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Abstract Any computation of metric surface struc-
ture from horizontal disparities depends on the viewing
geometry, and analysing this dependence allows us to
narrow down the choice of viable schemes. For example,
all depth-based or slant-based schemes (i.e. nearly all
existing models) are found to be unrealistically sensitive
to natural errors in vergence. Curvature-based schemes
avoid these problems and require only moderate, more
robust view-dependent corrections to yield local object
shape, without any depth coding. This fits the fact that
humans are strikingly insensitive to global depth but
accurate in discriminating surface curvature. The lat-
ter also excludes coding only affine structure. In view
of new adaptation results, our goal becomes to directly
extract retinotopic fields of metric surface curvatures
(i.e. avoiding intermediate disparity curvature).

To find a robust neural realisation, we combine new
exact analysis with basic neural and psychophysical con-
straints. Systematic, step-by-step ‘design’ leads to neu-
ral operators which employ a novel family of ‘dynamic’
receptive fields (RFs), tuned to specific (bi-)local dispar-
ity structure. The required RF family is dictated by the
non-Euclidean geometry that we identify as inherent in
cyclopean vision. The dynamic RF-subfield patterns are
controlled via gain modulation by binocular vergence
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and version, and parameterised by a cell-specific tuning
to slant. Our full characterisation of the neural oper-
ators invites a range of new neurophysiological tests.
Regarding shape perception, the model inverts widely
accepted interpretations: It predicts the various types
of errors that have often been mistaken for evidence
against metric shape extraction.
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1 Introduction

Any extraction of metric object structure from (hori-
zontal) binocular disparity must depend on the view-
ing geometry (e.g. von Helmholtz 1867; Mayhew and
Longuet-Higgins 1982; Mayhew 1982), all the more so
if one wants to extract metric shape, i.e. view-invariant
surface curvature fields. Of course, no real system can
be perfectly accurate, and, more importantly, the actual
goal is to find a well-characterised, robust neural mech-
anism that offers a realistic operational redefinition of
metric shape, i.e. one that not only adds some highly val-
ued features (e.g. robust ‘smoothing’ and ‘transparency’)
but also produces realistic ‘errors’.1 To present our ap-
proach and its neural implementation in the most acces-
sible form, without losing the essential elements of the
full metric surface-shape problem, we limit this paper

1 Note the essential step of inverting, right from the start, the
usual interpretation of these errors as evidence against metric
shape processing (e.g. Todd and Norman 2003). Our model actu-
ally predicts these errors.
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to extracting only the sectional curvatures in epipolar
planes, and we neglect eye torsion.2

The organisation of the paper reflects our gradual
zooming in on a viable design. The rest of this intro-
duction classifies existing approaches (Sect. 1.1), sum-
marises hints from neurophysiology (Sect. 1.2.1) and
psychophysics (Sect. 1.2.2), and reports new shape-adap-
tation experiments (Sect. 1.2.3) we performed to help us
choose the appropriate neural shape code. In the body of
the paper (Sect. 2) we first rule out existing approaches
by robustness and geometric analysis (Sect. 2.1) and
then start our stepwise design from a new exact expres-
sion relating object curvature to disparity structure and
viewing parameters (Sect. 2.1.2). We derive a new fam-
ily of receptive fields tuned to the relevant local dis-
parity structure (Sect. 2.2) and use these to build the
neural operators that directly extract object curvatures
(Sect. 2.3). Many specific neural predictions ensue. In
Sect. 3, we explain how our scheme inverts the usual
interpretation of experiments that are often thought to
argue against metric shape extraction.

1.1 A broad classification of existing approaches

Within the extensive literature (Howard and Rogers
2002, for review) one can distinguish a few general types
of approach. Most of these have not yet been worked
out to neurally explicit models, and for some this seems
unfeasible. The same classification covers the sets of
assumptions used (often implicitly) in most ‘shape-from-
stereo’ experiments. One finds four main types of
frameworks:

A. ‘Classical’, based on disparity/depth values (von
Helmholtz 1867; Mayhew and Longuet-Higgins
1982; Mayhew 1982; Gårding et al. 1995). Within
this type of strategy, extracting explicit metric
object shape from disparity would be a three-step
transformation:
1. Correction of the horizontal disparity field for

the viewing geometry, i.e. for the local slant
and curvature (1/R) of the Vieth–Müller cir-
cle through the fixation point (Fig. 1). This
stage produces the local depth (or its inverse,
‘nearness’) modulo an unknown linear trans-
formation along the viewing direction (‘affine’
depth). This reduces families of shapes to
‘reliefs’.

2 In Sect. 3, we sketch how the model can be completed. This
requires no fundamentally new concepts or neural operators, but
it would make all the formulae appear so much more complicated
that it would obscure the really important notions, analyses and
predictions that we present here.

Fig. 1 A basic example of how changing the viewing distance
affects the binocular disparity field evoked by a fixed-shape sur-
face, here projected to a line segment (thick) on the plane of
regard, with the eyes at (x, y) = (±a, 0). a The same concave
surface patch (here a circular arc of curvature κ = 1/(4a)), pre-
sented at three viewing distances, is more or equally or less curved
than the three Vieth–Müller circles (zero disparity loci). Thus, its
‘disparity curvature’ νμμ changes sign with distance. b The same
stimuli (right half only) mapped into binocular coordinates (ver-
sion μ, vergence ν). Note how the viewing distance affects the
νμμ of the stimulus image (thick line segment). The formula gives
the exact result for μ = 0; the general result, derived in Appen-
dix A, will appear in Eq. (3). Both figures illustrate how the cur-
vature 1/R of the Vieth–Müller circle leads to a deviation from
the claimed (Rogers and Cagenello 1989) viewing-distance invari-
ance of ‘disparity curvature’ νμμ: this approximation would only
become perceptually acceptable (e.g. error below the known 5%
Weber fraction) for patches with curvature radius less than 1/40th
of the viewing distance, seen at slants less than 12◦ (Sect. 2.1.2 and
Appendices A.3 and A.3.1)

2. Converting affine to metric depth (in a retino-
topic frame) by a scaling that depends strongly
on the fixation distance (measurable from the
vergence ν and/or the structure of the vertical
disparity field).

3. Computation of shape-in-depth from the field
of metric depth values.

B. ‘First-order’, based on disparity gradient and/or sur-
face slant (Koenderink and van Doorn 1976; Lee
1999; Grossberg and Swaminathan 2004). Apart
from using first-order (e.g. the full disparity-field
deformation) rather than zero-order structure, this
type of approach would still need three stages anal-
ogous to type A in order to arrive at metric shape.
(So far, such models have extracted only affine
shape, insofar as they computed any object, rather
than disparity structure, at all).

C. ‘Second-order’, based on disparity or surface cur-
vature (Rogers and Cagenello 1989). As presented
originally, this would be a one-step process: object
shape (represented by a field of surface curvatures
κ) would be extracted directly from the horizontal
disparity field, simply by two-fold differentiation.
Based on an approximate analysis, this ‘disparity
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curvature’3 νμμ (Fig. 1) was claimed to be invari-
ant for fixation distance, at least at small versions
and surface slants. Figure 1 illustrates that even this
restricted invariance fails, unless the object radius
of curvature (1/κ) is negligibly small compared to
the viewing distance (≈ 2R), thus excluding many
practical situations. However, we will show how the
original mistake can be repaired, and the approach
can be generalised to cover the full relevant range
of viewing situations, while still allowing for a neu-
rally plausible, one-step shape-extraction process.

D. ‘Headcentric’ disparity-/depth-based (Erkelens and
van Ee 1998). This proposal again implies a three-
step transformation to compute shape-in-depth,
but its operations and data representations differ
fundamentally from those in a type A framework.
1. Coordinate transformation of each eye’s

image, separately, into a headcentric (HC)
frame. Thus, the angular position of each eye
is required at this stage.

2. Computing the (HC frame) 3D coordinates
along surfaces from the pair of HC-frame
images. This ‘triangulation’ requires knowing
the interocular distance.

3. Computing shape-in-depth of the surface from
its HC coordinates.

1.2 Experimental constraints and hints for model
design

Some qualitative but crucial aspects of the model are
suggested by existing or new experimental results. An
important example is the choice of data representations.
This entails two main questions:
(i) Which quantities encode perceived local shape-in-
depth and its computational precursors? Note that much
of the diversity of existing model frameworks
(see above) boils down to their choice of extracting
metric or affine depth, slant or curvature, from local
disparity, or its first- or second-order structure.
(ii) Which coordinate frame carries the field of local
codes? Whatever the local code at each stage, is it tied
to a retinotopic, headcentric, or perhaps object-centred
frame?

In collecting existing data relevant to the choice of
representation, we also find some clues about the neural
mechanisms which compute the codes, and we identify
remaining ambiguities, which we then resolve by new
experiments.

3 Throughout, we follow standard notation for partial derivatives,
using letter subscripts. Table 1, at the head of Sect. 2, lists where all
globally used symbols are introduced, developed, or illustrated.

1.2.1 Neurophysiology: disparity tuning and gain
modulation

Population coding of disparity distributions across
space. It is well established (Ohzawa 1998; DeAngelis
2000) that disparity is extracted, from area V1 onwards,
by neurons that are selective (‘tuned’) for specific pairs
of locations on the retinae. The full selectivity of such
a cell can be viewed as a single, 4D RF centred on a
specific locus in the space spanned by the two dimen-
sions of ‘cyclopean retinal’ location and two dimensions
of disparity. In fact, most of these RFs lie in or near the
3D subspace of horizontal disparity tuning (Cumming
2002).

Gain modulation by vergence and version. The neu-
ral gain of many disparity-sensitive cells in V1 and V2 is
known to be substantially modulated by vergence and/or
gaze (Trotter et al. 1992, 1996; Trotter and Celebrini
1999), usually without significant shifting of the opti-
mal disparity to which the cell is tuned. More precisely,
the gain dependence on vergence ν is generally mono-
tonic, whereas its dependence on version μ is often ‘one-
humped’. Other groups found similar modulation effects
driven by viewing geometry (Gonzalez and Perez 1998;
Rosenbluth and Allman 2002). These results, especially
the specific types of view dependence found by Trotter
et al. (1992, 1996), provide useful hints and challenges
for constructing a neurally and computationally viable
model.

Coding of first-order disparity structure in areas MT
and V4. Recent recordings in areas V4 (Hinkle and
Connor 2002) and V5/MT (Nguyenkim and DeAnge-
lis 2003) have found cells with selectivity for first-order
disparity structure (gradients). For a substantial frac-
tion of these cells, the selectivity appears to be actually
based on the local surface slant (and tilt), which cor-
responds to disparity gradients that depend strongly on
viewing geometry. Computing first-order structure is not
required for extracting shape (second-order structure),
but our computational design will identify a definite sub-
sidiary role for slant (and, in 3D, tilt) selectivity.

Shape coding in area IT. Janssen et al. (1999, 2000,
2001) have found cells in parts of the IT cortex which
respond specifically to curvature-in-depth of binocularly
defined surfaces, with considerable position invariance
laterally as well as in depth. The results leave open the
question whether these cells are coding object or dis-
parity curvatures, i.e. whether their output is properly
corrected for viewing distance and slant. Nevertheless,
comparing these cells to the gain-modulated disparity
cells found in area V2 (Trotter et al. 1992, 1996; Trotter
and Celebrini 1999) suggests that the V2 cells could feed
into, or even be part of, a stage that we seek to model
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here, i.e. a stage that extracts shape proper, but not yet
with the position invariance (object-frame coding?) of
the curvature-driven IT cells.

1.2.2 Existing psychophysics: direct extraction of object
shape, based on retinotopic second-order disparity
structure?

Realistic handling of most stimuli requires disparity-
tuned coding. Some fundamental constraints and hints
for modelling follow from qualitative, everyday visual
abilities that are often taken for granted: any reason-
ably realistic handling of situations where visual data are
partially missing, spatially interleaved, ‘rough’ or discon-
tinuous, spiked with outliers, or (especially) transpar-
ent, requires replacing the usual model representations
that limit disparity, depth, slant or shape to be func-
tions of position by their mathematically and neurally
natural generalisation: blurred relations (Noest 1994).
Precisely this is what a disparity-tuned population code
does. Even the relatively ‘mild’ visual input complexity
in most psychophysical stimuli (also in our experiment,
Sect. 1.2.3 and Appendix B) requires such a representa-
tion. At higher levels, joint tuning for disparity and its
gradient appears (Lee 1999), as expected.

Blindness to depth per se, but precise perception of
curvature. Classic, robust results strongly contradict
depth-based coding and favour coding based primarily
on curvature. For example, humans are simply blind to
distance and disparity when no visual ‘reference’ objects
are available (Erkelens and Collewijn 1985), and they
suffer from Cornsweet-type depth illusions (Anstis et al.
1978). Even slant perception without reference is weak
and error prone (as reviewed in Howard and Rogers
2002), although it stabilises with training (van Ee 2001).
Large errors also occur in many (but not all) depth tasks
using curved surfaces [Todd and Norman (2003) give
a good overview, but our model will invert their con-
clusion]. In striking contrast with depth or slant, the
curvature-in-depth of surfaces is usually perceived with
good precision – down to 5% Weber fraction (Rogers
and Cagenello 1989).

These contrasting results plead strongly against
schemes in which a depth-/slant-based code is com-
puted before shape is extracted from it (types A, B
or D above); instead, they suggest direct extraction of
curvatures (as in type C). This also fits the improved
detectability of small local depth perturbations when
referenced to a smooth surface (Glennerster et al. 2002).

Adaptation hints at retinotopy and shows direct object-
shape extraction. Adaptation experiments can offer a
relatively uncluttered view of how shape-in-depth is

represented neurally,4 but one must allow for super-
imposed adaptation contributions from all processing
stages that precede or influence the object shape repre-
sentation we seek. Indeed, we already know from neuro-
physiology that at least the input to the shape-extraction
process is represented by a retinotopic disparity-tuned
code.

The first study of 3D after-effects (Köhler and Emery
1947) already concluded that binocularly defined shape
is also coded retinotopically, but this conclusion would
be unsafe if the overall after-effect was dominated by
contributions from the binocular input stage. Over the
next four decades, a series of adaptation studies
(reviewed in Howard and Rogers 2002, and specifically
Ryan and Gillam 1993 and references therein) gradu-
ally managed to separate out the input-stage contribu-
tion (which has very precise retinotopy), leaving other
contributions that proved to be also retinotopic but less
precisely so (e.g. ‘phase independent’). However, these
experiments focused not on shape but on depth or slant-
/tilt-related disparity gradients (Ryan and Gillam 1993
and references therein).

Recent experiments (Berends et al. 2005) have re-
vealed that the representation of disparity-defined slant
is corrected for viewing geometry. However, indepen-
dently of whether this encodes the perceived slant/tilt
(Knapen and van Ee 2006), none of these results answer
our question, since ‘shape’ is by definition a slant-invari-
ant quantity – it is natural (and more robust, as we show
later) to compute it directly, instead of from slant/tilt
fields,5 and the higher accuracy of curvature perception
mentioned above strongly hints at such a scheme. In all,
existing experiments suggest, but do not determine, that
coding of shape is also retinotopic. Resolving this uncer-
tainty is one of the motivations behind our adaptation
experiments (Sect. 1.2.3 and Appendix B).

A highly relevant set of recent shape-adaptation
experiments (Domini et al. 2001; Duke and Wilcox 2003)
indicates that shape extraction from disparity immedi-
ately yields object shape. For example, Domini et al.

4 Adaptation can avoid many of the complications that arise in
interpreting measurements of JNDs or systematic errors (bias) in
perceived depth, slant or ‘shape’: JNDs depend strongly on all
the unknown neural noise levels, and biases reflect the unknown
errors in viewing geometry estimates that any model which aims
to extract object shape must use. Indeed, our model ultimately
provides a new explanation for many known perceptual errors, in
a way that actually inverts existing interpretations (Sect. 3).
5 Note that this principle does not conflict with the slant tun-
ing which will emerge (e.g. Sect. 2.2.3) as an indispensable fea-
ture of the neurons which directly extract object curvature. Their
implicit slant encoding controls shape corrections and weakly con-
strains the perceptual slant ambiguity inherent in any true shape
encoding.
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(2001) had subjects adapt to surfaces of various curva-
tures κ at various viewing distances (and thus vergences
ν) so as to dissociate the role of ‘disparity curvature’
νμμ from that of object curvature κ . A simple illustra-
tion of the distinction is shown in our Fig. 1, and it is

quantified by the relation νμμ = −4
aκ + sin ν

1 + cos ν
, which

is exact for the simple ‘straight-ahead, frontal’ view-
ing geometry used in these experiments. Note that the
ν-range used was indeed sufficient to invert the sign of
νμμ (as in our Fig. 1) in some of the conditions used. The
conclusion that object instead of disparity curvature is
the basis for the shape code is a vital constraint on any
neurally explicit model: the machinery that extracts the
shape code from a disparity structure must correct it in
the same step for the effect of viewing distance. Their
data also reinforce previous hints (see above) that the
shape code is curvature based, but it does not yet exclude
the possibility that e.g. a slant-based code might serve
as implicit shape code (or as computational precursor
of an explicit code), as long as such a slant field would
also be properly corrected for the effect of viewing dis-
tance (again referring to Fig. 1, one may imagine the
required rotation of local tangents to the (μ, ν)-images
of the stimuli).

Very similar conclusions can be drawn from data ob-
tained by Duke and Wilcox (2003), who used a similar
experiment but used shapes with illusory curvatures in-
duced by manipulating the vertical disparity field, so as
to correspond to a different viewing distance. Besides
confirming the previous conclusions on correction of
shape for viewing distance, this experiment shows func-
tional equivalence between various signals (vergence
and vertical disparity structure) which normally contain
viewing distance information.

The remaining uncertainty about whether the
relevant shape code is dominantly curvature based
prompted us to include this question in our adaptation
experiments.

1.2.3 New adaptation experiment: retinotopic
curvature-based shape

The full description of the design, methods, results and
interpretation of our experiment is given in Appendix B,
but the main points are as follows.

The experiment aimed to test whether perceived
shape is coded by curvature tied to a retinotopic frame.
As possible alternatives, we considered shape represen-
tations based on local disparity or its gradient, coded
in either a retinotopic or a HC frame. Such schemes
could coexist, giving rise to multiple contributions to
the overall strength of adaptation K, which we quantify

as the curvature of a test stimulus adjusted to appear
flat after adaptation to a fixed stimulus (Appendix B.1).
What matters to our model is the difference �K between
adaptation strengths K+, K− measured after adapting
to concave, respectively convex, versions of otherwise
identicaladaptationstimuli.Indeed,�Kseparatesmecha-
nistically interesting adaptation-dependent K-contribu-
tions from the well-known bias in perceived curvature
which we attribute to errors external to our model.6

To allow separating the retinotopic and HC contribu-
tions, the adaptation and test stimuli are viewed either
in the same or opposite HC hemispheres. To separate
curvature coding from lower-order coding of shape, we
use either ‘static’ central fixation or ‘moving’ fixation,
where one tracks a marker that traverses the width and
depth of the adaptation stimulus (Appendix B.1).

In summary, we use 2 × 2 × 2 × 2 conditions:

– Two adaptation shapes: convex/concave, with fixed
curvatures κ = ±κ0 = ± 4

3 m−1

– Two types of fixation during adaptation: ‘static’ or
‘moving’ laterally and in depth

– 2 × 2 combinations of Right/Left adaptation and
testing (at μ = ±15◦)

HC shape coding predicts that adaptation does not
transfer between opposite hemispheres, whereas reti-
notopic shape coding should transfer perfectly. Thus,
we collect into one (‘transfer’) group all �K data from
conditions with a (adapt→test) sequence of the type
(L→R) or (R→L). Likewise, all data from (L→L) and
(R→R) conditions go into a ‘no-transfer’ group. Com-
bined with the ‘static fixation’ versus ‘moving fixation’
dimension, this leaves four groups of �K data
(Appendix B.2).

All the conclusions of interest to our model con-
struction can now be read simply from a 2D scatter-
plot (Fig. 2) of the means 〈�K〉 within each of the four
groups: separately for the ‘static fixation’ and the ‘mov-
ing fixation’ data, each pair of 〈�K〉 for the ‘transfer’
and ‘no-transfer’ groups is used as the x, y-coordinates
of a symbol in the scatterplot, using ellipses for ‘moving
fixation’ and crosses for ‘static fixation’ data, with their
widths along each axis representing the SEM values.

The patterns in this data summary (Appendices B.2
and B.3 for detailed data and interpretations) fully

6 This bias has contributed to many experimental results, going
back at least to the classic ‘horopter’ problem (von Helmholtz
1867). As explained in Sect. B.3, it is the expected effect of errors
in an external control signal (related to fixation distance) required
by any model. Our model minimises the impact of such errors rel-
ative to existing designs. The unavoidable remaining bias does not
convey information about the processing stages we model in this
paper.
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Fig. 2 Adaptation strength
measures (〈�K〉/(2κ0), see
text for details) for
interhemispheric ‘transfer’
conditions ‘(L→R) &
(R→L)’ versus those for
‘no-transfer’ conditions
‘(L→L) & (R→R)’. Left
using cylindrical patch stimuli.
Right using spherical stimuli.
Per panel, the symbol colours
distinguish data from
different subjects

confirm the retinotopic, curvature-based nature of shape
coding:

1. All symbols lie close to the diagonal, as predicted by
any retinotopic code (whatever its local type). They
lie many SEM units from their projections onto the
horizontal axis, the locus predicted by HC coding.

2. Per subject, the ellipse (moving fixation data) is gen-
erally much nearer to the cross (static fixation data)
than to the origin. Idealised curvature-based shape
coding predicts these pairs of symbols to coincide,
whereas the circles only should fall on the origin for
a shape code using disparity values or their gradient.
Thus, our data favour at least a dominant contribu-
tion from curvature-based shape coding, consistent
with other results (Domini et al. 2001; Duke and
Wilcox 2003). Moreover, realistic neural models of
curvature-based shape are expected to produce side
effects of the same type as the minor deviations
from the ideal we observed (Appendix B.3).

3. A subject-dependent scale factor represents most
of the variance in the adaptation strengths. This is
irrelevant for the model-design decisions we must
make.

2 Neural model: extracting local object curvature

Our first step must be an analysis of the geometric struc-
ture and computational demands of the task. The con-
struction of neural model(s) then unites the theoretical
results with the neurophysiological and psychophysical
hints and constraints. In fact, our neural model does
not merely implement the results of our initial formal
analysis, but actually generalises them – we start from
a widely familiar setting and gradually extend it, indi-
cating where, how and why several less familiar features
arise in our model(s). A few advanced notions are even-
tually reached, but the neural stages that implement

Table 1 References to sections, figures or equations where sym-
bols (except those used only locally) are introduced, significantly
developed, or illustrated

Symbols Sections, figures, equations

A, A(μ, ν) (2.2.1)
Avv (2.2.3)
a Fig. 1, (2.1), (A.1)
B(u, v, θ) (2.3.2), Fig. 9
C± Eq. (13)
D (2.1.1), (A.1)
G, Guuv, Gvv (2.2.2), (2.2.3), Fig. 3, (2.3.1)
K, �K (1.2.3), (B.1), (B.2)
N± Eq. (11)
R Fig. 1, (A.1)
S(μ, ν, τ) (2.2.3), Fig. 4, (2.3.2)
u, v (2.2.3), Fig. 3, (2.3.1)
W0, W1 (2.1.2), (2.3.1), Fig. 7, Fig. 8,

(2.3.2), (A.3.2)
x, y Fig. 1, (2.1), (A.1)

α (2.1.1), Eq. (18)
β (2.1.1), Eq. (2), (2.1.2), Eq. (18)
γ (2.2.2), Fig. 5
δ, ε (2.1)
θ (2.3.2), Fig. 9
κ Fig. 1, (2.1.2), Eq. (3), (2.3.1),

(2.3.2), (A.3)
μ, ν Fig. 1, (2.1), (A.1)
μ0, ν0 (2.1), (2.1.1)
νμ, νμμ (2.1.2), (2.2.2)
ρ (2.3.1), Fig. 6, (2.3.2), Fig. 9
σδ , σε , στ (2.2.1), (2.2.3)
τ , τ̂ (2.2.2), (2.2.3), (2.3.1), Fig. 8,

(2.3.2)

them may also serve as a simple, concrete illustration of
the underlying mathematics.

2.1 Mathematical basis: geometric structure
and robustness

To compute the surface curvature that defines local met-
ric object shape it is neither necessary nor sufficient
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to compute depth and/or slant per se. To find what is
required, we first explore the major consequences of
choosing the appropriate geometric setting and demand-
ing computational robustness. New analytical results
(Appendix A) then guide us to the appropriate neural
operators.

We start by considering planar curves, which are the
intersections of object surfaces with an epipolar (con-
stant elevation) half-plane, equipped with Cartesian
coordinates (x, y), as well as bicentric coordinates (μ, ν),
version and (full) vergence (Fig. 1), bounded by 2|μ| +
ν < π and ν ≥ 0. We do not treat the full 3D problem in
this paper, but note that the analysis is identical in any
epipolar plane.

It is usual to identify this (x, y > 0)-plane with a ‘plane
of regard’ through eye centres (at x = ±a, y = 0) and
a ‘fixation point’ at version and vergence angles μ0, ν0.
The (azimuthal) ‘cyclopean retina’ coordinates are then
the disparity δ = ν−ν0 and eccentricity ε = μ−μ0, both
of which are accurately coded in the visual system,7

By contrast, the usual ‘fixation vergence’ ν0 cannot
be a well-defined quantity. The problem is not just that
the formal ‘fixation point’ is generically non-existent, but
that large relative errors must occur on the small angular
difference between the (3D) gaze directions of the left
and right eye: at practical viewing distances, the gaze
difference is one to two orders of magnitude smaller
than the range available to each gaze, making it very sen-
sitive to left-/right-uncorrelated gaze errors (Steinman
et al. 1982).

The error component relevant to our analysis can be
captured within a 2D setting: having chosen to process
elevation disparity in a separate pathway (irrespective
of its results feeding our model with viewing geometry
data), we may redefine a (generic) ‘plane of regard’ with
its elevation midway between that of the left- and right-
eye gaze, project each gaze on it, and redefine μ0 and ν0
as the mean and difference angles of the projected left-
and right-gaze directions (Helmholtz azimuths). Note:
ν0 can now be negative.

More generally, all disparity-processing schemes must
face the fact that ‘viewing distance’ is unavoidably noisy,
and may even be undefined. In analysing the computa-
tional robustness to such uncertainty, we use the rede-
fined ν0 to represent the combined viewing distance
information (possibly regionally different) used by dis-
parity processing.

7 Without eye torsion, they would be limited only by the resolu-
tion of pairs of (‘hardwired’) retinal-frame local signs. Correcting
for realistic eye torsions, even when these are not very accurately
available, is possible without spoiling the δ, ε accuracy we need. In
this paper, we simply assume this done.

2.1.1 Viable computations must be robust to fixation
vergence error

Existing approaches differ widely in how they deal with
the ν0-uncertainty (and possible zero-crossing). One
extreme is to simply calculate depths using whatever
ν0 estimate is available. This occurs in e.g. ‘disparity
scaling or normalisation’, which is often implicitly as-
sumed in interpreting psychophysical data; see below
for the implications. The opposite extreme is to retreat
from metric to affine shape (‘relief’), thus leaving un-
known a scaling along the ν (or ν0)-direction. This oc-
curs in many different schemes, e.g. in ‘disparity cor-
rection’ and in deformation- or angular-disparity-based
methods. There are few proposals (e.g. ‘disparity curva-
ture’) for ν0-robust extraction of metric object geometry,
and so far these are valid only under severe restrictions
(Appendix A.3).

We rank and select metric-shape computations by
their degree of sensitivity to ν0 (and less critically to
μ0 and slant). This criterion makes sense since dispar-
ity-driven shape percepts do not generally show any-
thing like the extreme shape distortions predicted by
most existing models (see below). Our robustness rank-
ing may be viewed as a graded version of seeking full
‘iseikonic’ (μ0, ν0)-invariance (Koenderink 1992).

Zeroth-order structure: depth (or depth differences)
from disparity? Metric type A models essentially try to
recover cyclopean distance D = 2a cos μ/ sin ν from dis-
parity δ. Besides being at best only a first step towards
computing metric shape, this is not a viable method be-
cause division by the small term sin ν ≈ ν0 + δ amplifies
ν0-errors into large D-errors. Moreover, it predicts that
fusing a pair of slowly outward-moving stereo
images should drastically distort the distant parts of a
perceived surface towards infinity (as ν ↓ 0), followed
by an absurdity: D < 0 when ν < 0. Not even the lesser
of these distortions is seen (thus also excluding that the
system clips ν0 or ν).

Similar breakdowns preclude the use of disparity
differences �δ (often called ‘relative’ disparity) to
recover depth differences �D: The �δ are free of the
ν0 uncertainty, but the problem resurfaces in computing
the depth differences

�D ≈ −2a
(

�δ cos μ
cos ν

sin2 ν
+ �ε

sin μ

sin ν

)
. (1)

The division by the very small term sin2 ν ≈ (ν0 + δ)2

actually makes this step (‘disparity scaling or normalisa-
tion’) an order of magnitude more sensitive to ν0-errors
than direct D recovery, for ν > 0. For parallel view-
ing (ν0 = 0) of stereo images, disparity scaling predicts
wildly blown-up and ‘folded’ depth structure, contrary
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to observation. For ν > 0, the two schemes are equiva-
lent when judged by the same measure, e.g. �D.

First-order structure: surface slants/slopes from
disparity gradients? The gradient νμ, accurately
measurable as the disparity gradient δε, is obviously
(ν0, μ0)-invariant and thus blind to depth per se, but
it carries some slant information. Computing e.g. the
usual HC slant α ≡ − arctan yx, or ‘slope’ −yx, is marred
by an unbounded μ0-sensitivity (Appendix A.2). This is
avoided only when computing the ‘cyclopean direction-
centric’ slant β = α − μ, or its slope

tan β = tan μ + νμ/ tan ν. (2)

The division by tan ν ≈ ν0 + δ means that computing
tan β is only degree-1 ν0-sensitive,8 but even knowing the
true tan β as a function of μ determines only a ‘relief’. To
recover metric depth differences would at least require
scaling by viewing distance, equivalent to an extra divi-
sion by ν0, which gives this (and any other first-order)
scheme the same degree-2 error sensitivity as all zeroth-
order methods.

Nevertheless, the tan β field itself will play an impor-
tant but subsidiary role in our neural schemes for cur-
vature extraction. For this it is enough that the tan β

errors occur mainly where |β| ≈ π/2, i.e. usually only in
a visually narrow strip near contours (where monocular
cues are more informative). Robustness in terms of the
slant angle β is formally better there, but this is not the
visually relevant measure when |β| ≈ π/2.

2.1.2 Object curvature from disparity differentials

Given our goal of extracting local object curvature κ , it
is natural to try to compute it from the second differen-
tial νμμ, which is obviously free of (ν0, μ0) errors, and
is expected to be accurately measurable as δεε . Before
any metric-level analysis, we must address a more fun-
damental issue:

Visual geometry differs structurally (i.e. not just by
choice of coordinates) from Euclidean geometry, essen-
tially in that it gives one of its dimensions a fixed, special
direction and orientation:9 In our case, a fixed, signed
ν-axis is imposed by the special role of cyclopean vi-
sual rays. This seemingly trivial fact has many profound
consequences throughout our computational design, its

8 The formal μ0-error sensitivity due to the term tan μ = tan(μ0 +
ε) is negligible compared to the ν0-sensitivity: eye mechanics and
optics constrain the binocular visual field so that μ cannot reach
the small neighbourhood of ±π/2 where μ0-sensitivity would
arise.
9 The mathematical meanings of these terms are interchanged in
neurobiology, and sometimes in psychophysics. This does not mat-
ter here. Later on, the local context clarifies the relevant meaning.

neural implementation and its predictions. The most ba-
sic consequence is that each local curvature κ carries
an extrinsic sign (‘convex/concave’), defined only for
|β| 
= π/2, whereas in Euclidean geometry the κ-sign
(once fixed) is invariant under object rotations. Note
that Euclidean rotations eventually violate visual curva-
ture continuity (even for ‘transparent’ objects) by caus-
ing a ‘sign flip’ in κ . To be perceptually relevant, our
model should extract visual-sign curvatures κ , with |κ|
matching the magnitude of the Euclidean curvature as
far as possible (cf. Appendix A). Clearly, this must fail
in some way near the sign-flip discontinuities. Thus, we
have identified a second robustness aspect: avoiding per-
ceptually serious errors where |β| ≈ π/2, i.e. where the
local slope | tan β| diverges and the visual curvature κ

changes sign discontinuously.
Visual object curvature κ in terms of νμμ, νμ and view-

ing geometry parameters. The original estimate (Rogers
and Cagenello 1989) was that κ and νμμ would be simply
proportional, independently of viewing distance (and
perhaps, of version and slant). If true, computing object
curvatures would be fully robust to viewing geometry
and accuracy-limited only by extracting νμμ from the
neural disparity encoding. Later analysis (Koenderink
1992) identified that κ actually depends also on νμ and all
viewing geometry parameters. Here, we give the exact
result in closed form and derive those ‘corrections’ to
νμμ which are required to satisfy the known perceptual
accuracy and neural viability constraints.

In our setting, and choosing κ to be positive for visu-
ally ‘convex’ shapes, exact expressions for κ can be found
by applying the classical formalism for parametric pla-
nar curves [Appendix A, leading up to Eq. (24)]. The
full result can be reduced to the form

− aκ =
{

1
4
νμμ(cos 2μ + cos ν)

+
(

sin ν + 1
2
νμ sin 2μ

) (
1 − 1

4
ν2
μ

)}

×
{

1 + νμ sin 2μ

sin ν

+
( νμ

2 sin ν

)2 [
(cos 2μ + cos ν)2 + sin2 2μ

]}− 3
2

.

(3)

At first glance, Eq. (3) might appear unsuitable for neu-
ral implementation, but a bit more scrutiny of its compu-
tational structure and robustness opens up the route to
realistic neural models which even generalise the com-
putation well beyond the representational limitations of
Eq. (3).

First, note that Eq. (3) is just a linear expression
in νμμ, but with coefficients depending on all other
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parameters. It will prove useful to group these in either
of two ways: writing Eq. (3) as

− aκ = (bνμμ + c)/d = W1νμμ + W0 (4)

defines the two coefficient sets as (b, c, d) and (W0, W1).
The original proposal (Rogers and Cagenello 1989) cor-
responds to neglecting W0 = c/d and replacing W1 =
b/d by a constant. This simple approximation is insuffi-
cient because its errors exceed the 5% Weber fractions
they measured, except in an unrealistically restricted
regime where the curvature radius is less than 1/40th
of the viewing distance while the slant is less is than
12◦ (Appendices A.3 and A.3.1); moreover, it is refuted
psychophysically by the Domini et al. ( Domini) exper-
iment.

The factor b = (cos 2μ+ cos ν)/4 is innocuous since it
is smooth and positive for any practical viewing geome-
try, including ν < 0. The additive c accounts for e.g. the
distance-dependent curvature-adaptation data (Domini
et al. 2001): its term sin ν reflects the required correc-
tion for the curvature of the Vieth–Müller circle (radius
R = a/ sin ν). Both other terms in c display the spe-
cial role of |νμ| = 2. Note that this special value arises
here independently of object opacity (as long as a sur-
face patch is visible at all). Indeed, it pertains as well to
‘transparent’ or ‘sampled’ surfaces, when a local surface
tangent becomes opposite-sense mapped on the two ret-
inae. In any case, such large |νμ| occur only close to a
sign-flip discontinuity in κ (and for non-matched binoc-
ular ‘noise’), so little is lost and robustness is gained if
we design our system to avoid processing any data in
this regime (see below).

The denominator d requires more scrutiny. Indeed,
its terms νμ/ sin ν seem to destroy robustness, giving d
an even worse (asymptotically degree-3) sensitivity to ν0
errors. However, as in the previous cases, what matters
is whether the blow-up of ν0-errors (or any means of
‘clipping’ them, or locally avoiding computation of cur-
vature at all) causes perceptually unrealistic distortion,
instability or undefined status of object shapes. This does
not occur here, as can be seen as follows.

For simplicity, consider the ‘far-field’ (small ν)
regime.10 This yields (Sect. A.3.1)

d = cos3 μ

{
1 +

(
νμ

ν0 + δ
+ tan μ

)2
}3/2

+ O(ν2)

=
(

cos μ

cos β

)3

+ O(ν2). (5)

10 This first-order approximation in ν is accurate under natural
viewing conditions, and no drastic new effects occur until one
reaches the unrealistically close-up R ≈ a regime where ν ≈ π/2.

These two forms are mutually related via the slope
Eq. (2), up to O(ν2). Note that the first form, which
follows directly from Eq. (3), shows explicitly the depen-
dence on the neurally measurable parameters. Both
forms imply that none of the mentioned catastrophic
shape distortions will occur, even without any measures
to avoid local blow-up of d at zero-crossings of ν0 + δ.
Firstly, the local κ ∝ 1/d will go to zero, i.e. the distortion
consists only of the shape being approximated locally
by its tangent plane. Secondly, it is clear especially from
the second form that the ν0-sensitivity is concentrated
where the true slant |β| ≈ π/2, i.e. near the extrinsic sign
flips of κ , where any method must fail. Moreover, one
can now reduce the already moderate perceptual errors
further by measures that had been hitherto excluded
because they would just replace one drastic distortion
by another. For example, one can now safely clip ν at
a positive value corresponding to the distance at which
the finite neural disparity resolution already wipes out
any depth structure; and one can simply avoid comput-
ing a local κ when |β| ≈ π/2, i.e. where any result is
known a priori to be unreliable. In that case, the shape
of smooth surfaces remains constrained by the κ-field
outside these loci.

2.2 Neural basis: RFs for extracting local disparity
structure

2.2.1 Data representation: disparity-tuned cell activity

The disparity input to our neural computation of met-
ric curvature consists of a field of activities A(ε, δ) ≥ 0
of neurons which are tuned jointly for fixed disparity
δ = ν − ν0 and cyclopean retinal location ε = μ − μ0
in the (extended) plane of regard (Sect. 2.1). The (say,
Gaussian) RFs that define A(ε, δ) can have a variety
of widths σε , σδ , but since we hardly use the across-scale
structure which this provides, we drop the σ indices until
needed. Similarly, we usually abbreviate A(ε, δ) as A, or
even write it as A(μ, ν), a helpful abuse of notation moti-
vated by the (μ, ν) dependence of the κ-computation
[Eq. (3)]; no actual transformation into the HC frame
(μ, ν) is implied or required.

Using the A-field replaces the conventional but highly
restrictive use of disparity functions ν(μ): fields A(μ, ν)

represent blurred relations (Noest 1994) between μ and
ν. Our analytical results [Eq. (3), etc.] were derived in
the ν(μ)-setting, so we should generalise all κ-computa-
tions to the A-setting, which is not just mathematically
natural but also neurally and perceptually much more
suitable and robust (see Sect. 1.2.2 and below). Our con-
struction of the neural model essentially is that gener-
alisation of Eq. (3). The original expressions serve as a
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Fig. 3 Determination of local first-order contact τ of A-‘ridges’
(top left), the neural generalisation of formal gradient νμ of a
disparity function ν(μ). The local RF-family Gvv (right) forms a
τ -tuned code which can be ‘read out’ by e.g. ‘winner take all’.
Each τ defines a local “gauge frame” (u, v). Bottom left A-field
is remapped into the (central) gauge frame, illustrating that such
frames isolate the second-order contact γ (no actual A-remapping
occurs)

simple but useful guide through the construction. In this
paper, we use only part of the representational richness
offered by the A-field coding, but what we use is crucial
to most of what the model explains or predicts.

‘Ridges’ in A encode (and generalise) the formal
‘curves’. The A-field automatically generalises the
notion of ‘surface’ (here, ‘curve’) to a large variety of
stimuli that generate activity ‘ridges’:11 For curves in the
old sense, the ridge essentially follows the graph of their
disparity function ν(μ). A finite-length example of such
a ridge, with a blur scale set by the RF widths, is shown
on the top left-hand side of Fig. 3. Note that very similar
ridges will be created by curves with small-scale noise,
and by sets of dot stimuli that sample an implicit curve –
the blurring effectively ‘smoothes’ noise and ‘connects
the dots’, up to its width scales σε, σδ . This regularised

11 ‘Fluffy’ objects (e.g. a bush, furry animal, tree crown, etc.) gen-
erate ν-asymmetric ‘scarps’ rather than ‘ridges’ at their ‘surface’.
This requires extending all our local operators below to combina-
tions of RFs of odd/even ν-symmetry. For the sake of readability,
we do not write this out throughout the design.

encoding of object surfaces (Noest 1994) changes the
data format used in computing κ : the role of the formal
derivatives (νμ, νμμ) is taken over by the local geometry
of A-ridges.

2.2.2 The Galilean (μ, ν)-geometry dictates novel
RF-families

At first glance, it may seem that extracting the required
A-ridge features is identical to the well-known neural
extraction of line-like features in monocular vision by
families of rotated Gaussian-derivative RFs (e.g. Koen-
derink and van Doorn 1987). But note: the special
status of the ν-direction warns us that the very notion of
‘geometric structure’ in our (μ, ν)-plane must differ fun-
damentally from the familiar Euclidean notion. Indeed,
the (μ, ν)-geometry is Galilean, not Euclidean (Appen-
dix A.2. Thus, we must invent new RF families in (μ, ν)-
space that respect the Galilean structure of its geometry.

One relevant consequence of the anisotropy of the
(μ, ν)-geometry is that the Euclidean notion of rota-
tion (incrementing angles) is replaced by the notion of
incrementing slopes: the coordinate transformation for
‘rotation’ by τ [say, around (0, 0)] becomes (μ′, ν′) =
(μ, ν + τμ). Clearly, this satisfies the basic demand of
leaving any line parallel to the ν-axis invariant. Rig-
idly ‘rotating’ the graph of a function ν(μ) thus simply
adds τ to all its gradients νμ, and extending this to non-
rigid local ‘rotations’ leads to the fact that the (μ, ν)-
geometry analogue of ‘curvature’ (γ , say) simply yields
νμμ when evaluated on ν(μ). Note the simplification
compared to the familiar result νμμ/(1+ν2

μ)3/2 in Euclid-
ean geometry. As a consequence, the first stage of
generalising Eq. (3) is strikingly simple: we can just
replace νμ and νμμ by τ and γ , the local ‘first- and
second-order contact’ parameters.

Now that we know the appropriate notion of ‘rota-
tion’, generating the RFs for extracting the local geom-
etry parameters of any order is straightforward. For τ =
0, taking (μ, ν)-derivatives has the same meaning in both
geometries, hence we can simply use the familiar Gauss-
ian-derivative RFs of the Cartesian type: ∂n

μ∂m
ν G(μ, ν).

The τ -parameterised RF-family belonging to any par-
ticular τ = 0 exemplar then follows by ‘rotating’ its RF,
which yields ∂n

μ∂m
ν G(μ, ν − τμ).

2.2.3 Finding ridges and their first-order contact τ :
the Avv- and S-fields

The first type of operator we need is one that finds
A-ridges and their local first-order contact parameter
τ (Fig. 3).



Biol Cybern (2006) 95:455–486 465

At τ = 0, the required RF is simply Gνν ≡ ∂2
ν G(μ, ν),

well known in the Euclidean setting (Koenderink and
van Doorn 1987). In our Galilean geometry, the τ -fam-
ily of this exemplar, centred at a point (μ1, ν1), becomes

Gvv ≡ Gνν(u, v);

(u, v) = (μ − μ1, ν − ν1 − τ(μ − μ1)),
(6)

where (u, v) is the local ‘gauge frame’ (Koenderink and
Richards 1988 and see below). In the shorthand Gvv, the
v implicitly contains the dependence on τ , which will
prove to be a dynamic parameter in our model. Figure 3
shows some examples of −Gvv RFs and of a gauge frame
belonging to one of them. Ridge-finder neurons indeed
need the sign-inverse RFs (−Gvv), since an object sur-
face generates a ‘ridge’, not a ‘valley’. We denote the
response of such cells by

Avv ≡ [−Gvv�A(μ, ν)]+;

[x > 0]+ = x, [x ≤ 0]+ = 0,
(7)

where � denotes convolution and [x]+ the usual ‘half-
wave rectification’.

Note that the whole collection of Avv represents stim-
ulus ‘curves’ as a neural activity field defined on a 3D
(μ, ν, τ) parameter space: any particular Avv-cell has a
simple (one-hump) tuning profile centred on a fixed τ

and cyclopean retinal locus (ε, δ). The τ -tuning curve
(centred at τ1, say) is {1+[σε(τ −τ1)/σδ]2}−1. Apart from
normalisation, this is a Cauchy distribution of width
στ = σδ/σε .

The fact that Avv-responses are jointly tuned for
zeroth- and first-order disparity structures [δ and τ ≈ νμ,
both of which are parameters in the κ expression Eq. (3)]
gives them a vital role in our model. Note, however,
that, instead of explicitly extracting δ, τ , we use Avv in
a scheme (see below) which dynamically selects those
neural operators which can actually compute κ , either
locally (Sect. 2.3.1) or bilocally (Sect. 2.3.2).

Joint selection of local ridge δ, τ and gauge frame: the
S-field. The mechanism for finding the local ‘ridge line’
and its τ (Fig. 3) parallels the conventional scheme for
finding local ‘line orientation’ (sensu neurobiology) in
luminance images: at any μ, the (idealised) goal is to
select the local maxima of Avv along the ν-dimension
that are also global maxima across the useful τ -range
(which covers the range of local slants β, see below).
Almost any neural stage with lateral inhibition across
these parameter ranges12 does what is actually needed

12 For example, the simple feedback scheme ∂tS = −S + [Avv −
α

∫
dβ G(ν)�S]+. Its steady-state response S = [Avv −α

∫
dβG(ν)�

S]+, has the required ‘iceberg-response’ properties for roughly
1 < α < 10. The reason for the integration measure dβ rather
than dτ will become clear in Sect. 2.3.1.

(often called a ‘winner-take-all’ or ‘iceberg’ response):
to reduce the Avv field to a field S(μ, ν, τ) which is
positive only within a certain (μ, ν, τ) neighbourhood
through which the nominal ‘ridge-line’ and its τ pass (see
below and Fig. 4). There is no need to reduce the widths
of this neighbourhood to less than roughly σε , σδ , στ ;
in fact, trying to ‘sharpen’ S further risks losing noise
robustness and/or network dynamical stability.

The S-field plays the role of selecting (‘gating’) the
subset of neural κ-operators (Sect. 2.3) which have the
locally appropriate (u, v)-frame. Note that S remains a
distributed code for the nominal ‘best-fit’ ridge location
(μ̂, ν̂) and its local τ̂ . This is precisely what we need to
properly generalise Eq. (3): the formal local values of
ν and νμ should be replaced by their local distributions
(unnormalised). In any case, the nominal τ̂ hardly var-
ies across any relevant ‘strip’ around the nominal ridge
line, and our S-gated κ-computations are robust to such
perturbations.

Figure 4 illustrates the geometry of S-fields: its joint
encoding of ridge ‘lines’ and their local τ corresponds
to (actually generalises) the important differential-geo-
metric notion of ‘lifting a graph into the slope bundle’
(e.g. Burke 1985; Ben-Shahar et al. 2003). In our set-
ting, the (blurred) subset of (μ, ν, τ)-space where S is
large (it is mostly zero) indicates the subset of neural
RFs that can measure the local second-order structure
required for computing κ . Clearly, this can only work
if (μ, ν, τ) can also smoothly parameterise each of the

Fig. 4 The geometry of the S-field (here skeletonised for visu-
alisation) which jointly extracts ‘ridge lines’ and their first-order
contact parameter τ from the (μ, ν, τ)-tuned Avv-field. To illus-
trate how such a scheme realises the differential-geometry notion
of ‘lifting curves into the τ -bundle’, we use as data a set of circles
through one point, all tangent to the μ-axis, but with different
radii. The loci of large S-response then define the set of helicoidal
curves shown. We also show these as projected onto the plane
τ = 0. To aid visualisation, we also draw in fictional ‘spokes’ at
various fixed τ -values, as well as a fictional surface spanning the
whole set of lifted circles (and their projections). Note also that we
truncate the τ -range at ±2, as identified before. This also shows up
as the gaps in the projected set of circles. S-fields, such as rendered
here by the ‘lifted’ curves, serve to select the neurons whose RF
gauge frame (u, v) fits the local ridge – only these neurons actually
extract κ , locally or bilocally
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eligible RF-families, but this is guaranteed by our
construction (Sect. 2.2.2) of all Gaussian-derivative RF-
families which respect the Galilean (μ, ν)-geometry.
Picking any point in (μ, ν, τ) also singles out a local
gauge frame (u, v) in which the local first-order structure
vanishes (Fig. 3), thus setting the stage for measuring the
local second-order structure. Using the finite-width S-
field implies some local smoothing over sets of ‘similar’
gauge frames. This generalisation reduces the impact of
τ -noise by averaging out its leading order effects, which
are antisymmetric in the τ -error.

2.3 Direct neural computation of object curvature κ

With νμμ replaced by the second-order ridge-contact
parameter γ , one could in principle compute −aκ =
W1γ + W0 by first extracting γ and then correcting it
(the view-dependent W0, W1 can be computed sepa-
rately). However, the psychophysical data (Domini et
al. 2001; Duke and Wilcox 2003) exclude this: adapta-
tion is driven not by νμμ ≈ γ , but by the perceived
(possibly illusory) κ . In a two-stage computation, the
γ -driven adaptation of the first stage would propagate
through the second (κ) stage, which could complicate,
but not undo, the effect. Hence, the corrections should
be applied in the first stage that codes local second-order
structure: we must directly extract κ .

Before designing the required RFs, we note that there
exist two distinct schemes (‘local’ or ‘bilocal’) for extract-
ing γ , analogous to the well-founded schemes (Koen-
derink and Richards 1988) for extracting monocular
line curvature (Fig. 5). We modify these schemes to di-
rectly extract κ . We work out both schemes since they
yield different predictions for neurophysiology. For psy-
chophysics, the two will be hard to distinguish – unless
perhaps by analogy with the line-curvature experiments
of Wilson and Richards (1989).

2.3.1 Local scheme: view-modulated RFs acting
on the A-field

To convert the known local scheme,13 for extract-
ing ridge-curvature γ into a scheme that extracts −aκ =
W1γ +W0,withoutcomputingγ asaneural intermediate,

13 To ease discussion and notation, we adopt henceforth the usual
(Koenderink and Richards 1988) idealisation that the local gauges
(u, v) are correctly fixed, unless stated otherwise. The errors can
be shown to be negligible. In terms of our explicit mechanism
(Sect. 2.2.3), this idealisation means that S selects (‘gates’) those
neural κ-operators with (u, v)-frames that contact (order 0 and
1) the stimulus-evoked A-ridges. We do not actually write the
S-multipliers acting on κ-operators.

Fig. 5 Recalling the classic choice between local and bilocal
schemes (Koenderink and Richards 1988) for extracting ‘line cur-
vature’, such as our γ . A similar choice exists for extracting κ , but
this requires dynamically modified RFs, derived in Sect. 2.3.1 and
Sect. 2.3.2, respectively

we write −aκ as

− aκ = W1Guuv�A + W0Gvv�A
Gvv�A

= −(W1Guuv + W0Gvv)�A
Avv

. (8)

Note that the numerator expression on the right-hand
side predicts a novel type of RF with viewing-geometry-
modulated structure (W1Guuv +W0Gvv). Such ‘dynamic’
RFs could well be realised neurophysiologically by the
view-dependent gain modulation found by Trotter et al.
(1992, 1996) and Trotter and Celebrini (1999).14 Measur-
ing the full structure of the predicted RFs under a variety
of viewing conditions would be a particularly strong test
of our model. The RF structures at fixed W0, W1 are
all related to a single exemplar RF by (σε , σδ)-depen-
dent scaling and a (u, v) gauge transformation, just as
the basic Gvv- and Guuv-RFs from which they are built.
The set of possible subfield patterns of these exemplars
(Fig. 6) depends on only a single parameter, the ‘mix-
ing ratio’ ρ = (W0/W1)(σ

2
ε /σδ), which incorporates the

14 For example, writing the numerator as −(Guuv�(W1A) + Gvv�

(W0A)) shows how the reported type of gain modulation (of A-
like responses) can do the required job. See Sect. 2.3.3 for further
neural variants and details that are relevant to neurophysiological
tests, but not to the computation as such.
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Fig. 6 RF patterns of local κ-detecting cells [numerator of
Eq. (8)]): view-dependent mixtures of Guuv and Gvv, parameter-
ised by the ‘mixing ratio’ ρ = (W0/W1)(σ

2
ε /σδ). Each RF is plotted

here in its unit-scaled gauge-frame coordinates (u/σε , v/σδ). The
rarely required RFs with ρ < 0 are obtained by jointly interchang-
ing v (up) with −v (down) as well as dark with light

different scaling of the amplitudes of Guuv and Gvv with
the widths σε and σδ . The mixed RF patterns measured
under varying viewing conditions should thus map to a
particular trajectory through the family of exemplar pat-
terns sampled in Fig. 6, with the actual trajectory defined
by the view dependence of ρ, which is determined via
W0 and W1 by Eqs. (3) and (4). This suffices for testing
the predicted RF patterns.

What is still missing, however, is a robust and plausi-
ble way of generating both W1 and W0 as required for
the neural κ-computation,15 in particular, the numera-
tor of Eq. (8). This task is tightly linked to finding an
appropriate neural sampling of the range of τ , which
parameterises the gauge frames (u, v) in which each RF
is defined (the widths σε , σδ are taken as constant until
stated otherwise). At first glance, one might think that
each neuron could be tuned to a fixed τ . However, as
analysed in detail in Appendix A.3.2, this choice implies
that the view dependence of the W0 and W1 signals
required by all operators with τ 
= 0 develops steep
and sharp features in an otherwise smooth background
dependence (Fig. 12 in Appendix A.3.2). This means
that a fixed-τ population of neurons would suffer from
sampling inefficiency and/or error sensitivity.

Geometric study of the source of these sharp features
(Fig. 12 in Appendix A.3.2) suggests the (unique) way
out of this problem: each neural operator involved in κ

extraction should be assigned to a fixed slant β, rather
than a disparity slope τ ≈ νμ. This choice is also sup-
ported by the analytical far-field expressions we found
e.g. by d ≈ (cos μ/ cos β)3, the second form in Eq. (5).

15 In contradistinction to the one-parameter (ρ) dependence of
the exemplar subfield patterns, the κ result also depends strongly
on the overall RF amplitude. Thus, both W1 and W0 are needed
(cf. Eq. (8)).

Fig. 7 When parameterised by the cyclopean slant β, both
W1 and W0 (normalised by sin ν) show only smooth depen-
dence on μ and β. Strictly speaking, these plots show the
far-field limits, but in β, μ-parameterised form, the exact
result throughout the practically useful regime involves only
minor, smoothly ν-dependent corrections. Symmetries: W1 is sym-
metric in μ and β; W0 is point-symmetric in (0, 0). Contour lev-
els: W1 = 1
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The expected advantages of fixed-β tuning are fully con-
firmed by the results shown in Fig. 7.

Indeed, W1 and (distance-scaled) W0 depend
smoothly on β and μ over a range which easily cov-
ers all practical viewing conditions: even a neural dy-
namic range of about 10, say, allows a β and μ range
of about ±45, and ±60◦ seems possible. Strictly speak-
ing, these plots show the far-field limit (ν → 0) result,
but another advantage of this parameterisation is that
the result depends weakly and smoothly on ν over all
practical viewing distances (breakdown only occurs near
ν = π/2).

Cell-fixed β tuning also implies that the gauge frames
of all operators (including Avv and S) are controlled by
the now view-dependent τ = tan ν (tan β − tan μ), the
inverse of Eq. (2). Thus, it avoids drastic error sensitiv-
ity. Note also that the τ -global inhibition that transforms
Avv into S and the use of S in selecting the locally appro-
priate κ-responses are not affected – the latter only cou-
ples operators with the same (dynamic) (u, v).

The τ -driven gauge transformations can be imple-
mented by the same gain modulation that performs the
(W0, W1)-driven modulation of RF subfields. Transform-
ing the (u, v)-frames boils down to a mere v-shift v′ =
v − (τ − τ0)u), so the required gain-modulation signal at
a point (u, v) in an RF is simply given by traversing (at
‘speed’ u) the fixed-u section through its exemplar RF
(the effect for Gvv can be seen in Fig. 3).

Figure 8 summarises the two view-dependent factors
that control all RF patterns under a fixed-β sampling
scheme: W0/(W1 sin ν) controls the RF subfield struc-
ture, and τ/ tan ν controls each RF’s dynamic gauge
frame.
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Fig. 8 The two parameters that dynamically define the RF-
subfield patterns and gauge frames of κ-extracting cells (local or
bilocal): the (scaled) RF pattern index W0/(W1 sin ν) (left), and the
(scaled) RF gauge parameter τ/ tan ν (right) as functions of version
μ and surface slant β. The W0/(W1 sin ν) shown is strictly the far-
field limit, but its error is negligible for any practical ν. The τ/ tan ν

plot is exact throughout. W0/(W1 sin ν) is point-symmetric in (0, 0).
Contour levels: W0/(W1 sin ν) = −4, 0,

√
2, 2(±10−3), 2

√
2, 4, 8,

and τ/ tan ν = −4, −2, −1, − 1
2 , 0, 1

2 , 1, 2, 4

2.3.2 Bilocal scheme: view-modulated RFs acting
on the S-field

The basis of any ‘bilocal’ computation is that one can
relate the order-(n + 1) geometric structure at a point
to the order-n geometric structure at pairs of (nearby)
points. In our case, a local γ is related to nearby τ -pairs.
Hence, we must first find the simplest viable scheme
that extracts γ from properly selected pairs of τ -specific
measurements, i.e. from the Avv-field or its ‘cleaned-up’
version, the S-field. In fact, using the S-field as input
takes care at once of the required selection of results
computed in the proper local gauge frame (u, v) along
the ridges.16 Once we have a scheme that extracts γ , we
can replace its static RFs by (W1, W0)-modulated RFs
designed to directly extract κ .

In the Euclidean setting, the geometric demands on
measuring the bitangent relation that defines bilocal cur-
vature have been thoroughly analysed (Koenderink and
Richards 1988), and similar ideas have been used in
neurally inspired schemes for extracting regularised im-
plicit curves or oriented texture fields (Ben-Shahar et
al. 2003), but (unlike the local case) no robust neu-
ral scheme for explicit bilocal γ -extraction seems to
be known. Specifically, we should avoid the proposed
scheme where, in our case, γ would be found by sub-
tracting locally extracted τ -values, since this introduces
unbounded and unavoidable γ -errors as soon as one of
the local patterns has an ill-defined τ -value. The way

16 The fact that S-cells are actually β-tuned (by dynamic RFs)
might seem to offer a direct route to κ , by comparing nearby
S-pairs. However, this approach would reintroduce the ν0-error
sensitivity we avoid by our design, in which such errors only affect
the usually minor correction of the robust γ to κ .

out of such conundrums is simply to keep using distrib-
uted coding instead of explicit values. The design of our
scheme goes as follows.17

If the centreline of an A-field ridge passes through
some point (μ1, ν1) with local slope τ1 and local curva-
ture γ (like the example in Fig. 3), then the equation
of the centreline’s second-order contact element is the
(‘osculating’) parabola v = (γ /2)u2 in the local gauge
frame (u, v). However, we have just concluded that a
bilocal scheme must take its inputs from the S-field,
which is carried by the three-parameter space (μ, ν, τ).
Hence, we lift the osculating parabola v = (γ /2)u2 to
a curve in the (μ, ν, τ)-space (cf. Fig. 4, where this was
done for sets of circles through a point), and we lift the
(u, v) gauge frame to a (u, v, θ = τ − τ1) frame. For the
lifted osculating parabola, one simply has θ = γ u, and
the S-field in a neighbourhood of (u, v, θ) = (0, 0, 0) is
approximately a blurred version of this lifted osculating
parabola.

This setting indicates that RF-families suitable for
our γ -scheme should be based on an exemplar with
an RF pattern in resolution-scaled gauge coordinates
(u/σε , v/σδ , θ/στ ). For example, it is reasonable to put
the two formal sample points at u = ±σε ; at smaller u-
distances, the dependence of the input field on γ drops
quadratically, while at larger distances there could be
undetected other structure between the sample points.18

We need a roughly linear γ response over the range
|γ | < σδ/σ

2
ε allowed by the S-field resolutions.

The simplest exemplar RF pattern that fits our
demands is (see top panels in Fig. 9)

B(u, v, θ) = σδ

2σ 2
ε

{
G(u − σε , v − 1

2σδ , θ − στ )

+G(u + σε , v − 1
2σδ , θ + στ )

−G(u + σε , v + 1
2σδ , θ − στ )

−G(u − σε , v + 1
2σδ , θ + στ )

}
, (9)

where each G(u, v, θ) is a Gaussian with scales equal
to (or a fraction of) those of its input S. Analogous to
the local computation, B�S is also proportional to the
amplitude scale of S, so γ is formally represented by
the ratio of two RF responses (as already announced in
Fig. 5). In the bilocal scheme, the required denominator
RF is a simple G RF at the origin of the lifted gauge

17 The γ -extracting basic version of our scheme can also serve as
bilocal scheme for line/edge curvature in monocular vision: simply
replace our τ -tuned RFs with standard (Euclidean) ‘angle’-tuned
RFs.
18 Note that such large-distance schemes can be very useful for
creating smooth-shaped ‘illusory surface’ percepts from sparsely
sampled data. We relegate such extensions of our scheme to later
treatment.
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Fig. 9 RFs for bilocal γ - or κ-extraction from the S-field the
‘cleaned-up’ first-order contact code. Top panels Two sections
through the bilocal RF B(u/σε , v/σδ , θ/στ ), which extracts γ from
the S-field. As usual, we show all RFs in σ -scaled gauge-frame
coordinates. An RF section at −v is the dark-to-light and θ-sign
inverted copy of a section at v. We have drawn in the projections on
each section plane of a set of ‘lifted’ arcs with various γ . Such arcs
only touch (v = 0) or intersect (v 
= 0) any constant-v plane, but
the finite widths of the operators and their input field S itself cause
the RF output to be quasi-linear in γ up to |γ | ≈ στ /σε = σδ/σ

2
ε .

Bottom panels For bilocal κ-extraction [Eq. (10)], the required RF
for the numerator signal is W1B+W0G, shown here as some exam-
ples which cover the range of possible subfield patterns (at v = 0),
indexed as before by the mixing ratio ρ = (W0/W1)(σ

2
ε /σδ). RFs

with negative ρ are obtained by jointly interchanging dark-light
and up-down in the patterns shown

frame (u, v, θ). Thus we have formally γ = B�S/(G�S).
With this γ -scheme in mind, we have obtained a con-
crete reinterpretation of the lower right panel of Fig. 5:
it visualises both the input stage (S: sloping bars, strongly
shortened and thinned) and the B-weighted (grey-scale)
summing over nearby S signals, in accordance with the
family of curved local ridges parameterised by γ .

To convert this bilocal γ -scheme into one that directly
measures κ , we rewrite it as

− aκ = W1B�S + W0G�S
G�S

= (W1B + W0G)�S
G�S

. (10)

The weights W0, W1, the RF mixing ratio ρ, and the
dynamic τ -transformation of all RFs are identical to
those in the local scheme. The bottom panel of Fig. 9
shows some samples from the range of (W1B + W0G)

RF patterns, in their scaled gauge frame.

2.3.3 Neural coding specifics: opponency,
noise-robustness, etc.

Having determined all computationally essential aspects
of our two schemes for κ-extraction, what remains is to

settle a few aspects of the neural coding that have little
or no functional effect but that affect how the schemes
we propose would manifest themselves in neurophysio-
logical investigation.

We have already defined the neural A, Avv and S sig-
nals such that they signal the relevant (‘ridge’) features
while respecting the non-negativity of neural responses.
What is still open is the neural encoding of κ , which we
have so far written formally as a ratio of two neural sig-
nals in the local [Eq. (8)] as well as the bilocal [Eq. (10)]
scheme.

Recall that κ , and thus also the numerators in either
of our schemes, can have either sign. ‘Opponent’ pairs
of neurons are a simple and suitable representation of
bipolar signals, but there is no strict necessity to actually
implement the formal division that would make κ a rate-
coded value – an ordered pair of numerator and denom-
inator signals is not only a perfectly adequate encoding
of their formal ratio, but also has the major advantage
that the denominator signal serves as a ‘strength-of-evi-
dence’ measure for κ . At loci where a κ-value would
be highly error prone, both signals are usually small, or
they can be so scaled in a neurally straightforward way.
The two-dimensionality of such a code avoids the many
robustness problems which arise in value-coded compu-
tations because the latter falsely map a ‘weak’ result into
an inaccurate value.

If we choose the ordered-pair option, the numera-
tor in either scheme would be encoded by an opponent
neuron pair19

Local : N± = [∓{(W1Guuv + W0Gvv)�A}]+ , (11)

Bilocal : N± = [±{(W1B + W0G)�S}]+ . (12)

Note that the N±-pair alone encodes κ confounded by
e.g. the binocular luminance contrast or the ‘sharpness’
of the surface.

The other option (explicit κ-value) can then be
regarded as a ‘contrast-gain-controlled’ version of the
N±-code. This can be done either in one step (using
synaptic or membrane or spike-generation non- linear-
ities to implement division or an equivalent, say loga-
rithmic, representation) or in a distinct neural stage fed
by N± and either Avv (local scheme) or G � S (bilo-
cal scheme). In either case, the simplest suitable neural
implementation would be an opponent pair

19 Synaptic gain modulation could directly implement the com-
putation sequence indicated by the brackets written here, but the
same result can be computed using the A-level gain modulation
found by Trotter et al. (1992, 1996) and Trotter and Celebrini
(1999), e.g. as −(Guuv � (W1A) + Gvv � (W0A)). What matters [in
view of the Domini et al. (2001) results] is that no intermediate
neural stage carries a signal proportional to γ rather than κ . For
example Guuv�A, or B�S is forbidden.
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Local: C± =
[∓(W1Guuv + W0Gvv)�A

η + Avv

]+

or C′± = N±
η + Avv

, (13)

Bilocal: C± =
[±(W1B + W0G)�S

η + G�S

]+

or C′± = N±
η + G�S

. (14)

The new parameter η introduced here is necessary to
prevent a ‘divide-by-zero’ type noise sensitivity. It should
be of the same order of magnitude as the noise level of
the main term in the denominator.

On the basis of present experimental data, we can-
not decide between the various neural options we have
worked out: the adaptation data (Sect. 1.2.3) (Domini
et al. 2001; Duke and Wilcox 2003) allow either implicit
coding by (N±, Avv)-cell sets or explicit coding by C±- or
C′±-cell pairs. Psychophysical testing is also expected to
have trouble distinguishing between the local and bilo-
cal schemes, since these are designed to be functionally
equivalent. Neurophysiology, however, should be able
to resolve these questions, in view of the neurally very
different schemes that emerged from our two design
variants. In any case, it is worth noting that all κ-rep-
resentations, in both the local and the bilocal scheme,
inherit from the RFs of their inputs a joint specificity for
retinotopic disparity δ and its gradient δε (actually, for
surface slant β). There is already some psychophysical
evidence for such joint tuning (Lee 1999; Aslin et al.
2004).

Moreover, all our mechanisms should show specificity
for scale, of a novel type that should be neurophysiolog-
ically testable. As noted at several stages in the con-
struction, the range of curvatures that can be extracted
reliably and quasi-linearly (either locally or bilocally)
scales with the widths of the constituent RFs as |κ| <

κ� ≈ σδ/σ
2
ε . Outside this range, the response saturates

and eventually decreases with κ . [The scheme then also
becomes more sensitive to errors in selecting the local
gauge frame (u, v) and in the view-dependent modula-
tion (mixing ratio ρ) of RF subfields.] The details differ
somewhat per scheme, but we can focus on the common
feature of the resulting representation: a large overall
range of κ can be covered by copies of the same neu-
ral scheme with other RF-width combinations such that
there is roughly at least one mechanism per doubling of
κ�. This is illustrated in Fig. 10. Note the difference with
respect to standard population codes which use an array
of equal-width, shifted copies of an exemplar RF. Here,
the RFs are all anti-symmetric in κ = 0 but different in
their κ�-scale. Each RF alone allows a pair of κ-inter-

Fig. 10 Coding a large κ-range by a multiscale family of our shape
extraction mechanisms. Each response is anti-symmetric in κ = 0,
but differs in its quasi-linear range κ�, here by powers of 2

pretations, but the population code resolves this to a
unique and well-defined κ . Note that this representa-
tion combines features of the classic ‘opponent’ as well
as ‘multichannel’ coding schemes. This resolves the long-
standing confusion (summarised in Howard and Rogers
2002) caused by trying to fit observations into this false
dichotomy.

Finally, it is worth keeping in mind that the per-
unit signal/noise demands on any neural version of our
scheme are extremely mild, chiefly because of the vast
number of units that contribute to producing the known
surface-global (see Sect. 3) curvature Weber fraction. It
suffices to make just a very rough order-of-magnitude
estimate: the known Weber fraction (Rogers and Ca-
genello 1989) implies a signal/noise of at most 20 (i.e.
roughly 4 bits of information) for global curvature-dis-
crimination using very large parabolae that should stim-
ulate at least 107 neurons. The Weber fraction scales
roughly with the inverse of stimulus size. Thus, each
unit needs to contribute only a tiny amount of curvature
information, of the order of 10−6 bits. Further, if we as-
sume that spatial integration is rougly linear and does
not itself add much extra noise, then the per-unit sig-
nal/noise needs to be only 10−2. Note that it is even no
problem if much of the large (per-unit) ‘noise’ is actually
systematic error, as long as those errors also are suffi-
ciently uncorrelated to average out at the global level
probed by the psychophysics.

3 General discussion

To develop a consistent, robust and potentially realis-
tic model of perceptual shape from stereo, we started
essentially ‘from scratch’: the vital first step was to
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temporarily ignore all but a very focused selection of the
vast psychophysical literature, rich as it is in unresolved
conflicting interpretations, even when summarised as
clearly as in the comprehensive review by Howard and
Rogers (2002). Moreover, we found (e.g. Sect. 2.1.1) that
all (metric or affine) depth- or slant-based approaches,
and thereby almost all widely considered competing
interpretations, are non-viable because they imply highly
unrealistic sensitivity to vergence errors and/or
violate crucial psychophysical or neurophysiological
constraints. Having thus ‘cleaned our slate’, we let the
whole path from theory to explicit neural model be dic-
tated by geometric and computational analysis, within
the constraints of just a few critical facts from psycho-
physics and neurophysiology.

Our construction may also be viewed as systemati-
cally exploring the implications of a sparse set of ele-
mentary (but interrelated) ‘design choices’.

(i) Direct extraction of local object curvature, instead
of (metric or affine) depth or slant. Extracting dis-
parity curvature (Rogers and Cagenello 1989) is
not enough: it must be corrected at once (Domini
et al. 2001) to object curvature.20 This involves
compensating for several effects of the viewing
geometry, specified by the local target vergence
ν, version μ and surface slant β. The main er-
ror source (now only in the correction terms) is
the formal fixation vergence ν0, which actually
combines several viewing distance signals includ-
ing vertical disparity structure (Duke and Wilcox
2003).

(ii) Using the appropriate (“Galilean”) geometry of
(μ, ν)-space. Unlike Euclidean or affine geome-
try, this unites two basic constraints: the direc-
tion of (cyclopean) visual rays imposes the sign
of local object curvature, and its value is available
with good metric accuracy (Rogers and Cagenello
1989). The appropriate shape computations in
this geometry then generate the novel families
of modulated RFs and neural processes required
for extracting object curvature from the (bi-)local
structure of disparity data.

(iii) Retinotopic population coding by units that are
jointly tuned for an expanding combination of lo-
cal parameters: disparity [from the input A(μ, ν)

onwards], plus slant (from the gauge-field stages
Avv, S onwards), plus object curvature (our out-

20 As ultimate cause for direct object curvature extraction, we
suggest the fact that κ , not γ , characterises the fixation-invariant
correlation structure in binocular data generated by mostly rigid
objects.

put stage). The finite spatial and parameter tun-
ing width of these units automatically produces
a realistic, robust form of surface interpolation
and smoothing, capable of handling a sampled or
‘transparent’ depth structure.

Neural gain modulation by vergence and version sig-
nals then implements the dynamic view dependence of
RF structures required for direct correction of dispar-
ity curvature to object curvature. There remain just two
functionally equivalent but neurally different schemes
for direct extraction of object curvatures: either locally
or bilocally. Our neurally explicit designs for both vari-
ants make this choice decidable by neurophysiology.

At each stage of our design and its neural implemen-
tation, we have already specified at a detailed level the
reasons for and consequences of each aspect of its struc-
ture. This also produced many detailed predictions, most
notably the family of dynamically view-modulated RF
subfields. Here, we put our approach and its implica-
tions in a wider perspective than was appropriate for
specifying the computational and neural details. This
includes making good on our implicit promise of offer-
ing an improved understanding of the many relevant
psychophysics findings that we excluded from our de-
sign considerations. The most striking aspect of this is
that our model actually predicts and explains the very
data that were originally thought to plead against metric
shape extraction.

3.1 Curvature-based metric shape versus existing
proposals

A classic set of results which strongly favour curvature
coding over depth coding is that, on the one hand, hu-
mans are essentially blind to global depth or disparity
modulation (Erkelens and Collewijn 1985) and suffer
from Cornsweet-type depth illusions (Anstis et al. 1978),
while on the other hand they can discriminate curvature-
in-depth with remarkably small Weber fractions, down
to 5% (Rogers and Cagenello 1989; Johnston 1991).
Note that such precision also argues strongly against
affine depth or shape coding, which can only preserve
the sign of curvatures.21

Moreover, computational robustness analysis
(Sect. 2.1) has shown that any scheme that recovers
depth-based shape from disparity entails unrealistically
wild shape distortions caused by realistic errors on the
(small) fixation vergence angle ν0. These distortions
would be far worse than linear depth scalings (affinities);

21 See below for how our model also predicts that curvature bias
is often larger than its Weber fraction.
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they would even invert (or, at the very least, clip) the
depth-profile of increasingly large portions of surfaces
(from the distant side inwards) when one fuses stereo
images that are slowly separated until some local target
vergences ν become negative. Any slant-based scheme
would show similarly unrealistic distortions.

Robustness to vergence errors only emerges when us-
ing the second-order disparity structure: as first noted by
Rogers and Cagenello (1989), only the relation
between disparity curvature and object curvature is free
(to leading order) of the scaling by viewing distance
that dominates the relation of metric depth (or slant) to
disparity (or its gradient). Thus, curvature-based metric
shape extraction has no need for the error-prone ‘scal-
ing’ stage required in any depth- or slant-based metric
shape computation.

A popular depth-based approach (e.g. von Helmholtz
1867; Gårding et al. 1995) proposed that the visual sys-
tem may simply skip the depth-scaling operation and
apply only a (more robust) ‘disparity-correction’ stage.
This correction is superficially analogous to our correc-
tion of disparity curvature for the Vieth–Müller circle
curvature and the effect of version, but the nature of the
computation and its perceptual result is very different:
disparity correction produces affine depth. Despite the
existing evidence (see above) against affine depth cod-
ing, such models are widely thought to agree, at least
loosely, with the perceptual errors reported in many
(but not all) depth-interval or shape-constancy tests, in
either purely binocular or multiple-cue settings (See
Todd and Norman 2003 for the diversity of existing
and new examples, which they interpret as excluding
metric coding of 3D shape). Such interpretations also
ignore that no affine-depth model actually explains these
depth-task errors – for example, even the ‘large’ depth-
to-width matching errors (up to about a factor of 1.5;
e.g. Johnston 1991) are much smaller than predicted by
affine coding, which only preserves the sign of the depth-
to-width ratio.

3.2 Metric-shape extraction explains known depth-task
errors

Our model puts all depth-task results in a very different
light by predicting that their often ‘contradictory’ results
in fact show various mixtures of three distinct types of
error, each of which is a natural consequence of the di-
rect extraction of metric curvature-based shape coding
we propose. We first summarise the three error sources
and their relevance to existing notions and experiments
and then explain and discuss each item in detail.
(1) Direct extraction of metric shape does not involve
depth (either metric or affine). Thus, psychophysical

depth-task experiments do not actually probe our shape-
extraction mechanisms directly. Moreover, any attempt
to extract local depth or slant, either directly from dis-
parity (Sect. 2.1.1) or indirectly from the robust shape
code we propose, is fundamentally ill-constrained, in
ways that turn out to fit much of the reported depth-
task errors.
(2) Noise and bias in the vergence parameter ν0 pre-
dicts global-scale errors in the correction of metric shape
for e.g. the Vieth–Müller curvature. In most depth-task
experiments, errors in metric curvature-based shape
would be registered as errors in depth, in addition to
the type-(1) depth errors.
(3) At large slant β, e.g. in strips along object contours,
any extraction of object geometry must become error
prone. This type of shape error predicts e.g. the rela-
tively large errors registered in depth-to-width matching
tasks.

It is impractical to address each of the many, often
conflicting, interpretations and seemingly contradictory
results that have emerged from a large variety of depth-
task experiments (see for review, Howard and Rogers
2002; Todd and Norman 2003). More importantly, how-
ever, we can explain how our approach fundamentally
changes the meaning and relevance of all such experi-
ments. For instance, we can invert the widely accepted
interpretation of large metric depth errors as evidence
against metric and for affine coding of shape.

3.2.1 Even perfect metric shape often leaves depth
and slant ill-defined

By construction, our mechanisms have the invariance
properties which define the notion of shape (as appro-
priate to this setting). Indeed, we do not use or pro-
duce any depth- or slant-based object representation;
the only use of (rough) estimates of viewing geometry
and low-order disparity structure is to dynamically select
the appropriate subset of curvature operators and mod-
ulate their RF subfields such that they directly extract
metric object curvatures. In psychophysical terms, met-
ric shape coding is inherently metameric for local depth
and slant. Hence, the widely accepted interpretation of
large perceptual errors in depth or slant as evidence
against metric shape extraction is untenable. Indeed, the
opposite interpretation applies, since even a metrically
exact shape code actually predicts many of the observed
errors, as we now explain.

Any ability to produce consistently stimulus-depen-
dent scores in depth/slant tasks (often experienced as
‘uncertain’) indicates that the metamerisms left by pure
shape extraction can be resolved to some extent. The
potential sources of information for this process can be
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classified as (combinations of) other cues, priors and
the non-local depth/slant constraints implicit in a shape
code. Here, we pay scant attention to the effects of priors
(without denying their necessity in generating ecologi-
cally sensible responses to highly ambiguous stimuli); we
focus on stimulus-driven means of resolving the metam-
erism. Their fundamental limitations yield the error pre-
dictions we are after.

Other cues. Using the local disparity or its gradient
has been shown (Sect. 2.1.1) to produce wildly error-
prone and distorted depth and poor-accuracy slant, ex-
cept perhaps for very near viewing (up to a few times
the interocular distance). Monocular cues are also unre-
liable sources of metric depth or slant. For example,
motion parallax, shading, and texture carry their own
affine depth ambiguity (or worse); accommodation can-
not be accurate at most relevant distances; and using
perspective depends on prior knowledge of the object.
A large body of psychophysics [reviewed in Howard and
Rogers (2002) and Todd and Norman (2003)] has con-
firmed these fundamental limitations. In summary, addi-
tional cues may weakly constrain the full local depth/
slant metamerism of shape coding, but they generally
leave the result metrically ill-defined and/or biased, inde-
pendently of the potentially accurate metric shape code.

Nonlocal constraints. The potential use of depth and
slant constraints implicit in any given shape code war-
rants far more theoretical and experimental study than
we can spend on it in this paper, but we can sketch
the core aspects that are of immediate relevance. To
start, consider viewing a (projectively fixed) ‘cut-out’ of
a sphere or cylinder (or plane) such that the object con-
tour is not seen.22 The complete shape code (i.e. all the
object curvatures, as generated by extending our model
to the full 3D problem) is constant across the visible
surface patch and is thus unaffected by any change in
the object distance, slant or lateral shift (at fixed tilt
for the cylinder), as long as this does not move the
object contour into the aperture. This turns the origi-
nal local depth and slant metamerism of shape coding
into a surface-global metamerism for these shapes. A
much wider set of shapes allows similar metamerisms,
albeit without the lateral shifts, or only if one allows
(realistically small) shape-code tolerances.23 In broad

22 The no-contour demand can often be replaced by weaker but
less easily phrased demands; our aim here is just to give the sim-
plest relevant examples. Note also that our Sect. 3.2.3 below deals
with the different type of errors arising in the vicinity of visible
object contours.
23 For instance, all smooth ‘depth-grating’ stimuli allow a large
range of joint distance and depth-profile changes – bounded only
by the fact that large increases in distance eventually require some
local slants β to reach ±π/2, contradicting the absence of a contour

summary, the prediction is that scaling the assumed or
estimated mean distance of a patch (with small mean
slant) induces a roughly quadratic scaling of its per-
ceived depth range. We interpret the classic ‘cardboard-
cut-out effect’ (Howard and Rogers 2002) as an extreme
manifestation of this: When fusing at close distance a
pair of stereo photographs of a large scene, each ob-
ject appears to be nearly flat (without losing depth dis-
continuities). At such small distances, the usually weak
accommodation and vergence cues should be strong
enough to yield extremely underestimated object dis-
tances. Given well-determined local curvatures, the per-
ceived depth range of each object is then predicted to be
reduced much more strongly than the perceived lateral
size, leading to a ‘cardboard-cut-out’ appearance (and
the concurrent ‘micropsia’).

Most of the formal depth-/slant-task experiments
under discussion used one or more of the simple smooth
shapes which we found to have particularly strong dis-
tance, depth and slant ambiguity, globally within each
object and independently across depth discontinuities.
As such, these experiments cleanly probe the ambigu-
ity-resolving ability of other cues or priors, not the accu-
racy of true shape coding. How limited these abilities are
is revealed by the profound depth blindness (Erkelens
and Collewijn 1985) and limited slant accuracy (Gillam
et al. 1984; van Ee and Erkelens 1996) for planar stim-
uli, and we now predict that similar effects manifest
themselves in tests using spherical, cylindrical or ‘depth-
grating’ surface patches – where they have generally
been misinterpreted as failures of metric shape coding.
The specific predictions for each experiment vary, but
they share a common predicted pattern: the full depth
and slant ambiguities of pure shape coding will be con-
strained only weakly (and jointly) by the low-resolu-
tion slant representation that is apparently available
(Gillam et al. 1984; van Ee and Erkelens 1996). Our
mechanisms already use a low-resolution slant encod-
ing, the S-field, to select operators that extract the prop-
erly slant-/depth-invariant shape code; we suggest that
the same S-field be used also for the very different pur-
pose of (weakly) constraining the surface interpretation
of the field of shape codes.

Integrability errors. There is one more central as-
pect of the shape-code metamerism, and it predicts an
essentially richer class of depth and slant errors than pre-
dicted by the above analysis. This concerns the question
whether a given shape, with its possibly complicated

there. Moreover, any smooth and uniformly small-slant shape is
nearly ambiguous for view-distance scaling with proportional lat-
eral scaling and quadratic depth-profile scaling, until the implied
local slants are no longer negligibly small.
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pattern of contours or surface creases, actually offers
sufficiently strong non-local constraints to robustly
reduce the vast joint ambiguity of all local metamer-
isms to a few-parameter ambiguity per object, as dis-
cussed above. Formally, it takes one spatial integration
of local shape to yield slant and a second integration
to yield depth. For any path of integration, this intro-
duces two (for depth, or one for slant or depth inter-
val) free parameters, the two ‘constants of integration’.
For sufficiently smooth shape fields and contours, the
freedom of all path-dependent parameters is heavily re-
stricted by the (patch-global) demand of integrability:
in essence, the integration along any loop on a smooth
surface should not produce a jump in slant or position.
If this constraint could be implemented without error, it
would reduce all local ambiguities to the few-parameter
metamerisms per object, as explained above. However,
even smooth surfaces can have contours that strongly
restrict the size and shape of loops around which the
integrability demand can actually offer an effective con-
straint. Moreover, any realistic implementation of the
integrability constraints produces errors which must in-
crease as the paths get longer, and especially if it crosses
sharp curvature variations (say, surface creases). Prime
examples of the latter situation occur in Craik–Corn-
sweet stimuli, which indeed produce particularly strong
bias on formally local depth scores, but one should ex-
pect similarly context-dependent depth biases to occur
much more generally. It is also worth noting that sets
of depth scores across objects can violate any affine
relation to the object depths. Indeed, when integration
errors become dominant, there is nothing to prevent sets
of depth scores from violating any globally consistent
depth transformation, including the global depth order.

All of the above predictions can be seen to explain
major patterns in the variety of depth/slant errors
reviewed in Todd and Norman (2003). Integrability
errors in particular explain the recently found violations
of any global depth transformation (Bingham et al. 2004)
which firmly contradict all previous theories of shape
from stereo.

3.2.2 From viewing distance bias, via curvature bias,
to depth bias

The other two types of depth error we predict stem
from true shape errors, independently of the metam-
erism-type errors, and both involve a common source
which lies outside our model but is vital to its opera-
tion: the fixation vergence parameter ν0. Measuring a
small difference between the two eye positions, each of
which is noisy and biased (Steinman et al. 1982), ν0 can-
not avoid being inaccurate under practical conditions,

where viewing distance is at least an order of magnitude
larger than interocular distance.

The first relevant effect is that a ν0-bias induces a
global bias in our viewing-distance-dependent curvature
correction (W0) for the curvature of the Vieth–Müller
circle through the fixation point. A similar (but roughly
half-amplitude) bias is predicted for vertical curvature
when extending our neural computations to the full
3D case, which involves compensating for the shape of
Vieth–Müller tori. Viewing-distance-dependent curva-
ture bias is a well-known contribution to failures of
depth-constancy. The classic example is the objective
curvature of the ‘subjective frontoparallel’ (von
Helmholtz 1867), but it is often disregarded in inter-
preting similar lacks of constancy as evidence against
metric shape coding (Todd and Norman 2003). Biased
Vieth–Müller correction due to direct or vertical-
disparity-induced ν0-bias is revealed most clearly by
the curvature-adaptation experiments (Domini et al.
2001; Duke and Wilcox 2003) which helped to pin down
our choice of shape representation. It should also con-
tribute a bias term to the classic ‘cardboard-cutout ef-
fect’ (Howard and Rogers 2002) with originally convex
objects, in addition to the symmetric depth-range com-
pression we predicted earlier; the two terms could be
separated by comparing concave and convex objects.

3.2.3 Shape failure near contours implies depth-width
matching errors

To understand the final type of error, imagine first that
one could find the exact curvature field across the cyclo-
pean projection of a generic smooth object, including
its contour. Integrating the curvature field with the slant
boundary condition β = ±π/2 along the contour then
generally pins down some metric object diameter, which
– in combination with its visual diameter – would pin
down the object distance, and thereby the complete met-
ric situation. However, this ideal is clearly beyond the
reach of any real implementation: any finite-resolution
operator must fail near the κ-discontinuity at β ± π/2.
More subtly, the ν0-errors induce errors in the required
slant-dependent correction of disparity curvature νμμ to
object curvature κ (correction for μ is much less error
prone). This error sensitivity also gets large where |β| ≈
π/2. The net effect is not only to block access to object-
diameter and viewing distance, but also to the depth
range covered by the near-contour strip (at least one RF-
width wide in projection), where any computation must
break down. In other words, it is entirely expected that
there are large errors in attempting to match the depth
range of most objects to their width. Todd and Norman
(2003) contains many examples, read as evidence against
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the existence of metric shape coding]. Note also that the
essential loss of the near-contour κ data as a global shape
constraint effectively returns us to the (partial) metam-
erisms explained in the previous two sections, except
for a generally weak additional constraint on the object
distance. An informative example (Johnston 1991) is
where large errors (bias up to 50%) were found for
adjusting the shape of elliptical cylinders, presented at
various distances, to perceived circularity, whereas low
Weber fractions (7%) were found for curvature discrim-
ination in the same setting. Nearby (far) shapes were
seen with enlarged (reduced) depth, consistent with our
model (as well as others) under the reasonable assump-
tion that subjects underestimate the range of viewing-
distance variations used.

3.3 Other psychophysical tests of curvature-based
processing

Some detection or discrimination experiments have also
been interpreted as evidence against early extraction of
second-order disparity (or object) structure. In particu-
lar, Lunn and Morgan (1997) varied the wavelength and
waveform of depth gratings, and Petrov and Glennerster
(2004) varied the scale of dot triplets, and found that
the dependence of discrimination performance on these
manipulations does not correspond well with how they
affect the formal disparity curvature in the stimuli but
correlates better with their relative disparity (or other
options, which differed between the experiments). This
was interpreted as excluding curvature-based processing
– a conclusion that actually only applies to models that
use rate-coded units with equal RF size. Any computa-
tionally and neurally viable model must employ a con-
siderable range of RF sizes. In our schemes, operators
with specific spatial (σε) and disparity (σδ) scales are part
of a multiresolution set of κ-tuned responses that com-
bines the classic features of ‘opponent’ and ‘channel’
coding (see end of Sect. 2.3.3). In its logically simplest
form, this construction yields scale-invariant Weber-law
behaviour, roughly the very pattern of results which was
mistaken for evidence against curvature-based process-
ing. Moderate deviations from this ideal are expected
because of a finite range of RF sizes and scale-depen-
dent per-unit signal-to-noise ratios.

Adaptation experiments have provided much more
crucial information for model construction than other
psychophysical data, because the former can probe
directly the structure of the data representation and
processing, while the latter are often so confounded by
other factors (see above) that interpreting such data re-
quires rather than constrains a mechanistically explicit
model. As a positive case in point, just a few informative

adaptation experiments (Sect. 1.2.3) (Domini et al. 2001;
Duke and Wilcox 2003) essentially narrow down the
choice of shape representation to retinotopic curvature
with immediate ν0-controlled correction, but without
any coding of depth. As we saw earlier in this discus-
sion, this basic choice of representation already puts a
huge collection of hitherto confusing depth-task data
in a completely new light. Our model also fits adapta-
tion data which were originally interpreted in terms of a
slant-based model (Lee 1999): these experiments show
clearly that binocular shape processing uses disparity-
tuned operators, and they are compatible with a slant-
based model, but do not require it – they are equally
compatible with our types of curvature-based units, in
which slant tuning does not serve to extract slant as such
but to represent the gauge field S that selects the proper
curvature operators and determines the immediate cor-
rection of disparity curvature to object curvature.

Our model suggests future adaptation studies spe-
cifically aimed at the fact that our curvature-extracting
RFs have an ‘orientation’ τ in (μ, ν)-space. This pre-
dicts shape adaptation to be selective for ‘slant’, even
though the shape percept is coded by curvatures, with
the overall slant weakly and inaccurately constrained by
the first-order disparity and the viewing parameters. The
degree of selectivity of curvature adaptation for slant β is
defined via Eq. (2) by the RF aspect-ratio σμ/σν , given
the viewing geometry μ0, ν0. RFs with various aspect
ratios will contribute to perceived after-effects, so one
cannot hope to extract the tuning curve of any single
RF, but the occurrence of at least some slant selectivity
in curvature adaptation for near viewing, and its broad-
ening at larger viewing distance, should be measurable.

3.4 Neurophysiological relevance

Neurophysiology is probably the most informative
means of testing our model. Our input data representa-
tion A(μ, ν) is already well supported by existing record-
ings from area V1: binocular cells are retinotopic and
usually disparity-tuned (with the classic notions of ‘near’
and ‘far’ cells now identified as merely having large σν).
The finding that such cells preferentially sample hor-
izontal disparity (Cumming 2002) was thought to be
‘unexpected’ but is precisely what one expects for cur-
vature-based (but not any other) shape extraction: as
Koenderink and van Doorn (1991) proved (for motion,
with stereo as a special case), the second-order struc-
ture of the full (i.e. 2D-vector) disparity field is purely
epipolar.

Recent recordings (Nienborg et al. 2004) found that
the RFs of V1 binocular cells have large aspect ratios
(σμ � σν), with the long axis roughly along constant
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disparity lines. This supports our assumptions for the
input stage A(μ, ν). Note also that it is perfectly com-
patible with our approach if cells at the A(μ, ν) level
have some inhibitory surround around an (elongated)
Gaussian main lobe – this only affects how these RFs
effectively interpolate and smooth the raw disparity sig-
nals to produce the potentially transparent ‘surface’ rep-
resentations on which our curvature-extraction schemes
operate.

The next stage, requiring specific RFs that extract
local curvature from the initial disparity encoding, has
not yet been found experimentally, or at least not fully
characterised. In constructing our neural implementa-
tions (Sect. 2.3), we have fully specified the two pre-
dicted families of RF structures and how the RF of any
given cell should be dynamically modulated. This rich
set of predictions invites detailed testing. Already we
can note some promising similarities with existing neu-
rophysiological results obtained by Trotter et al. (1992,
1996). They found that viewing distance (linked to our
ν0) gain-modulates many binocular V2 cells, usually in
a monotonic way, consistent with the modulation of
RF-subfield pattern which our model uses to correct for
Vieth–Müller curvature. The neural data can in fact be
interpreted as showing particular crosssections through
such an RF, but the full structure remains to be mea-
sured. In further experiments (Trotter and Celebrini
1999), neural modulation was found to be driven also
by version μ0, often with a ‘one-humped’ dependence.
This is again tantalisingly close to what our model pre-
dicts in correcting for version and slant. Indeed, some
of the data already suggested dynamic ‘rotation’ of RFs,
roughly as our prediction of the dynamic τ -transfor-
mation of each RF’s gauge frame (u, v), parameter-
ised by the constant β to which each curvature-extract-
ing unit is tuned. Similar but less specific neurophys-
iological results have been reported from other areas
(Rosenbluth and Allman 2002).

More neurophysiology experiments along the lines
of those reported by Trotter et al. appear to be a very
promising route to testing the many specific neural pre-
dictions of our model and to exploring how it is embed-
ded in a wider network which must include not only
the machinery that supplies ν0 or its equivalent but also
some stages beyond shape extraction. Indeed, the shape
coding in area IT (Janssen et al. 1999, 2000, 2001) is inter-
pretable as a stage beyond our curvature-based shape
coding. The computational features added in this next
stage would then be retinal position invariance, as well
as competition between co-local shape units responding
to highly different κ ranges. Recent findings of slant-
tuned cells (Nguyenkim and DeAngelis 2003; Hinkle
and Connor 2002) were interpreted only in terms of an

assumed functionality of slant per se, but they could just
as well be part of our curvature-extraction stage, or some
next stage in the processing of shape, since our approach
predicts all such cells to be also tuned for slant.

3.5 Completing and extending the model

We have limited this paper to the problem of extracting
the curvatures of intersections of objects with epipolar
planes. This subproblem actually already presents one
with all the computationally new and essential aspects
of the full 3D task, but in their simplest form possible.
Generalising the model to compute the full 3D structure
does not require essentially new notions or techniques
(but will make most of the formulae look much more
complicated), nor will its implementation require essen-
tially different neural machinery – one simply needs to
add essentially the same neural units but rotated in at
least two additional directions of visual ‘tilt’. The curva-
ture corrections for all tilted curvature operators then
contain extra terms due to the vertical curvature of the
equal-vergence tori and due to essentially the classic
Meusnier correction (Koenderink 1990) for the local
tilt/slant combination.

A natural next stage of extending the model would
be to integrate it with modules that extract shape spe-
cifically near contours, where the present computation
becomes error prone. This is also the level where occlu-
sion first becomes a relevant consideration, albeit in a
highly non-standard manner: small-scale ‘roughness’ of
many realistic opaque surfaces dissolves the visually rel-
evant ‘occluding contour’ into an effectively semi-trans-
parent strip – a situation that dovetails nicely with our
present approach, which is free of opaqueness assump-
tions. Beyond that strip lies the monocular region which
can support ‘da Vinci stereopsis’ (Pianta and Gillam
2003, and references therein). Note that generalisation
of our model to fit this form of stereopsis would re-
quire extending the Galilean geometry we chose here to
capture the cyclopean structure of (μ, ν)-space. Chang-
ing the formal geometry would change the RF families
(since these are generated by its rigid motions, as in
Sect. 2.2.2), but only in the so far nearly irrelevant
regime |νμ| > 2. Most of the formal geometry we used
in our present model was developed mathematically in
the 1940s (e.g. Strubecker 1942) forms the basis for
our application), and it has occasionally been used in
computer-vision (Pottmann and Opitz 1994; Koenderink
and van Doorn 2002) and in visual science (Koenderink
2003), but for different purposes and in different guises
– always because it correctly respects the special role
of one dimension (say, of visual rays) with respect to
that of others (say, the two dimensions of the visual



Biol Cybern (2006) 95:455–486 477

field). The fact that it allows metric shape (i.e. curva-
ture fields) instead of just projective or affine structure,
despite the special status of the ‘visual ray’ dimension,
makes it the proper geometry for cyclopean binocular
vision. This contrasts with the earlier visual applications
of this geometry, which concerned monocular informa-
tion that leaves metric shape undefined. In any case, our
model appears to be the first use of this geometry for
designing a neurally explicit model that extracts visual
metric 3D shape. It should be useful also as a basis for
integrating this information with that from locally even
more ambiguous cues than disparity.
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Appendices

A Shape from disparity, vergence and version

A.1 Notation, and coordinate transformations
(zeroth order)

We restrict analysis to the geometry of curves in an
arbitrary plane of regard (Fig. 1), generalised to guar-
antee 3D genericity (Sect. 2.1), with (x, y > 0) as Carte-
sian coordinates (right,ahead), and with eyes at (x, y) =
(±a, 0). The cyclopean visual coordinates are (μ, ν), the
version and (full) vergence, with the (generalised) fixa-
tion point at (μ0, ν0). Note that y > 0 implies 2|μ| + ν <

π . The Vieth–Müller circle, of radius R, has its centre at
(0, yC). Viewing distance D is defined from the ‘cyclo-
pean eye’ at (0, yC − R).

These quantities are mutually connected by the trans-
formations

x = a
sin 2μ

sin ν
; y = a

cos 2μ + cos ν

sin ν
;

R = a
sin ν

; yC = a cot ν; D = 2R cos μ (15)

2μ = arctan

(
x + a

y

)
+ arctan

(
x − a

y

)

= arctan

(
2xy

y2 − x2 + a2

)
;

ν = arctan

(
x + a

y

)
− arctan

(
x − a

y

)

= arctan

(
2ay

y2 + x2 − a2

)
. (16)

Classic models (zeroth order) try to recover ‘depth’ (ei-
ther D or x) from these relations, despite their obvious

sensitivity divergence in the realistic small-ν regime. See
Sect. 2.1.1 for a detailed explanation of how all zeroth-
order methods must produce severe shape distortions
and instability when faced with realistic errors in the
fixation vergence ν0.

A.2 First-order structure, and Galilean (μ, ν) geometry

Local first-order shape is often expressed in terms of the
HC slant α or slope yx ≡ − tan(α), but this choice leads
to expressions (Koenderink 1992 and below) with singu-
larities that have no visual significance. The only choice
that avoids such problems is to compute the slant β rel-
ative to a plane normal to the cyclopean visual direction
μ. Actually, the simplest expression is obtained for tan β,
as follows.

At distance D along a cyclopean visual ray (direction
μ), let T measure distance orthogonal to it (such that
Tμ > 0). Thus, we have

Dμ = −2R sin μ, Dν = 2R
cos μ

tan ν
,

Tμ = 2R cos μ , Tν = 0, (17)

which allows us to find

tan β =−dD
dT

=−Dμdμ + Dνdν

Tμdμ
= tan μ + νμ

tan ν
. (18)

This simple result plays two vital roles in designing our
model, first in showing why slant-based models also do
not have perceptually relevant robustness (Sect. 2.1.1),
and second, in determining how the (μ, ν) parameters
control the dynamic transformations of RFs that extract
a curvature-based shape code (Sect. 2.3.1 and beyond).

The more familiar HC slope yx ≡ − tan α, with α =
μ+β, can now be expressed as −yx = (tan μ+tan β)/(1−
tan μ tan β), which illustrates why tan β is not only geo-
metrically but also analytically a more natural quantity
than tan α: it avoids the divergence at tan μ = 1/ tan β,
which signals the cases where the surface tangent is par-
allel to the x-axis – an event without any perceptually
special status, unless μ = 0.

Returning to the use of local slopes tan β, one may
note that this, rather than slant β, is the first-order mea-
sure that is natural to the visual geometry, in either mon-
ocular or cyclopean binocular vision. Indeed, the slope
discontinuity at |β| = π/2 corresponds to a visual dis-
continuity: even for a semi-transparent or sparse-sam-
pled local surface, the (cyclopean) view switches from
one side of the surface to the other. For opaque objects,
monocular occlusion intervenes when |νμ| ≥ 2, at slopes
which readily follow from Eq. (2). The same critical
slopes emerge in our κ-analysis [Eq. (3), or Sect. A.3
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below], but without any role for occlusion (which is sim-
ply non-existent in our derivation).

The visually defined sign (convex/concave) of surface
curvature κ must also invert at |β| = π/2. This elemen-
tary fact implies that the visually natural geometry of
our half-plane differs structurally (i.e. not just because
of the choice of the μ, ν coordinates) from that of the
familiar Euclidean x, y-plane in which rotations over any
angle β are a natural ‘motion’. The fact that Euclidean
rotation of a rigid object eventually violates the con-
tinuity of its visual shape representation (Sect. 2.1.2)
shows the fundamental incompatibility between the two
geometries. Nevertheless, extracting metric shape is pos-
sible (and actually implemented by our model), except
when |β| ≈ π/2, i.e. near κ-discontinuities. This situation
(almost everywhere metrically defined shape) is funda-
mentally beyond what can be handled by the widely
assumed ‘retreat’ from metric to affine, or even weaker-
structured surface representations.

Note that the visually appropriate intrinsic structure
of our half-plane singles out the ν-direction, i.e. the
cyclopean visual rays, as special. The deep consequences
of this simple fact seem not to have been widely appre-
ciated. The most important aspect for our application
is that any kind of ‘rigid motion’ in the proper (μ, ν)-
geometry must leave all lines parallel to the ν-axis invari-
ant, as illustrated by the notion of ‘rotation’ (τ -motion
(u′, v′) = (u, v + τu)) used extensively throughout the
design of the model (from Sect. 2.2.2 onwards). This
geometry may seem unusual, but it is actually well-
known to any high-school graduate: it is the (1+1)-D
Galilean space-time geometry of Newtonian physics. In
mathematics, the formal structure that fits the
required (μ, ν)-structure is called ‘isotropic geometry’
(Strubecker 1942; Sachs 1987), a particularly unfortu-
nate historical accident, since all other sciences call such
structures ‘anisotropic’. In view of our intended reader-
ship, we avoid using the mathematical name throughout
this paper. Introductions and summaries of the geome-
try relevant to the relatively basic aspects that we use
in this paper (Sects. 2.1.2 and especially 2.2.2, with suffi-
cient local explanations) are available (Pottmann and
Opitz 1994; Koenderink and van Doorn 2002), but one
should note that these papers use the geometry differ-
ently, as befits the very different applications they aim
at.

A.3 Object curvature κ

No correct expression relating the object curvature κ

to the disparity curvature νμμ appears to have been

published,24 except for the special case (μ = 0, β = 0)

(Domini et al. 2001, but see below), so we compute the
exact result from the basic transformations Eqs. (15)
and (16) connecting the Cartesian and binocular coor-
dinates.

Since we only have to deal with the intersection curves
of surfaces with a plane of regard, our intended result
can be found from the classical expression for the cur-
vature κ along a planar curve F(t) = (x(t), y(t)) with
(general) parameter t:

κ(t) = xt ytt − xtt yt[
x2

t + y2
t
]3/2 . (19)

In particular, we want to express κ at a point (say, t = 0)
of the F(t)-curve in terms of all the local parameters
of the curve φ(t) = (μ(t), ν(t)), which is the cyclopean
binocular image of F(t). The special status of cyclopean
visual rays excludes considering points where φ(t) is tan-
gent to a constant-μ line. Combining these conditions
with the smoothness of the binocular mapping in the
domain of interest, we may choose a local general φ(t)-
model as μ(t) = μ + t , ν(t) = ν + νμt + 1

2νμμt2, where
μ, ν, νμ, and νμμ are now fixed parameters (since only
local shape near t = 0 matters here). Transforming φ(t)
back to F(t) via Eq. (15), we can find κ by evaluating
Eq. (19). To obtain the result in a compact and com-
prehensible form, it is useful to do the same for some
intermediate steps (computer algebra systems tend to
produce very large, unclear and impractical represen-
tations of the result). The numerator of Eq. (19) then
yields

− a2

sin3 ν

[
2νμμ(cos 2μ + cos ν)

−(ν2
μ − 4)(νμ sin 2μ + 2 sin ν)

]
, (20)

while the term x2
t + y2

t = (xμ + νμxν)
2 + (yμ + νμyν)

2 in
the denominator can be reduced to

4a2

sin2 ν
×

{
1 + νμ sin 2μ

sin ν
+

( νμ

2 sin ν

)2

[
(cos 2μ + cos ν)2 + sin2 2μ

] }
. (21)

Already at this point, it is worth noting the special case
νμ = 0, which corresponds to tangency of the object
with a Vieth–Müller circle – a situation which may be

24 The original proposal (Rogers and Cagenello 1989) used an
approximation which is only correct up to leading order in viewing
distance and restricted itself to μ = 0 and β = 0. The only pub-
lished general result (Koenderink 1992), given without derivation,
is unfortunately incorrect, as can be seen from its divergences and
its failure to reproduce simple special cases.
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rare in nature but is often used in psychophysical stim-
uli. This makes the denominator a constant and leads to
the much simpler exact result

− aκ = νμμ

4
(cos 2μ + cos ν) + sin ν ; νμ = 0. (22)

Further specialisation to μ = 0 simplifies considerably
the only previously solved special case (Domini et al.
2001).25 This allows one to quantify the first type of
problem of the Rogers and Cagenello (1989) approx-
imation (as already sketched in Fig. 1) that κ ∝ νμμ:
to keep the curvature error below their measured 5%
Weber fraction, |aκ| must remain 20 times larger than
the term sin ν = a/R above. Thus, when viewing, say, a
sphere, the viewing distance D ≈ 2R must be at least 20
times the sphere diameter. Equivalently, the visual angle
subtended by the sphere may not exceed about 3◦. This
also implies that the dynamic RF substructure modula-
tion (mixing ratio ρ) for Vieth–Müller correction used in
our neural κ-operators is indeed functionally important
for all RFs with total width ≈ 2σε exceeding 3◦. Judging
by the widths measured (Nienborg et al. 2004) already
at the A-field level (area V1), this should indeed apply
to the neural stages (V2 or higher) where we expect our
model to be realised.

Returning to the general case, one can put the exact
result into a relatively compact form which also brings
out the structure we exploit in designing the neural
model (Sect. 2.1.2 and beyond)

−aκ

=
1
4νμμ(cos 2μ+cos ν)+

(
sin ν+ 1

2νμ sin 2μ
) (

1− 1
4ν2

μ

)
{

1+ νμ sin 2μ

sin ν
+

(
νμ

2 sin ν

)2 [
(cos 2μ+cos ν)2+sin2 2μ

]}3/2 .

(24)

A.3.1 ‘Far-field’ regime: ν → 0 at finite νμ/ν ≡ ξ

Most practical viewing conditions are in the ‘far’ field,
where approximating the results to first order in ν is
accurate enough. Note, however, that simply taking a
ν → 0 limit at any finite νμ leads to divergent or mean-
ingless results; all realistic situations require that νμ/ν ≡
ξ remain bounded as one takes ν → 0. All other cases
correspond to an asymptotically ‘grazing’ view of a
(receding) surface, singular cases which we have already

25 In the context of conic sections defined by a geometric param-
eter H which equals −νμμ/2 in our notation, the result given was
(using our notation)

κ =
(

1
2a

)
4 tan ν/2

1 + tan2 ν/2

(
H

2 tan ν/2
− 1

)
. (23)

This equals our simple result aκ = H
2 (1 + cos ν) − sin ν.

found not to allow curvature extraction from disparity.
Under this bounded-ξ proviso, we obtain

− aκ =
1
2νμμ cos2 μ + ν

(
1 + 1

2ξ sin 2μ
)

{
1 + ξ sin 2μ + (ξ cos μ)2}3/2 + O(ν2). (25)

To reveal the large-slant behaviour discussed in the
main text (Sect. 2.1.2), specifically Eq. (5), it is use-
ful to rewrite the denominator (d) in this result. Using
1 = sin2 μ + cos2 μ and sin 2μ = 2 sin μ cos μ yields

d = {cos2 μ + (sin μ + ξ cos μ)2}3/2

= cos3 μ{1 + (ξ + tan μ)2}3/2. (26)

Noting from Eq. (18) that in the far field ξ + tan μ =
tan β +O(ν2), and using the general equality 1+ tan2 z =
1/ cos2 z, we find the simple result d = (cos μ/ cos β)3 +
O(ν2).

If we further restrict the parameters to small slants
and versions, the curvature expression reduces to

− aκ = νμμ

2

(
1 + μ2

2
− 3β2

2

)

+ν
(

1 + μβ − μ2
)

+ O(ν2, μ2, β2), (27)

which can serve to illustrate another error incurred
under the original proposal of approximating νμμ ∝ κ :
even for far viewing, where the additive (Vieth–Müller)
term is small, and at small μ, there is only a small range
of slants (roughly |β| < 12◦) where the multiplicative
error is as small as the 5% Weber fraction on curvature.

A.3.2 Computationally robust reparameterisation
of the κ-computation

As noted already in Sect. 2.1.2, Eq. (24) is linear in
νμμ, with coefficients depending on all other parame-
ters. Thus, we write it as

− aκ = (bνμμ + c)/d = W1νμμ + W0. (28)

This leaves us with the task of generating the weights
W1 and W0. Their formal dependence on μ, ν and νμ

[cf. Eq. (24)] may appear ill-suited to neural computa-
tion. To prove the contrary, we analyse this dependence
more closely. This yields a formally equivalent param-
eterisation which smoothly and efficiently covers the
perceptually relevant range of viewing situations. It also
provides insight as well as neural predictions.

To get a first impression, it is useful to look at the
simple special case νμ = 0, which corresponds to a sur-
face patch which is locally tangent to a Vieth–Müller
circle. This sets d = 1 and b = sin ν, which leaves us
with very smooth weights W1 = (cos 2μ + cos ν)/4 and
W0 = sin ν, as illustrated in the two top panels of Fig. 11.
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Fig. 11 Version and vergence dependence of ‘weights’ W1 and
W0 (top left/right) which should gain-modulate the receptive field
contributions for computing κ , and (bottom, contourgraph) the
resulting ‘relative correction’ W0/W1 which (partly) controls the
resulting RF subfield pattern. The μ-symmetry is even for each
graph; the ν-symmetry is even for W1 and odd for the others. Note:
this introductory example is atypically smooth because νμ = 0 sets
d = 1

This case provides the simplest possible example of how
our κ-computation adds the required viewing-distance
correction (W0 = sin ν) to the original proposal (Rogers
and Cagenello 1989) of using γ as a rough approxima-
tion of κ . The ‘relative correction’ W0/W1 (bottom panel
of Fig. 11) is the view-dependent factor in the mixing
ratio ρ which indexes the dynamic RF subfield structure
(Fig. 6) in our local scheme. Note that the W0/W1 ratio
here is also smoothly dependent on μ and ν, except for
unrealistically eccentric μ.

However, the case νμ = 0 is atypically ‘well behaved’.
An example of the complications that arise for any fixed
non-zero νμ can be seen in Fig. 12. W1 (left panel) devel-
ops two sharp features not seen so far: first, a small-ν
‘boundary layer’ now connects the moderate-W1 regime
to the limit W1 → 0 at ν = 0 (the effective ν-thickness of
this layer scales as νμ, so the case νμ = 0 is actually sin-
gular in the far-field limit). Second, as μ increases (with
sign opposite to that of νμ), an increasingly sharp and
high ‘spur’ occurs on W1. All these effects can be fully
understood by formal analysis of Eq. (3), but geometric

insight into their cause can be gained from the right-
hand panel of Fig. 12, which shows the (μ, ν)-image of
(x, y)-circles (30-cm diameter) centred at eccentricities
μ = 0, 22.5, and 45◦, and depths D of 1, 2, 4, and 8 m
(for a = 3.2 cm). We also show the image of two con-
stant-D curves at D = 1 and 2 m and a line segment with
νμ = −1/30 to indicate the fixed RF slope used in the
W1 plot.

The crucial aspect is how the images of the (smaller
than D) circles deform as D increases: their diameter
along the constant-D curve image through their centre
scales roughly as 1/D, while their transverse diameter
scales roughly as 1/D2, turning them into near-
ellipses with an aspect ratio (long/short axis) which
grows roughly as fast as their long axis shrinks. This
implies (see figure) that the local νμμ ≈ γ along much
of the length of the ellipses grows and becomes steeply
μ-dependent (which corresponds to where W1 becomes
small and/or steep), except where their tangent is
roughly parallel to a local constant-D curve, i.e. where
the local (cyclopean) slant β is moderate.

The steep and narrow features in an otherwise smooth
μ, ν dependence for any (non-zero) fixed τ imply that
using RFs with a fixed τ would suffer from sampling
inefficiency or error sensitivity. However, the geometric
insight offered by Fig. 12 suggests that β should be a
more ‘natural’ parameter than τ for the RFs used for
κ-extraction. This is also supported analytically by the
far-field analysis (Sect. A.3.1 above), especially by the
relations

b = 1
2

cos2 μ + O(ν2), d = (cos μ/ cos β)3 + O(ν2) .

Some further algebra yields c/ sin ν = cos2 μ + 1
2 sin 2μ

tan β +O(ν2). These far-field approximations turn out to
require only weak and smooth corrections for all prac-
tical ν (breakdown occurs only near ν ≈ π/2). Thus, not
only W1 = b/d and W0/ sin ν = c/(d sin ν), shown in
the main text in Fig. 7, but also the distance-scaled RF
pattern index W0/(W1 sin ν) = c/(b sin ν), shown in the
main text in Fig. 8, left panel, are smooth functions of
the visually meaningful parameters μ and β. The same
goes for the scaled first-order contact parameter τ/ tan ν

(shown in Fig. 8, right panel) which controls the dynamic
gauge frames (u, v) of all neural operators.

B Adaptation-transfer experiment details

The aims of the experiment and a summary of its design,
results and interpretation have been given in Sect. 1.2.3,
and an abstract was presented at ECVP (Noest et al.
2003). Here we complete the description.



Biol Cybern (2006) 95:455–486 481

Fig. 12 Example showing why a fixed τ -tuning is unsuitable for
κ-computing neurons. Left panel: the weight W1 for any fixed non-
zero νμ ≈ τ develops sharp features: a small-ν ‘boundary layer’
and a ‘spur’ at increasing μ. Right panel: the geometric source of
the sharp W1 (and W0) features becomes apparent by plotting the

(μ, ν)-images of (x, y)-circles at various distances (D = 1, 2, 4, 8 m)
and two constant-D curves (D = 1, 2 m). See text for detailed
interpretation. In short: robust, visually relevant shape informa-
tion occurs only where local slant β is moderate

B.1 Methods and stimuli

B.1.1 Measuring adaptation strengths

In all cases, a basic adaptation measurement consisted
of a staircase procedure which adjusts the objective cur-
vature K of a test stimulus until it nulls the perceived
aftereffect of a fixed-curvature adaptation stimulus. Be-
fore each staircase, adaptation was built up for 100 s
(well beyond the period required for effective ‘satura-
tion’ of the after-effect), and each test stimulus (2 s) was
followed by a 10-s adaptation ‘top-up’. To quantify adap-
tation per se (as separate from curvature bias), we used
paired consecutive staircase runs in which the adapta-
tion stimulus was a convex/concave version of the other-
wise fixed adaptation shape (either a vertical cylinder or
sphere, see below). The order of using the convex/con-
cave shape within each pair of runs was random.

B.1.2 Adaptation and test stimuli

The formal surface shapes of the convex/concave pair
of adaptation stimuli were cylindrical with vertical axis
(in four of seven experiments, see below) or spherical
(in remaining cases), with formal curvature κ = ±κ0 =
± 4

3 m−1. Independently of the azimuthal position of the
stimulus centre (at μ = ±15◦), the cyclopean slant was
kept at β = 0 and the viewing distance at 1.5 m.26 Head
movements were restricted by a bite board.

26 Thus, the concave stimulus has |νμμ|-values very much smaller
than that of the convex stimulus.

Fig. 13 Example stimulus, subtending 30 by 30◦, centred at μ =
±15◦ version, and rendered as a 106 pixel (at 75 Hz) red/green
anaglyph, projected on a frontoparallel screen at 1.5 m (equal to
the simulated viewing distance at the stimulus centre). Elements:
58±4 wire-frame cubes with 1◦ (≈ 2.7 cm) sides, randomly 3D-ori-
ented and placed on any of the 2 × 9 × 4 = 72 potential positions
in a two-block square grid, as shown. Fixation element: one wire-
frame cube, either moving horizontally (see text) or static and
centred, within the otherwise empty central row

The formal shape of each stimulus patch (adapta-
tion and test) was actually rendered as a moderately
sparse, semi-random array of wire-frame cubes centred
on the formal surfaces, as illustrated in Fig. 13, with
details of the layout and rendering given in the figure
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legend. Apart from the display, the room was dark and
offered only a very dim view of black drapery.

Given this rendering of the stimuli, any RF with σε up
to about 2◦ can only sample local disparity (or object)
structure that bears no consistent relation to anything
that could cause the shape-adaptation effects we quan-
tify in our experiments. Only RFs with σε between about
3 and 7◦ sample the stimulus we use at a scale where
the adaptation effects we measure can arise at all. At
these width scales, there is also a substantial contribution
to the RF-subfield structure from the dynamic Vieth–
Müller correction (mixing ratio ρ).

One of our aims is to quantify the extent to which
shape is coded in a retinotopic or a HC frame. Contri-
butions from several stages might well produce super-
imposed effects, but we can separate these by comparing
a 2 × 2 subset of conditions generated by independently
presenting the adaptation and the test stimulus in the
Left or Right visual hemispheres (see below).

B.1.3 Static versus moving fixation

Finding the nature of the local quantity that codes shape
requires another doubling of the number of conditions,
differing in how subjects fixate the adaptation stimulus
(the test-stimulus fixation is always fixed in its centre).
One condition is static fixation, on a stimulus element
(see below) in the centre of the simulated surface. The
other condition consists in tracking the fixation element
as it moves on a smooth 3D path which intersects the
simulated shape, spanning 80% of its width and sev-
eral times its depth range. The motion along this path
is a Lissajous trajectory with a 2:1 frequency ratio of
its sinusoidal motion components in depth and width
respectively. One full Lissajous figure is traversed dur-
ing each adaptation ‘top-up’ phase. This moving fixation
condition serves to ‘scan’ any retinal-frame mechanisms
across a wide range of local values of disparity and depth
relative to the fixation; the same goes for the gradient
(respectively slant) for the convex stimuli.

The situation is illustrated in Fig. 14, showing a.o. the
two adaptation stimuli (convex/concave) with the Lis-
sajous path used in the ‘moving fixation’ condition and
a few test stimuli, all mapped into binocular coordinates
(version μ and vergence ν). For example, the large dis-
parity variation which occurs, say, at the fovea during the
‘moving fixation’ condition appears here as the varying
(and sign-inverting) ν-distance between a point on the
Lissajous path and its constant-μ projection on either
of the two adaptation stimuli. Likewise, one can see the
large local νμ-variations encountered during the lateral
component of the fixation scanning. However, the local
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Fig. 14 Formal stimulus surfaces (left: adaptation; right: test) and
the Lissajous fixation path (dashed), each projected onto the plane
of regard and mapped into the binocular (version,vergence)-space
(μ, ν). The example shown corresponds to the conditions testing
L→R adaptation transfer. Note that the concave (radius 0.75 m)
adaptation stimulus maps to a (very nearly) straight line in (μ, ν),
while the convex stimulus maps to a line with negative νμμ

second-order structure (either νμμ or κ) is almost con-
stant during the Lissajous-path fixation scanning.

As intended, the effect of the Lissajous-figure fixa-
tion conditions is to ‘smear’ the local adapting signals in
non-curvature-based units so widely across the set of
all possible units that it would very strongly reduce
the difference in the adaptation state across that set
as caused by the opposite-shape pairs used. Indeed,
our Lissajous tracking smears disparity values over a
range (measured as ±σ of the distribution) of about
eight times the convex–concave mean difference; for
the local disparity gradient, the smearing is about five
times its difference. The disparity curvature νμμ is much
less smeared (about one quarter of its concave–convex
difference), while κ is, of course, not affected at all.

B.2 Subjects, results and analysis

We collected 7 full data sets (4 with cylinder and 3
with sphere stimuli) using the 16 conditions listed in
Sect. 1.2.3. The 7 datasets were produced by 5 stereo-
competent subjects with normal or corrected to normal
vision; all except AJN (author) were paid volunteers,
studying physics or biology, but naive about the mean-
ing of the experiments. To obtain each dataset, a subject
made at least 4 repeat runs through each of the 16 exper-
imental conditions, taking about 12–15 h to complete a
set, divided up into 2-h sessions.

To address our questions about the nature of the
shape code, we regroup the data from the 16 adapta-
tion conditions into 4 groups:
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Group Fixation Headcentric left/right
(index i) (adapting) (adapt → test)

1 Patch-centre (L→L) & (R→R)
2 Lissajous (L→L) & (R→R)
3 Patch-centre (L→R) & (R→L)
4 Lissajous (L→R) & (R→L)

Thus, the first (last) two groups contain the data from
conditions without (with) Left/Right ‘transfer’ between
hemispheres.

Within each group, the data occur in pairs of raw
adaptation measures K+, K−, measured after adapting
to the convex or concave version of any of the stimuli. As
mentioned earlier (Sect. 1.2.3), our interest focuses on
the differences �K = K+ − K−, but for completeness,
we also compute the sums, which measure something
like curvature ‘bias’. It makes sense to average these
measures over all pairs within each group i = 1..4, and
express the result relative to the adaptation curvature
κ0. Thus, we reduce the data to

adaptation ‘strength’ Si = 〈K+−K−〉
2κ0

;

‘bias’ Bi = 〈K++K−〉
2κ0

,
(29)

where 〈·〉 means the within-group averaging described
above.

As already illustrated in Fig. 2, the answers to our
questions are strikingly clear from the pattern in scat-
terplots of S3 versus S1, and S4 versus S2, with their
respective SEM values represented as symbol widths.
For our purposes (choosing the coding format for our
model), this semi-quantitative evaluation is perfectly
adequate. For completeness, we add here the results of
extracting some numerical patterns of interest from the
data.

Specifically, we linearly transform the four Si (or Bi)
into four new components:

M = [Z1, Z2, Z3, Z4] , D = [Z1, Z3] − [Z2, Z4],
H = [Z1, Z2] − [Z3, Z4], X = [Z1, Z4] − [Z2, Z3], (30)

where Zi is either Si or Bi, and [·] signifies optimally
weighted average over the list of indexed arguments in
the brackets. Note that M is the global mean, D senses
coding based on disparity (or its gradient) rather than
on the object curvature, H does the same for HC rather
than retinotopic coding, and X senses bilinear interac-
tion between D and H. We also compute the SEM of
each component.

From the data measured with cylinder stimuli, we
then find the component values given in Table 2 (with
Z1 for reference). Likewise, from the data measured
using spherical stimuli, we find the component values
given in Table 3.

Focusing on the adaptation strengths, which are rel-
evant to our questions, these results clearly support the
conclusions we already read from the scatterplots in
Fig. 2: all components D, H, X which might signal the
presence of HC and/or non-curvature-based coding are
well below the global mean adaptation strengths M. For
four of the seven datasets, D, H, X are at least ten times
smaller than M, indicating that retinotopic curvature-
based coding is by far the dominant contribution. For
the other three datasets, the D, H, X terms are statisti-
cally significant (roughly three to four times their SEM),
but still two to seven times smaller than the global mean
adaptation strength M, and even smaller relative to
the more model-relevant reference measure S1. What
matters to our model is capturing the dominant con-
tribution, which is clearly consistent with retinotopic
curvature-based representation. Moreover, small D, H,
X terms are actually not unexpected even in a purely
retinotopic curvature-based system, since they arise as
side effects of the neural implementation, as explained
below.

B.3 Interpretation details (main aspects in Sect. 1.2.3)

The dominant pattern in how adaptation depends on
μ = ±15◦ transfer and/or moving fixation clearly hints at
retinotopic curvature-based coding (Sect. 1.2.3), but one
might wonder whether the sometimes (in three of seven
datasets) detectable, small to moderate deviations from
the idealised pattern hint at the existence of other shape
representations operating in parallel with the mecha-
nism that we modelled. However, realistic side effects of
the jointly disparity- and slant-tuned neural implemen-
tation of our model can produce these types of devia-
tions. This is discussed in the first two subsections.

Finally, we discuss the considerable curvature bias we
found and explain why it is of no relevance to our model
itself but can be explained by the demands it (and any
model) places on other visual processing, involved in
estimating viewing distance.

B.3.1 Side effect of opposite-μ adaptation transfer

The small but sometimes detectable H-term in our data
might reveal a weak contribution from a head-centri-
cally coded stage. Such an interpretation has indeed
been given to similar small gaze-dependent effects found
very recently (Nishida et al. 2003) for motion, tilt and
size adaptation. However, small effects of this type are
expected to arise as side effects of realistic neural imple-
mentation, certainly in our case, and possibly also in the
other cases just mentioned.
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Table 2 Values of adaptation strength components [defined in Eq. (30)], measured using cylinder-patch stimuli

Subject AJN LvdW MLS NK

Strength Bias Strength Bias Strength Bias Strength Bias

Z1(%) 24 ± 3 18 ± 1 21 ± 2 30 ± 7 34 ± 2 12 ± 3 18 ± 2 5 ± 5
M(%) 23 ± 1 19 ± 1 16 ± 1 26 ± 3 34 ± 1 9 ± 2 12 ± 1 13 ± 2
D(%) 2 ± 3 1 ± 2 5 ± 1 4 ± 6 3 ± 2 2 ± 3 6 ± 1 −4 ± 4
H(%) −1 ± 2 −1 ± 2 5 ± 1 −4 ± 5 −1 ± 3 2 ± 3 5 ± 1 −1 ± 3
X(%) 1 ± 2 −1 ± 2 −4 ± 1 6 ± 5 −1 ± 3 3 ± 3 −2 ± 1 −4 ± 3

Table 3 Values of adaptation strength components [defined in Eq. (30)], measured using spherical-patch stimuli

Subject AC AJN MLS

Strength Bias Strength Bias Strength Bias

Z1(%) 14 ± 2 16 ± 2 25 ± 1 14 ± 1 26 ± 2 7 ± 3
M(%) 13 ± 1 18 ± 2 22 ± 1 15 ± 1 22 ± 1 7 ± 2
D(%) 1 ± 2 −5 ± 3 5 ± 1 0 ± 1 1 ± 1 3 ± 4
H(%) 1 ± 2 −7 ± 5 3 ± 2 −5 ± 2 2 ± 2 −2 ± 4
X(%) −2 ± 2 −2 ± 4 3 ± 2 1 ± 2 1 ± 1 0 ± 3

In our case, consider first the ‘same’ versus ‘oppo-
site hemisphere’ conditions, both with static fixation: as
we showed in Fig. 14, the adaptation and test stimulus
mapped into (μ, ν)-space differ in their global-scale dis-
parity slope νμ by about 0.2. The same is true in the
neurally relevant retinal (ε, δ)-coordinates. This global
νμ-mismatch also implies a δ-mismatch which grows with
ε across the two types of stimuli. Both aspects can con-
tribute to a loss in overlap between the set of units which
is driven by the adaptation stimulus and the set which
gets ‘read out’ by the test stimulus. For the largest RFs
encoding the shape (these units must be centred near
the stimulus centre) loss in overlap will occur only when
the global slope difference exceeds the τ -resolution of
the RFs. This limits the loss of overlap to RFs with as-
pect ratios σε/σδ larger than about 5, but recent data
(Nienborg et al. 2004) suggest that this is not unrealistic.
For smaller RFs (but still larger than a few times the 1◦
size of the stimulus elements) which sample the more
eccentric parts of the stimulus, the δ-mismatch can also
cause loss in overlap of the adapted and tested set of
units, if σδ is smaller than about 0.15◦. Quantifying these
effects is unfeasible because it depends on the unknown
distribution of units across the doubly-multiscale ver-
sion of (μ, ν, τ)-space, and because adaptation may well
spread out in (μ, ν, τ)-space beyond the set of cells which
are directly driven by the adaptation stimulus, but one
can certainly conclude that even our purely retinotopic,
curvature-based model is likely to show a small loss in
adaptation measure Si under the ‘opposite hemisphere’
condition.

B.3.2 Side-effect of moving fixation during adaptation

Next, consider the slight loss in �K when going from
the ‘static’ to the ‘moving’ fixation condition (say, while
adapting and testing in the same mean visual location).
Again one can see from Fig. 14 that there is now a con-
siderable difference between the adapted and the tested
set of cells (at the end of Sect. B.1, we gave measures
of the ratio of the RMS ranges of the disparity and its
slope which are ‘scanned’ across by our Lissajous-path-
fixation procedure). We note the following properties of
the set of adapted cells and their expected consequences
for our �K measures:
(1) The disparity ranges of the adapted sets of cells for
the convex and concave stimuli overlap so strongly that
it would reduce �K to near-zero for any shape code
based on disparity values (or their slopes, which also
become smeared). The fact that our data show only a
slight loss in �K thus strongly favours shape coding by
curvature, which is not smeared by Lissajous fixation
– the local curvature-driven adaptation in these sets of
cells is retained no matter whether they overlap in their
disparity tuning (also, it is irrelevant here that we actu-
ally implement the curvature sensors as opponent cells).
(2) The set of tested cells lies entirely within the set
of adapted cells. Thus, the same total exposure to the
adaptation stimulus is now spread across a larger set of
cells. In fact, for a reasonable example with σδ = 0.25◦,
the adapted set is roughly three times larger, or more if
adaptation spreads beyond the high-activity set. Per cell,
one then expects a certain reduction in the ‘strength’ of
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its adaptation. A three-fold reduction would be possible
if the ‘static’ adaptation level were well below saturation,
but we chose the adaptation period (100 s) to be well
beyond the time needed to reach saturation (roughly
estimated in pilot runs with static fixation). Thus, the
neural adaptation state should not drop much below
saturation even when the cells effectively ‘see’ the adap-
tation stimulus for about one third of the time. Percep-
tually, the result should be only a minor loss in �K, as is
indeed observed. Thus, the model again predicts at least
qualitatively a deviation from the ideal which, at first
sight, might have been read as evidence for the pres-
ence of a different neural process than the one we used
in building the model.

B.3.3 Curvature bias caused by external ν0-parameter
estimate

The existence of a perceived curvature bias is perhaps
the most classic viewing-distance-dependent imperfec-
tion of shape-from-stereo – in essence, the old ‘horop-
ter problem’ (von Helmholtz 1867). Intentionally, we
focused on the adaptation measures �K (and the Si)
designed to null out any bias, and our model design also
ignored it, for reasons we now explain. First, note that a
considerable bias indeed occurs in our data (see the Bi-
derived measures in B.2), as well as in other data(Domini
et al. 2001; Duke and Wilcox 2003) we used to guide our
model design. Nevertheless, the sign-symmetric struc-
ture of our model guarantees that not even side effects
can cause such a bias. This underlines our proposal that
the bias arises outside our model, namely in estimating
the fixation distance which enters our model as the for-
mal vergence parameters ν0. There are many potential
cues (vertical disparity, accommodation, pictorial, etc.)
for ν0, but none is generally reliable on its own. Thus,
one expects that some stages outside our model take
(weighted) averages over all cue signals and a ‘default’
value, such that when all cue signals drop out, one at
least gets the correct percept at some sensible distance
instead of at infinity or zero. Indeed, it is known (for
review, Howard and Rogers 2002) that with many
viewing-distance cues present, shape perception can be
near-veridical (but not always: Todd and Norman 2003),
whereas with minimal cues for viewing distance, a cur-
vature bias appears that depends on distance, and that,
in many subjects, goes though zero bias at distances of
one to several meters. We conclude that this bias can
reflect a sensible, robustness-motivated property of a
neural stage which produces our formal ν0-parameter.
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