral equation [6], and perform numerical simulations on a sizable
cortical sheet to study how more realistic firing rates (computed with sigmoidal functions instead
of Heaviside steps) influence the dynamics of activity fronts.

Integral equation, equivalent PDE set and bump solution
We use here a bare-bones cMFM consisting of a single neuronal population with local excitation
and distal inhibition, mimicking the behaviour of interacting excitatory and inhibitory neural sub-
populations. This so-called Mexican hat connectivity is now known to underlie the generation of
both spatially periodic and spatially localized structures; the latter have been hypothetically
linked to working memory (the temporary storage of information within the brain).
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For the exponential synapse, the following integro-differential form arises
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a function that converts activity into firing rate,

where the 2D-Fourier transform (F? £ ’H,lHankeI transform, if radially symmetric) is calculated
using H [Ko(pr)] = and v, (E t) = mf [u (12 t)}.Thus one finds the equivalent PDE set
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For the Heaviside firing rate, we can find a time-invariant, radially symmetric bump solution:

. B . R, _R [ r<R: pL—Io(pr)Kl(pR)
* L 4 R R 1 R R * L
0 ()= g { )~ vf0) = 2 ) - w0 | w @) =

Next we will investigate the stability of this bump solution, which serves as our initial state.
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Stability analysis R
For bumps, one can find the discrete eigenvalue R \
spectrum from the following Evans functions [7]: 5T hi‘stabmy\ N
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The integro-differential form can under these circumstances be written as

4

1

—uy (7,t) = —u (r,t) + Zcz/ dir' Ko (G |7 — 7))
i=1 /B

84

Computing this restricted to the boundary yields the numerator of the normal velocities:
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Forthe denominator, we derive a transient equation on the interface by taking the gradient:
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This allows evolving activity fronts from a chosen initial state. Predictions can be compared with
direct simulations of the equivalent PDEs, and are in excellent agreement (see large figure).
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Conclusions
On the cortical sheet, two-dimensional patterns can be defined by boundaries between high and
low activity, and their dynamics can be specified by tracking the evolution of these interfaces.
Using a simple cMFM, we have shown that one can faithfully describe the motion of activity fronts
with equations of reduced complexity. This improves our ability to study pattern formation and
suggests more generally that modelling the interfaces of patterns, rather than the patterns
themselves, may lead to novel, efficient descriptions of brain activity.
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