Raymond van Ee and Casper J. Erkelens

Ferception 24, 299-314, 1995.
Flesse send correspondence to the fire suthor: Utrecht Univeraity, Vakgroep Fyaica vid Mens, Princetonplein 5, NL-35s46G, Utrecht, The Netherlands;

Fax: +313054664

Abstract

Abetract Fron the literature it is known that the procesing of disparity for alant is difere t in thepreaence and in the abaence of a viau al frame of reference. Mre elaborate the experimental findin that vertical diaparity ia not proceacd for slant per ception in the preaence of a visual reference. This theoretical analyais reaulta in a reduction of the three basic first or de tranaformations between the retinal half-innagee (Koenderink's divergence, rot ation and deformation) to only two basic orthogonal tranaformations. The fira of theae, horisontal acale, reaults in alant perception about the vertical axis, whereas the second, horisontal shear, reaults in slant perception about the horisontal axis. Theae transformations are based primarily on horisontal disparity. Wre show experinentally that in the presence of a frame of reference the amount of vertical tranaformation that ia added to the two basic tranaformatione (horisontalacale and ahear) of arandom-dot atimulus is indeed irrelevant for alant perception. Ye suggest that in the presence of a visual reference slant perception about oblique axes is based solely on linear combin at ions of the horisontal scale and horisontal shear transformations. Subjecta are able to reproduce slanta about oblique axe experimentally merely by combining horisontal acale and shear.

Introduction

In atereocopic vision both eyea view alightly diftere tapecte of viaulapuce. Generally, the image of a atimulua on one retina can be regarded as a mathematical tranafomation of the image on the other retins. The diference between the two retinal projectiona of objecta, which are determined by the geometry of binocular vision, are called binocular diparities or, in short, dispanities. Theae disparities are source of depth information.

The theoretical clasificstio of the posable mathemstical tranefomstions between the retinal images (to first-orde approcimation in apstial difterence was fire worked out by Koenderink and Van Doom (1976). They examined what kind of diaparity informstion is in principle available for the computation of alant. They were able to decomproe the firat-orde dispanty fiel into divergenee, rotation and deformation and found that the deformation component apecific the gradient of the reciprocal distance. Their theory is attractive because it permite any tranefomation to be deanibed aolely in terms of divergence, rotation and deformation. In essence, their theory is a computational theory which can be used to denive depth from dispanty field obtained from matching pictures taken by two camerse. Nevertheles, the theory has been applied frequently to human binocular vision and has been used to interpret experimental reaults.

It is important to verify whether Koenderink and Van Doom'a theory is in fact applicable to human vision. Gillam and Fogera (1991) recently inveatigated induced alant about the horivontal axis for atimuli relative to a visual frame of reference. They concluded that, contrary to Koenderink and Van Doom'e theory, perceived alant was not related to the deformation present but was predicted by the orientation disparity at the vertical meridian per se. From the atudy by Gillam and Fiogere it is clear that the theory of Koenderink and Van Doom does not always predict perceived slant conrectly. However, it is atill not eertain whether Koenderink and Wan Doom'a theory is applicable to human slant perception in the case of atimuli in which onentation disparity is of minor importance. Another problem with their theory is that it doee not incorporate the asymmetry between harieontal and vertical diaparity in the human viaual ayatem.

In the theory of Koendenink and Wan Doom (1976) hariwontal and vertical diaparity are equally important. However, both newo-phyaiological and paychophyaisal atudiea show a strong snisotropy in human vision with reapect to disparity in horibontal and vertical dimension. Stereopas is based primarily on horimontal disparity but the role of vertical diaparity in atereopas is not entirely clear. In the literature there are clear reporta about the ability of the human visual syatem to use vertical dispanity for three-dimensional (3) perception (eg. Ogle 1950). According to a number of suthore the role of vertical diaparity could be to acale horimontal disparitiea for viewing distance. Fiecently, Fiogers and Eradshaw (1993) have ahown experimentally that in the cose of large-fiel atimuli manipulationa of vertical diaparity do inded in uence the perceived distance. However, there are alao reporta that vertical dispanty is not used for 3D perception (Wifestheimer

1978; Gumming et al 1991; Sobel and Gollett 1991). It may well be that vertical diaparity is used for 3 D perception, but only when wery large retinal imagea are involved. It is posable that vertical dispanty is not used for slant perception in the case of relatively amall atimuli in the presence of a visual reference.

The in uence of a visual reference
From eye movement studies it is alao known that stereopais is diftere t with and without a visual frame of reference. Ashift between the two parta of a atereogram relative to each other, without a reference, gives rise to vergence eye movementa but not to perception of motion in depth (Enkelens and Gollewijn $1985 \mathrm{~s}, 1985 \mathrm{~b}$). Fy contrat, the same shift, in the presence of a visual frame of reference, givea rise to vivid perception of motion in depth. From theae atudied it can be concluded that ateolute diaparity is not a auffecie t cue for atereopais (for a review see Gollewijn et al 1991s, 1991b).

Fiecently, we presented evidence that perception of slant is alsoaffecte by the presence or abence of a visual reference (Erkelens and wan Be 1993; wan Ee and Eikelens 1993, 1994). Wife showed that vertical acaling or shesring of a half-image of a random-dot atereogram induced alant perception clearly in the abeence of a visual reference but poorly in the preacnce of a visual reference (wan Ee and Erbelena 1994). TWe alao preanted evidence that the time required for mating reliable alant judgmenta due to horimontally acaled or shesed atimuli is of the onder of hundreds of milliseconde with visual reference but is of the onder of seconds (ten times as long) without visual reference.

The present paper is restricted toslant perception in the presence of a visual reference. TWife firs examine hour a strong asymmetry in the use of horimontal and vertical dispanty affect the clasaficstio of the busic tranefomstione (divergence, rotation, deformation). Wife elaborate the asamption that vertical disparity is irrelevant for slant perception relative to a viaual frame of reference. Tife show that our asumption impliea that alant can be deacribed by a combination of two orthogonal tranafomations only: horimontal acale and horivontal thear. In two experimenta we ahow that horivontal acale and horivontal shear are indeed aufficie to describe perception of alant about any axis relative to a visual frame of reference.

Theory

The diapanty fiel (the angular relationa between binocular viaual directions) can be dearibed theoretically by a vector fiel define on the manfold of visual directions. The diapanty function can be decomposed mathemstically into elementary componente up to sny order by a Taylor expansion with respect to the position. The ero-order component of this expansion is the dieparity walue itaelf and representa tranalation of the retinal image relative to each other. The first-orde component gives the rate of change in
diaparity (gradient). The aecond-order component gives the curvature of the diaparity function.

Figure 1 about here.

The first-orde Taylor approcimation of the disparity fiel can be decomposed into thre elementa (Konderink and Van Doom 1976). The elementary componenta are: divergence, rotation and deformation (ase appendix A for the denvation). Divergence is idential to unform acaling, i.e. unform expansion or contraction. Defomation is a linear combinstion of expansion and contraction in orthogonal directions with conservation of area. Figure 1 showa the elementary firat-orde tranafomations.

Figure a about here.

Two elementary firstorde tranafomations, which are commonly refered to in the litersture (and which we will use too), are non-unform acaling and ahear in vertical or horimontal directions. Non-unform acaling is a linear combination of deformation and divergence. Shear is a linear combination of deformation and rotation and ia generally not a pure deformation. Examplea of horivontal and vertical acale and ahear are ahown in figur 2.

Figure 3 about here.

If vertical disparity is irrelevant for slant perception when a visual frame of reference is present, then the has major conaequences for the claseficstio of the elementary tranafomations that can be used to describe alant perception. Acoording to figur 3 this irrelewance suggeste that 1) rotation and harimontal shear effecti ely induce similar slanta (provided they contain the same amount of horimontal diapanty), i) divergence effecti ely induces the asme alant as horimontal acale and 3) vertical acale and vertical shear will not induce alant. The proposition (2) that in the presence of a vianal reference divergence induces the same alant as does horibontal acole is demonatrated in figur 4.

Figure 4 about here.

More apecificall, we auggeat that perceived alant relative to a vianal frame of reference is related to a set of transfomations of which only horimontal acale and horimontal shear are the busic ofthogonal elements. Honvontal acale is asociated with alant about the vertical axis of the stimulus. Honsontal shear is associsted with slant about the horivontal axis. The tranefomstions harimontal acale and horimontal shear are orthogonal in a mathematical sense (see appendix F for a proof of the orthogonality). This orthogonality mesna that these two tranefomations form a complete set. A complete set implies that the horiwontal component of any tranafomation relative to an arbitrary axia (for inatance an expansion in the 45 deg direction) can be deanibed aolely in teme of horivontal acale and horimontal shear.

Experiments

The experimenta reported here are deaigned for two purpoes. Firat of all, we want to examine our auggeation that the the tranafomations (divergence, rotation and deformation) reduce to only two elementary trantiomations (horiwontal acale and horiwontal shear) in the case of disparity procesing relative toa visual frame of reference. In the real world slanta are uasally not about the horimontal or vertical axis but are about oblique axes. Our theoretical reanlte concerning the orthogonality of horivontal acale and horimontal shear form the bssis of a model deacrbing slant perception about oblique axes which is based solely on linear combinstions of the two basic tranafomations. Therefore, we ala want to inveatigate whether linear combinationa of the latter trandomationa are suffece todeacribe slant about oblique axes.

Figure 5 about here.

The atimuli are generated at a frequency of 70 Hz by an HF 750 graphica computer. Subsequently, the atimuli are back-projected on a fronto-parallel tranalucent acreen by a projection TV (Earco Data 800). The aubject is seated about 1.5 m from the acreen. One image is projected on the acreen in green light and is oberved by the right eye through a green filte: A red filte is used to make the other image visible exclusively to the left eye. The tranamisaion apectra of the filtel (anaglyph glases, Schott Tiel, the Netherlands) are choeen auch that they correapond as far as posaible to the emisaion apectra of the projection TV. No crosstalk between the right and left eye wie we is oterved when contrast and brightese of the projection TV are corretly adjusted. Figure 5 shows the experimental aet-up. The atimuli are viewed in a completely dark room. Weither the acreen (or ita boundaries) nor other objecta in the room are visible.

Figure 6 about here．

The stimulus contains two random－dot pattems and a reference patterm．Schematic drawinge of the atimulus are ahown in figur 6 ．The aubjecta are asked to match the slant of pattem＇（＇Ey manipulating the computer－mouse position＇）to the pre－set slant of pattem 1．The whole－fiel visual reference（width 69 deg and height 56 deg ）conaiste of a crosa－hatched pattem．The sies of the two random－dot patteme are alightly differe t to prevent aubjecta from uaing the aie of the pattems in their judgments．The aubjecta are explicitly asked to match parallelism（alant）and not to match maximum disparities， which are larger for the larger pattem．The sive of pattern 1 ia：width 9.6 deg and height 7.5 deg．The aive of pattem 2，which contans a random－dot pattem similar to that of pattem 1 ，is：width 8.9 deg and height 6.8 deg．The dot diameter（ 0.2 deg ）and the dot density（ 1 dot＇deg）are the asme in both pattems．The reference pattem containa a window（ width 10.1 deg and height 11.6 deg）to minimive the in uence of a posable depth contrast effec（Werner 1938）．The checkered whole－fiel reference pattem conaista of a fiel of adjacent squarea with diagonala of 7.2 deg ．Sinee the teat and match stimuli are amall relative to the fixe viaual frame of reference，the experimental aet－up diveourgea torsionsl eye movementa（see Kertese（1991）for an anslyais of the minimum dimensions of atimuli to drive torsion）．

Experiment 1

Methode Ten aubjecta（ 8 malea and 2 females，agea 23－5i years）tate part in the experiment．None of them ahowa any viaul or oculomotor pathology exeept for one anbject who shows refiaction snomalies which are corrected by his own glasses．Four of the subjecta are experienced in atereosopic experimenta and no aubjecta（except for the suthors）have been informed about the purpose of the experiment．

The half－image of pattern 1 vie wed by the left eye is tranefomed relative to the half－ image viewed by the right eye．The following tranafomations are preaented：harimontal
 ahear（ $-3 \operatorname{deg}-3 \operatorname{deg}$, atep－aice $1 \operatorname{deg}$ ），vertical ahear（ $-3 \operatorname{deg}-3 \operatorname{deg}$ atep－aive $2 \operatorname{deg}$ ）， divergence（ -6 多 -6 布，atep－aice 2 多）and rotation（ -3 deg－3deg，atep－aice 1 deg）．Theae

[^0]amounta of tranafomation comprise more or leas the entive range of fusible disparities. Fusion problems are therefore prevented.

When pattern 1 contains harimontal acale, vertical acale or divergence, which are transformations that are normally asociated with slant about the vertical axis, pattem is presented below pattem 1 (sa shown in fil 6a). In such cases the subject operates the mouse in onder to control the horimontal acale (alant about the vertical axis) of the halfimages of pattern i. When pattem 1 containa hormontal shear, vertical shear or rotation, pattem is ia preanted to the left of pattem 1 (fiy 6b) because these tranefomstiona are normally asocisted with alant about the horicontal axis. This time the mowe is used to control the hariwontal shear (alant about the horivontal axis) of the half-images of pattern 2. The fact that patteme 1 and i are presented adjacently along the direction of rotation makes it easier to match the paralle lism of both pattems, which in turn prevente undeaired in uences of the depth contrast effer (see sleo footnote 1).

The subjecte should make their decisions within 5 seconds. The pre-aet slants are presented in random order. A series of trale conaiste of 36 presentations. Each aubject views fi eseries without feedback. Fetween atimuli the acreen is blanked for two aeconds. The aubjecta are not reatricted with ragard to their head or eye movements.

Fiesulta In our experimenta the subject alwayabtainasatable percept of alant after the presentatione of the stimulus without latercies. Furthermore, depth contrast effect are succesfully prevented. Nosignifica t dfference are found between subjecte. The reaulta of experiment 1 , averaged over the ten aubjecte, are presented in figur 7. Each pre-aet vertical acale (fif (7 a) and vertical shear (fiy (7b) is matched by harimontal acale of about 0 负 (which meana no horivontal acale) and harivontal shear of about 0 deg , reapectively. This means that under our experimental conditiona neither verticalacale nor verticalahear induces perception of slant. Pre-set divergences are matched by similar percentages of horiwontal acsle. This means that divergence induces effecti ely the same slant about the vertical axis as does horivontal acale, with the same amount of hariwontal tranafomation (fiy 7 Fa). TWhen the horimontal disparity is amilar, rotation induces effecti ely the same slant about a horimontal axis as does horimontal shear ('fil 7b).

Figure 7 about here.

Three aubjecta repested the experiment several times at interala of a week. There were no aignifica t difference in the reaulta. To check whether we were aucesaful in disouraging torsional eye movementa we sdditionally recorded these movementa for two of our subjecte while they performed the entire matching experiment. For this purpose we ran snother aeries of atimuli with an exposure time of 20 seconds. Tomsional eje
morementa are measured by the three-dimensional acleral-coil techniq ue as deacribed by Ferman et al (1987). Tife did not fin any correlation between cyclovergence reaponsea and traneformations of the atimuli.

Experiment 2

Methods In the former experiment we investigsted the consequences of the irre levance of vertical disparity (when a frame of reference is present) for the claseficatio of transformations. This irrelevance leads theoretically to a set of two basic tranaformations, horimontal acale sud shesr, which in principle can serve to deacnbe slant about oblique axes. Tife prowed by inveatigating whether linear combinstions of horiwontal acale (-6 \% 6% atep-aine i \%) and horimontal shear (-3 deg - 3 deg, atep-aice 1 deg) are perceived as slant about oblique saes. The matching procedure of experiment 1 is repested with thre aubjects. Two of them are experienced in atereoseopic experimenta. The experimental aet-up of figur 6 a is used. The anbjecta are asked to match the alant of patterm 2 to the the pre-set alant of pattem 1 by operating the monse. This time the horimontal position of the computer mowe repreaentealant about the horivontal axis of pattem i. The vertical position representes alant about the vertical axis of pattern i. A series of trals conaiste of 49 presentations. Each aubject views thee series without feedback.

Reaulta The reaulta of experiment 2, averaged over the thee aubjecta, are preachted in table 1. Again no significa t diference are found between aubjects. Each pre-aet combinstion of horimontal acale (fire column of table 1) and horivontal ahear (fir: row of table 1) is matched by a combinstion of horimontal acale and horimontal shear aet by the subjecta. The mouse positions aelected by the aubject are converted to mesaured horimontal acale and horivontal shear.

Table 1 about here.

The reaulta indicate that perceived alanta about arbitrary axea are uniquely related to linear combinationa of horimontal acale and horimontal ahear.

Discussion

Taken together, our reaulta show that human perception of alant about oblique axea relative to a visual frame of reference depends on the combination of only two orthogonal mathematical trandomationa between the half-imagea of a stereogram. The firs one is horisonfal diale which is asocisted with alant about the perficil paid. The second
tranafomation is horisonfal sheq which is asaciated with alant about the horisonfal asid of the stimulus. Combinstions of horimontal acale and horivontal shear represent horimontal disparity gradients in oblique directions and are therefore asociated with slant about oblique axea.

The theory of Koenderink and Fan Doorn

The theory about the relationship between induced alant and the geometry of binocular vision, which is developed by Koendenink and Van Doom (1976), is in easence a computational theory. The theory can be applied to anticie vision but has also been used as a besis for developing experimenta concerning human vision. It is common practice to compare experimental reaulte with the theory of Koenderink and Van Doom. However, the theory doe not hold for human perception of alant relative to a visual frame reference because vertical disparity is irrelevant for perception of slant when a frame of reference is preaent. Vertical disparity is intrinaically preaent in traneformations libe divergence and rotation. The irrelevance of a vertical dispanty gradient in the presence of a visual reference means that for perception of slant: 1) divergence is effecti ely identical to horiontal acale, i) rotation ia effecti ely identical to horiwontal ahear and 3) vertical scale and vertical shear do not induce slant.
A. visual frame of reference

Our reaulta are diftere t from several reported reaulte including the reaulte of Ogle (1950) and more recently the reaulte of Fiogere (1994) and Howand and Kanelo (1993). Fefore diseusing the experimental resulte of other authore we will distingush between dispanty procesing with and without a visual frame of reference.

One reason why we have to take into account the role of a visual reference (like for instance a stimulus backround, a dimly lit room or the boundaries of a projection acreen) is that dispanty procesing for depth is diftere t with and without a frame of reference (Erkelens and Gollewijn 19*5a, 19*5b; Howand and Gacher 1991; Erkelens and wan Ee 1993; van Ee and Erbelens 1993, 1994). The atudy of perception of depth has been dominated by a paychophysical appronch, whereas oculomotor behaviour has been more often infered than adequately measured. As a reault several authors have confused abolute and relative diparity and have failed to recognive the in uence of a visual frame of reference (for a review aee Gollewijn et al 1991a, 1991b). Erkelens and Gollewijn ($1985 \mathrm{a}, 1985 \mathrm{~b}$) found that diaparity without a visual frame of reference (that is, abeolute diapanty or the vergence angle of the eyes) is not a cue for perception of motion in depth, wherese it is a cue with a viaual frame. Hownand and $\mathrm{Jacher}^{(1991)}$) found that

[^1]cyclodiparity relative to a visual reference, not abolute cyclodisparity, is a cue for slant perception. There have been indicationa (Erkelens and van Ee 1993; aee also Gillam et al 19*8 b ; Stevens and Frooke 1987) that linear tranefomations between the entire halfimages of astereogram without a visual reference elicit perception of slant less suceefully than these tranefomations with a visual reference. Very recently, we have shown that reliable judgmente of slant require obecrvation periods (latencies) of the order of hundreds. of milliseconds in the presence of a visual reference but about ten times as long in the stance of a reference (wan Ee and Erkelens 1994).

The preaence of a viaual reference meana that there are diaparity relationa between differe t stimuli. On the other hand, the abence of a visual reference means that the whole retinal image is subjected to the trandomation (and that eye-movementa libe cyclowergence are dependent on the stimulus orientation'. The reason for the difterenc in stereopsis with and without a visual reference is not entively clear. A Fousible reason is that diepanty without visual reference is leas relisble because the disparity could be caused by eye movemente or head morements. This implies that the procesing of dispanty without visual reference requires compensation for eye and head movement-induced diepsity. In the preaence of a viaual reference, on the other hand, dispanty relations between the atimulus and the visual reference are independent of eye or hesd movementa and thas invariant. Tife reatricted our atudy to perception of alant of a atimulus relative to a viaual frame of reference. The preance of inwarant diapanty relationa between atimulus and reference may be the reason why in our experiment aubjecta obtain atable depth perception without latencies (ase alao Gillam et al 19**b). Slant perception without a visual reference taked a few aeconde (van Ee and Erbelens 1994). This latency could be caused by a recalibistion of atereopaia due toextra-retinal aignale about the eye and head position. The distinction into conditions with and without a visual frame of reference helpa tu to compore our experimental reanlte with other reporta.

Slant perception without visual reference
Ogle (1950) found that unform divergence of retinal image relative toeach other (unform anise itonia) does not lead toslant perception. Wi. hen we remove the visual reference in our experiment slant perception does indeed varish in the case of divergence. Thus, our reaulte do not contradict the reaulte of Ogle (1950). Fogere (1994) and Howard and Kaneko (1993) investigated hariontal shear, vertical shear and rotation of the right retinal image relative to the left retinal image. Unlike ua these authora inveatigated alant perception with large ($75 \quad 75$ deg or more) atimuli and in the atene of a visual frame of reference (cyclovergence was therefore posable). Fiogere (1994) concluded that vertical dippanties of correaponding elementa close to the horiontal meridian are uaed to dnve oyclovergent eye movementa, whilat horimontal dispanties close to the vertical meridian are used as a source of information about the 3 D shape of aurfaces. Howard and Kaneko
(1993)angeat that the difterenc between the horimontal shear and the vertical shear of the retinal image is the primitive for perception of alant about the horiontal axis. In the case of disparity processing without a frame of reference, conclusive claims about the validity of Koenderink and Van Doom's theory are premature because cyclowergence can contribute to the perceived slant about the horinontal axis. Fiogers (1994) and Howard and Kanelon (1993) did indeed report cyclotoraion. Gyclotoraion is important because it can contribute to the perceived slant about the horimontal axis. Our experimental deagn differ from the deagn of Howard, Kanelo and Fogere in that it divouragea oyclotoraion. Gontrol mesaurementa showed that none of our stimuli in fast induced cyclotoraion. Hownard and Kanebo repeated their experiment in the presence of a visual reference and confirme (Howard, permonal communieation, Aug. 1993) our reaulte (wan Ee and Erbelene 1993), which are the same as those deacribed in this report ${ }^{4}$.

Slant perception with visual reference
Gillam and Fogere (1991) investigated induced slant about the horivontal axis caused by atimuli (10 deg diameter patems) relative to a fixe visual frame of reference (in their case a dimly visible room'). They obecrved that rotation induces alant about the hariwontal axis (ss does horimontal hear) but that verticalshear does not induce alant. Gillam and Fiogere concluded that contrary to Koenderink and Van Doom'a theory, perceived alant was not related to the deformation present but was predicted by the orientation disparity at the vertical meridian per ae. Whe have been able to cormborate theae reaulta quantitatively on the basis of horimontal disparity. Wertheimer's (1978) reanlte are also in agreement with ours. He reported that divergence of a stimulus induce slant about the vertical axis (as does harimontal acale'). He reported also that vertical diapanity alone without horimontal disparity does not induce slant. Wifestheimer (1978) and Gillam and Fogers (1991) did not mention explicitly the presence of a viaual reference in their experimental aet-up. However from the deacription of their methoda it can be infered that a viaual frame of reference was present. In our view the presence of a visual reference is the resson why Tifestheimer (1976) found no slant due to vertical dispanty whereas Ogle (1950) did, and that Gillam and Fiogere (1991) found slant due to rotation whereas Howand and Jacher (1991) did not.

[^2]Orientation diaparity
Gillam and Fogere (1991) explained their reaulta in teme of onentation disponty and auggeated that perceived alant is predicted from the onentation diepanty at the vertical meridian per ae. They conchuded that orientation dispanty at the horimontal meridian does not induce perception of alant. The notion that onentation dispanty can in uence slant perception is very interesting if for instance one is trying to understand the anisotropy reported in the detection of alant theeholds about the horivontal and vertical axis (eg. Gagenello and Fogera 1993, but aee aloo Mitchison and MoKee 1990; Gillam and Fiyan 1994). Gillam and Fogere (1991), who did not atudy thresholda for alant detection, explained their reaulte in teme of onentation diaparity. However, they did not vary the contenta of orientation dispanity in their atimuli; they merely investigated random-dot atimuli. Cagenello and Fogere (1993) already auggeated the co-variance of both poaitional dipanty and onentation dispanty in the stimuli of Gillam and Fiogers. TWe auggest another explanation for the reanlta of Gillam and Fiogere, namely an explanstion that is based on positional dispanity: their reanlta may be due to the ire levance of vertical dieparity in slant perception in the presence of a visual reference. If the stimuli used by Gillam and Fogere (1991) are expresed in teme of mathematical tranafomations between the retinal half-images (instead of in teme of orientation diaponity), their atimuli form aspecial chas (the shesr tranafomstions) of the atimuli uad in our atudy. Tranaformstions which contain onentation dispanty at the vertical meridian are in fost horimontal shear tranefomstions and thus induce perception of alant about the horimontal axis. Transformstions which contain onentation dispanity at the horimontal meridian sie in fact vertical shear tranafomations and thus do not induce perception of slant. In our view, the perception of alant of a particular atimulus may be due to the underlying tranafomation of horimontal diapanty rather than to onentation dispanity itaelf.

Wertical disparity

In the literature there are clear reporta about the ability of the human viaual ayatem to use vertical diapanty for depth perception. Firat, vertical acaling of a aingle retinal image, optically by means of an aniseitonic lens in front of one eye leade to perception of slant about the vertical axis if the obeerver is presented with the vertical acsling for a considerable period of time (Ogle 1950; Gillam et al 1988a). Secondly, Ogle (1950) did not otecrve slant effect for overall sniseikonia (divergence which contains aimilar amounta of vertical and horivontal diepanty), as mentioned above. Finally, Fiogers and Fradshay (1993) recently ahowed that vertical aise ratios in the medial plane can in principle be used to denve stimulue distane and that experimental manipulatione of vertical diaparity by meana of a $80 \quad$ so deg atimulue do inded in uence the perceived distance. In theae reporta large field of dispanty without a visual reference were used, (ase aleo aection 14 of the diacuaion of the recent paper by Biahop (1994) about the globality of vertical
diaparity procesaing). The aignifiganc of a vertical disparity gradient for perception of alant relative to a frame of reference can be questioned. There have been indicationa that vertical dispanty is not used for alant perception in the case of atimuli relative to a reference (TWeatheimer 1975; Gumming et al 1991; Sobel and Gollett 1991). Wery recently we have shown that either a vertically acaled or aheared half-image of a stereogram leads to reliable slant perception in the akence of a viaual reference but leade to only poor perception of alant in the presence of a viausl frame of reference (wan Ee and Erbelens. 1994).

In conclusion
Thus, for disparity processing in binocular depth experimente it is important to distinguish between conditions with and without a visual reference. Our asamption about the irelewane of vertical diapanty for alant perception in the preaence of a visual frame of reference is based on this distinction. The modificatio of Koendenink and Van Doom's theory on the basis of this asamption has reaulted in a model for perception of alant about oblique axea in the presence of a visual frame of reference.

R eferences

Biahop P O, 1994 " Sice conatancy, depth oonstancy and vertical diaparities: a further quantitative interpretation" Eiological dybernefica $7137-47$

Gagenello Fi, Fiogera E J, 1993 "Anisotropies in the perception of atereosopic surfaces: the role of onentation disparity" Wiaion Fiperafi 33 a $189-2401$

Gollewijn H, 5teinman Fi M, Erbelens G J, Fegan D, 1991s "Einocular fusion, atereopaia and atereoacuity with a moving head" In Findociaf inion Ed D Fegan (Landon: Macmillan Preas fp 121-136

Gollewijn H_{1} Van der Steen J, Van Fijn L J, 1991 b " Einocular eye movemente and depth
 EdA Gores (Gambridge: Univeraity Freas) pp 165-183

Gumming B G, Johnaton E B, Farker \& J, 1991 "Vertical disparitiea and the perception of three-dimensional shape" ifrafare 349 411-413
van Ee Fi, Erkelena G J, 1993 " Slant perception in relation to the geometry of binocular vision: Effect of local and global dipanty fielda Foster presentation at the Intemstional Gonference and Wato Advanced Wiork hop on Finocular Stereopais and Optic Flour, Toronto, Gansda.
van Ee Fi, Erbelena G J, 1994 "Time-dependent perception of large-fiel dieparity gradiente: walidation of a model for slant perception during dynamic viewing" Feriepfion 33 35

Erbelene G J, Gollewijn $\mathrm{H}_{1} 195_{5}$ " Motion perception during diehoptic viewing of moring random-dot stereograms" Finion Feneqicin 2558358

Erbelena G J, Gollewijn $\mathrm{H}_{1} 1985 \mathrm{~b}$ " Eye movementa and atereopais during dichoptic viewing of moving random-dot atereograme" Finion Fifacafih 35 1689-1700

Erbelens G J, van Ee Fi, 1993 "Disparity proceasing for depth perception under dynamic viewing conditions" Oral preaentation at the International Gonference and Nato Advanced Workhop on Einocular 5 tereopais and Optic Flow, Toronto, Ganada.

Ferman F, Gollewijn H, Janaen T G, Wanden Ferg AV, $1987^{\prime \prime}$ Humangave atability in the horivontal, vertical and torsionsl direction during voluntary head movementa, evalusted
with a three-dimensional acleral induction coil techniq ue" Fision Feneafin 27811-tis
Gillam F , Ghambers D , Lawergren $\mathrm{F}, 198 \mathrm{sa}$ " The role of vertical disparity in the acaling of atereoscopic depth perception: An empinical and theoretical atudy" Fefepfion 0 Fig. chophyric 44 473-4*3

Gillam F, Ghambera D, Fiuso T, 19**b "Postiusional latency in atereosopic alant per-

Gillam B, Fogera $\mathrm{B}, 1991$ "Orientation dispanty, deformation, and atereoscopic alant perception" Pepteffion 20441 -44*

Gillam F, Fyan G, 1999^{2} Perspective, orientation dispanty, and anisotropy in atereoscopic slant perception" Fefcepion 21417.439

Hownal I F, Kanebo H, 1993 "Shear diaparity, cyclovergence and the perception of surfase inclination" Oral presentation at the International Gonference and Nato Advanced Tiforkhop on Binocular Stereopais and Optic Flow, Toronto, Ganada.

Howrand I F, Kanebo H, 1994 " Felative shear diapanty and the perception of aurface inclination" Finion Fenerfio $342505-2517$

Howran I F, 马acher J E, 1991 "Human cyclorergence as a function of atimulus frequency

Kanebo H, Howsid I F, 1994 "Gompresion—magnificatio diaponties and the perception of aurface slant" Fryepfion 2333
 Piese) Pp 111-140

Koenderink J J, Van Doom A J, 1976 "Geometry of binocular vision and a model for atereopase" Eiolopical Cyberneficu 21 29-35

Fiogers E J, 1992" The perception and representation of depth and slant in stereoscopic autaces" in Arfifici and Eiological Winion Symema Ede G Orban, H Nagel (Hamburg: Springer) FP ${ }^{2} 41$ - 266

Fiogera E J, Fradshaw M F, 1993 " Vertical diaparity, difere tial perapective and binocular atereopas" Mafare $361253-255$

Sobel E G, Gollett T S, 1991 "Does vertical disparity scale the perception of atereoscopic depth?" Frotedingu ol dhe Foybl Sociriy (Eondon F) $34487-90$

Tiferner $\mathrm{H}, 1938$ " Einocular depth contrast and the conditions of the binocular field

Wifeatheimer G, 197s" Vertical dieparity detection: Ia there an induced aibe effect? Inpes.

Acknowledgronta-Tife are grateful to J.J. Koenderink for valuable diamaiona and for being one of the aubjecta. Wife thank A.J. Van Doom and A. Kappera for carefully reading this paper and P. Schiphorst for developing the atimuli. This work was apported by the Netherlands Organimation for Scientif Feaearch (Nifio), grant no. \$10-404-006|1.

Appendir A

We show the properties of the tranafomations, nom-miform acale and ahear. Wife fire show the firet-orde Taylor approcimation of a vector fiel in the neighbourhood ($\mathrm{I}+\mathrm{dr}$) of r_{r} decomposed into ita characteristic thee componenta: divergence, rotation and deformation. This decomposition is valid for firstorde approcimations of any vector fiek is the dispanty vector fiek x is a visualdirection. is define on the manfold of visual directions. The notation of the mathematics is the same as in Koenderink and Van Doom (1976).

The first-orde spprocimation of the differenc between $(x+d x)$ and (x) can be expresed as:

$$
(x+d r) \quad(r)=\left(\frac{\partial}{\partial r}\right) d r
$$

Consider the matrix form of $\frac{b}{\delta x}$ and ita aymmetric and antiay monetric parta:

These matrices are define with reapect to a Gartesian coordinate syatem. In the case of the dipparity fiel we defin the x-axis of the Garteaian coordinate syatem to be co-linear with the interocular axis. The antiay monetric part of the matrix $\frac{y}{s x}$ containe the curl of the vector fiel (can $=a_{21} a_{12}$):

It is always poasible to fin a coordinate tranafomation Fiauch that the symmetric part of the matrix $\frac{d}{\text { हI }}$ can be represented in diagonal form:

Fi is a rotation that epecifie the angle () of the axis of expansion or contraction:

$$
F=\begin{array}{cc}
\cos & \sin \\
\sin & \cos
\end{array}
$$

 matrix $\frac{a}{\boldsymbol{a r g}^{x}}$ can be decomposed into divergence, rotation and deformation:

Tife present the elementary tranafomations in their canomical matrix forma:

$$
\text { divergence: } 0^{A} 0^{!}
$$

with real;

with imaginary;

$$
\text { deformation: } \begin{array}{lll}
\text { À } & 0^{\prime} & \\
\text { ! }
\end{array}
$$

with real.
The eigenvalues of an arbitrary tranefomation are of interest because they reveal information about the kind of tranefomation under conaideration. The canonical forme of horivontal acale, vertical acale, horivontal ahear and vertical ahear are:
harimontal acale:
A $\quad 0$

$$
0 \quad 0
$$

one eigenvalue bero, real;
vertical acale:

A		
	0	

$$
0
$$

one eigenvalue bero, real; horivontal shear :

A 0
00
eigenvalues bero, c is a real quantity; vertical ahear :

eigenvaluea dero.

Honimonal acale and horiwontal shear are choen as the elementary onthogonal (ace appendix B) tranafomstions of the first-orde decomposition. The decomposition is:

This decomposition providea the basis for the deacription of perceived local alant about any axis for human binocular vision (see alao figur 3). The numbers a ane an are real quantities, not neceasily equal. They dearibe the magnitudea of the hariontal acale and horicontal shear, respectively.

Appendix B
We show that horivontal acale and horivontal shear are orthogonal tranefomations. Consider the general tranafomation \mathcal{A} :

$$
A=\begin{array}{ll}
\ddot{A} \\
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array} .
$$

Gonsider sleo the linear vector fiel x which depende on the position x :

$$
r(x)=A x=\begin{aligned}
& \ddot{A} a_{11} s_{1}+a_{12} s_{2} \\
& a_{21} s_{1}+a_{22} s_{2}
\end{aligned}
$$

Tife are interested in changes of the horiwontal component of the vector fiel Gonsider the partial derivative of the horiwontal component of the vector fiel $r(x)$ in hariwontal and vertical direction:

$$
\frac{\partial r_{1}(s)}{\partial_{1}}=a_{11}, \frac{\partial r_{1}(s)}{\partial_{s_{2}}}=a_{12} .
$$

The matrix form of horivontal acale (hacale) and horivontal shear (hahear) is:
respectively. For horiwontal acale, the partial denwaves of the horimontal component of $r(x)$ in harimontal and vertical divection are:
and for horivontal shear:

These are componenta of two vectors which form an onthogonal basis because they are perpendicular:

Therefore, horiwontal disparity gradienta in oblique directions (in the two-dimensional plare') are comproed of these two vectors.

Figure captiona
Fig. 1:
The first-orde approximation of the diapanity fiel can be deacribed mathematically sa a auperposition of elementary geometrical trandomstions (divergenee, rotation, and deformation).

Fig. $1:$
Scale and ahear tranafomations. M define the magnificatio factor as a percentage ${ }^{\prime}$, the angle define the magnitude of the shear traneformation in degrees.

Fig. $3:$
The irre levance of a vertical dispanty gradient for alant perception has major consequences for the elementary tranafomstions of figure 1 and 2 . The amall smows in the figure on the left indicate the mulling of the vertical diapanty component. The irrelevanceangeate that 1) divergence and horimontal acole eftecti ely induce aimilar alanta, i) rotation effec tively inducea the ame alant as horiontal ahear and 3) vertical acale and vertical ahear are not expected to induce slant.

Fig. 4:
In the presence of a visual reference divergence induce the same alant as does horivontal acale. Upper stereogram: the right half-image has a horivontal acale of -8% relative to the left half-image. Lower atereogram: the right half-image has a divergence of - 8 笕

Fig. 5 :
The experimental set-up.
Fig. 6:
Schematic drawing of the atimuli; the dimensions are not to acale. Figure a) ahowa pattem 1 and pattem 2, used for matching the perceived slant about the vertical axis (in the case of pre-aet divergenes, hariwontal acale, and vertical acale). Fattern a conasta of a random-dot pattem similar to that of pattem 1 but ia amaller. Figure b) ahowa atimuli used for matching the perceived slant about the horimontal axis (in the case of pre-aet rotation, horimontal ahear, and vertical shear).

Fig. 7 :
The reaulte of experiment 1. Figure a) ahowa messured percentagea (and atandard deviations) of divergence and vertical scale relative to horivontal scale. Divergence is represented by aquarea, vertical acale by circles. Each pre-set vertical acale was matched by horicontal acale of about 0%. Pre-aet divergences were matohed by aimilar percentages
of horimontal acale. Figure b) shows mesaured amounta (and atandard devistions) of rotation and vertical shear relative to horimontal ahear. Fiotation ia repreaented by aquarea, vertical shear by circles. The dimension along both axes is in degrees, as define in fil 2. Bach pre-set vertical shear was matched by horimontal shear of about 0 d deg. Fre-aet rotations were matched by aimilar amounta of horivontal shear

Tabel 1:
 which are not the same as the presented combinationa are denoted explicitly. Eatimated combinations which are the same as the presented combinations are denoted by a dot. The devistions are of the onder of 1 (focsle) and 1 deg (ahear), which re ecta the amallest steps of sdjustment of the mouse in our device. In other worde perceived alanta about arbitrary area can be matched within an securacy of 1 第 and 1 deg by combinationa of the elementary trandomationa, horimontal acale and horiwontal ahear.

Fig 1, van Ee

Fig 2, van Ee

Fig 3, van Ee

Fig 4, van Ee

Fig 6, van Ee

Fig 6, van Ee

Fig 7, van Ee

[^0]: ${ }^{1}$ The depth contrast eect could result in an undesired slant of the reference pattern at the place of the random\｛dot stimulus due to the disparity of the random\｛dot stimulus．An undesired depth contrast eect is also to be expected between pattern 1 and 2 during the matching procedure．However，the better the matching，the less the depth contrast eect，because nally both patterns are parallel at equal depth．
 ${ }^{2} T$ his means that the red and the green vertical contours（or horizontal contours in the case of vertical shear）of the stimulus were rotated over -3 deg to 3 deg relative to each other by the shear operation；see also g．2．By the amount of shear of a stimulus we do not mean the perceptually induced slant，which can be tens of deg．

[^1]: ${ }^{3}$ We fully support the remark of a reviewer 'that there is nothing wrong with the fact that some good theories do not work under certain conditions'.

[^2]: ${ }^{4}$ A fter completing this paper Howard and K aneko (1994), studying shear transformations, and K aneko and Howard (1994), studying scale transformations, reported on the fact that vertical shear and vertical scale do clearly induce slant in the absence but not in the presence of a frontal dot pattern which is untransformed for both eyes. These results also conrm our results. (They call their visual reference `zero\{disparity surround'. We would suggest that visual reference is a preferable term. A zero\{disparity surround may be confused with the horopter which is not what they intended.)

