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State transitions in the nervous system often take shape as traveling waves, whereby one neural state is replaced by another
across space in a wave-like manner. In visual perception, transitions between the two mutually exclusive percepts that
alternate when the two eyes view conflicting stimuli (binocular rivalry) may also take shape as traveling waves. The properties
of these waves point to a neural substrate of binocular rivalry alternations that have the hallmark signs of lower cortical areas.
In a series of experiments, we show a potent interaction between traveling waves in binocular rivalry and stimulus motion. The
course of the traveling wave is biased in the motion direction of the suppressed stimulus that gains dominance by means of
the wave-like transition. Thus, stimulus motion may propel the traveling wave across the stimulus to the extent that the
stimulus motion dictates the traveling wave’s direction completely. Using a computational model, we show that a speed-
dependent asymmetry in lateral inhibitory connections between retinotopically organized and motion-sensitive neurons can
explain our results. We argue that such a change in suppressive connections may play a vital role in the resolution of dynamic
occlusion situations.
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INTRODUCTION
Visual perception can fluctuate over time even though the physical

conditions of stimulation remain unchanged. Called bistable

perception, this beguiling dissociation of physical stimulation and

perceptual experience provides a potentially fruitful means for

studying the neural bases of perceptual awareness, the idea being

to identify changing patterns of neural activity coincident with

fluctuations between perceptual states [1]. Perceptual bistability

occurs in situations where the brain receives conflicting visual

information about the nature of an object at a given location in the

visual field. One particularly salient form of visual conflict is

binocular rivalry, fluctuations in perceptual dominance between

two dissimilar stimuli presented separately to the two eyes [2]. It is

one important aspect of this form of bistability that provides the

focus of our paper.

Upon viewing binocular rivalry for the first time, people are often

struck by the appearance of the two conflicting stimuli as they

experience switches in perceptual state. Transitions from suppression

to dominance are not abrupt, like the changes produced when

switching between television channels. Rather, rivalry transitions

tend to occur in a wave-like fashion, with the previously suppressed

stimulus breaking into dominance within a local area of the conflict

and then spreading over the entire region. These waves of

dominance during state transitions presumably reflect spatio-

temporal characteristics of the neural medium promoting global

perceptual dominance of one stimulus [3].

With ordinary rival targets, it is difficult to predict exactly where

dominance waves will arise and in which directions they will

spread. Fortunately, however, traveling waves of dominance can

be controlled and measured using appropriately designed rival

conditions that induce waves at specified locations and that

channel their path of travel [3]. The key is to use annular rival

targets together with local contrast increments to control where

waves originate. Using this precise method of stimulus pre-

sentation, the properties of the waves and the medium through

which they travel can be investigated. Previous experiments have

implicated activity in lower cortical areas as the neural correlate of

the waves, because the properties of the waves correspond to the

characteristics of V1 functional connectivity [3]. This neural locus

of wave propagation has been corroborated using functional

imaging [4].

Thus, binocular rivalry traveling waves lend themselves to the

examination of the functional properties of lower-level visual

processing. We use these waves as a probe into the neural

mechanisms that combine information from the two eyes under

conditions of stimulus motion. In low-level stereoscopic computa-

tions, motion processing has an important role [5, 6], as evidenced

by the joint encoding of motion and binocular disparity in visual

cortex [7, 8, 9]. Motion also has strong effects on predominance in

binocular rivalry [10, 11] and stimulus motion can interact

through an interocular combination of the motion signals during

binocular rivalry [12, 13]. Using counter-rotating binocular rivalry

stimuli, we show that stimulus motion strongly propels traveling

waves during transition phases of binocular rivalry. To explain our

findings, we have developed a computational model which

implements directed spatial interactions between neighboring

motion detectors, a type of connectivity that may play a functional

role in situations involving dynamic occlusions.
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RESULTS

Experiment 1 Stimulus motion propels traveling

waves
We investigated the interaction between stimulus motion and

traveling waves in binocular rivalry using stimuli that rotated at

a constant speed, which could range from slow to quite fast.

Observers dichoptically viewed annular stimuli like those shown in

figure 1A; the stimulus presentation sequence is illustrated in

figure 1B. In short, a low-contrast grating (termed the ‘‘carrier’’

because it carried the wave of dominance) would be suppressed by

the sudden onset of a high-contrast grating (called the ‘‘mask’’).

After suppression of the carrier was established, a brief, abrupt

increment in the contrast of the carrier grating was introduced

only at the bottom-most part of that grating; this increment

triggered a duo of wave-like perceptual transitions in dominance

from mask to carrier that propagated upward within the

boundaries of the annular-shaped carrier, one in the clockwise

direction and one in the counter-clockwise direction. The spiral

angles and stimulus velocities of the two rival targets were equal in

magnitude but opposite in direction for the carrier and mask;

further details on the stimuli and procedures are provided in the

methods section. A difference between traveling wave speed in the

clockwise (CW) and counterclockwise (CCW) directions due to

stimulus motion will shift the point where the traveling waves in

opposite directions meet (the meeting point should fall within the

arc of the wave traveling more slowly). Moreover, differences in

speed will also result in a difference in arrival times of the two

traveling waves at the top of the annulus.

Traveling waves are symmetrical when a stationary stimulus is

used, meaning that they are as fast in one direction as they are in

the other. Thus, the ratio of arrivals at the 12 o’clock position on

the stimulus should be 50% from the CW and CCW directions for

traveling waves triggered at the 6 o’clock position. Any change in

this ratio would indicate an unequal change in speed of the

traveling wave in the different directions. Therefore, we plotted

the ratio of CCW arrivals for all 5 observers at all stimulus motion

speeds in figure 2A. The data show a strong correlation between

stimulus motion and the rate of CW and CCW arrival ratios,

a correlation that is significant for each of the observers separately

(p,0.05, iM(1,5)). The green curve in figure 2A represents the best-

fitting cumulative gaussian curve applied to all data. These data

show that traveling waves in binocular rivalry indeed tend to move

faster in the direction of the carrier’s motion when compared to

the opposite direction (that of the mask stimulus’ motion).

If this shift in CW/CCW arrival ratio is caused by a difference

in speeds between CW and CCW traveling waves, there should

also be a difference between the durations of the traveling waves in

CW and CCW directions. To evaluate that possibility as a control

for the robustness of the difference in speeds, we measured the

amount of time that elapsed between the trigger pulse and the

arrival of the wave at the 12 o’clock mark. Figure 2B shows these

traveling wave durations. Differences between CW and CCW

traveling wave durations were binned at 8u/s-wide intervals and

averaged across observers, resulting in the green line in figure 2B.

The positive correlation between arrival time difference and

stimulus motion is significant (Spearman’s r 0.39, p = 0.01), as is

the ratio between arrival times of traveling waves in the direction

of carrier grating motion and those moving against it (p,0.05,

t-test).

These influences on the duration of the traveling waves and the

ratio of CW/CCW arrival compellingly demonstrate that stimulus

motion significantly alters binocular rivalry traveling wave

dynamics.

Experiment 2 The magnitude of motion’s influence

on the traveling waves
Having found an interaction between stimulus motion and

binocular rivalry traveling waves, we sought to establish a measure

of its extent. At greater stimulus speeds, traveling wave arrival

times encroach on the limits posed by the observer’s reaction time,

as the traveling waves become increasingly propelled in the

direction of carrier grating motion. We therefore focused on the

spatial characteristics of the ratio of CW/CCW arrivals. To allow

us to increase stimulus speeds, we devised a spatial discrimination

task to sample the spatial changes of traveling wave arrival

probabilities due to stimulus motion. Arrival judgment position

was manipulated by varying the position of the red mark across the

Figure 1. Stimuli and Trial sequence. A. Stimuli. The stimuli used in
experiments 1, 2&3. Stimulus motion was varied so that speeds were
equal yet opposite in both eyes to produce symmetry across the eyes.
Grating orientation was also opposite in both eyes. In exp. 1, the dial
position was fixed at the top of the stimulus, whereas in exp. 2, the
mark was placed at different positions around the entire upper half of
the stimulus. B. Trial sequence. Subjects initiated the trials by
depressing the space bar and ended them by releasing the space
bar. First, the lower contrast half-image (carrier grating) was shown for
500 ms. Then, the higher contrast half-image (mask grating) was
projected into the other eye, causing immediate perceptual dominance
of the high-contrast mask annulus due to its higher contrast and the
sudden onset of presentation. After another 500 ms, a 300 ms trigger in
the lower contrast carrier grating annulus was used to initiate a wave-
like transition at the 6 o’clock position that propagated upward in both
directions across the annular stimulus. This strict timing sequence
allowed precise control over the order of subjects’ perceptual state
during a trial.
doi:10.1371/journal.pone.0000739.g001
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upper half of the stimulus, providing multiple points at which the

ratio of CCW and CW arrival could be assessed.

Results from this second experiment, shown in Figure 3,

underscore the pronounced bias in traveling wave propagation

due to stimulus motion, especially at higher stimulus velocities.

The range of speeds at the single sampling position used in

experiment 1 is represented by the red line in the 3D-inset of

figure 3. The shape of this red curve strongly resembles the shape

of the green curve in figure 2A (s= 34u/s vs 30.5u/s, respectively),

demonstrating that these results dovetail nicely with the results of

experiment 1.

Furthermore, sampling at multiple spatial locations around the

annular stimulus provides us with a robust estimate of the size of

the maximal influence of stimulus motion on the traveling wave.

To quantify this influence, we fit the resulting 3-dimensional curve

of CCW probability (see inset figure 3) by a cumulative gaussian to

estimate the angle of rotation along the z-axis (normal to the plane

of figure 3), which is 40u. The data in figure 3 imply that when

stimulus motion exceeds ,640u/s, the 50% point of the CCW

probability is shifted spatially to the 690u point, indicating that the

speed of the traveling wave in the direction of the carrier grating is

threefold the speed in the opposite direction. When stimulus speed

is increased even further (to, say, 75u/s), this causes the motion

direction of the carrier grating to fully dominate the traveling wave

arrival direction.

Model and Experiment 3 Horizontal connections

between direction-selective neurons explain

interaction between traveling waves and stimulus

motion
Wilson et al (2001) developed a neural model that could account

for traveling waves accompanying transitions from suppression to

dominance. Their model contained excitatory and inhibitory

connections among two layers of neurons representing stimulus

features imaged in the separate eyes. Without revision, however,

that model does not embody an effect of stimulus motion on wave

speed. To examine how this effect could be explained within the

context of that kind of model, we implemented the model

illustrated in Figure 4.

This model is characterized by two layers of neurons with

connections between neighboring cells. Each of these layers is

driven by one eye’s image. Both inhibitory interactions that

suppress the other eye’s image and excitatory connections that

provide collinear facilitation extend spatially, thereby providing

the lateral connections that are necessary for wave propagation

(figure 4A). To produce the asymmetric course of the traveling

waves revealed in our experiments, we incorporated an asymmetry

in the interaction profiles between the layers of neurons that

undergo mutual inhibition. This type of interaction mimics results

from neurophysiological experiments which show that both

Figure 2. Results of Experiment 1, motion propels traveling waves. A. Experiment 1: Rates of arrival directions at different stimulus speeds depend
on stimulus motion direction. Scatter plot depicts the probability that the traveling wave reached the top of the annulus from the CCW direction.
Each symbol type stands for data from one of five subjects. The ordinate represent CCW probability, sampled at a certain underlying stimulus speed
(abcissa), positive speeds represent carrier grating motion in the CCW direction. The green dashed line is the best-fitting cumulative Gaussian
distribution. The correlation between stimulus motion and CCW traveling wave probability is highly significant (Spearman’s r 0.77, p,,0.001). B.
Differences in arrival times between CW and CCW traveling waves. Arrival times from trials of experiment 1 were binned across stimulus speeds.
Stimulus motion had a significant effect on the speeds at which CW and CCW traveling waves moved (p,0.01). These data indicate that the traveling
waves’ tendency to arrive from a certain direction was due to a change in traveling wave speed, confirming the arrival ratio data. Data represent the
mean of the difference in CW and CCW arrival time across five subjects, error bars are 61 SEM.
doi:10.1371/journal.pone.0000739.g002
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excitatory and inhibitory regions in the receptive fields of V1

neurons contribute to direction selectivity [14, 15]. Anatomically,

signals modeled as excitatory and inhibitory spatial interactions

between neighboring neurons may travel through both horizontal

[16] and feedback connections [17]. When spatially asymmetric

and direction-selective inhibitory interaction profiles are incorpo-

rated, this model accurately reproduces our pattern of results

(figure 4C). The prominent role for inhibitory processing follows

insights from previous modeling studies [18; 19]. The asymmetry

in inhibitory interactions is due to an increase of inhibition along

the path of stimulus motion. This inhibition is selectively aimed at

neurons coding the direction of motion opposite to the stimulus

motion direction with relatively strong speed-selectivity. The

increase in inhibition in one direction is offset by a decrease in the

width of the direction-selective inhibitory interactions against the

path of stimulus motion. The total amount of inhibition was held

constant to promote network stability. In our model, the effect of

stimulus motion on inhibition is characterized by the ratio between

the width of CW and CCW inhibitory interaction profiles. When

both eyes receive opposite motion signals, the interocular

inhibition exerted by the carrier stimulus is effectively directed at

the neurons responding to the mask stimulus because of the

direction-selective nature of the inhibition. When the mask

stimulus is dominant during rivalry, a contrast pulse applied to

the suppressed carrier grating, causes that grating to achieve local

dominance and, consequently, to inhibit the mask grating more

intensely along the path of the carrier motion. The result is

a traveling wave of dominance that is propelled along its direction

of stimulus motion. Keep in mind that the actual velocity of the

carrier grating remains constant at all times - it is that grating’s

emergence from suppression that comprises the accelerated

appearance in perception.

Figure 4C shows simulations of the model network for three

stimulus motion conditions, reproducing our experimental results.

The trigger pulse at the bottom of the stimulus causes a pair of

traveling waves to move to the top of the stimulus. In our figure 4C

the waves are plotted as moving from the top and bottom of the

figure towards the horizontal midline, as top and bottom of the

figure both indicate the bottom of the stimulus. When stimulus

motion is 0 the waves meet at the 0u position along the circle, that

is, at the top of the stimulus. However, when stimulus motion

propels a traveling wave, that becomes faster in one direction than

the other. For increasing speeds, this effect grows to the point

where the traveling waves meet beyond the 90u mark, as occurs

with the speeds greater than ,640u/s that occurred in our

experiment 2. For the figure showing the simulation of the greatest

stimulus speeds the ratio between clockwise and counter-clockwise

inhibition width (an expression of the asymmetry of the inhibitory

interaction profile) was 4:1.

The effect of stimulus motion is implemented as a change in

inhibitory interactions, and because this change is direction-

selective it should be sensitive to the relative directions and speeds

of the low-level stimulus motion directions in the two eyes. This

opponent direction-selective aspect of the inhibition implemented

in our model allows us to make two observations: First, the

direction-selectivity of inhibition explains findings in pilot experi-

ments, in which variations of the Carrier and Mask motions that

were not equal and opposite in the two eyes showed no consistent

effect of stimulus motion on the traveling wave. In this case, the

inhibition suppresses opponent direction-selective neurons in

a limited range of speeds of preference, but these specific neurons

are not stimulated due to the difference between stimulus speeds in

the two eyes. Thus, the traveling wave is not influenced by these

asymmetric stimulus motion conditions. Second, if the motion

signals delivered to the two eyes are anti-parallel (as is the case

with radial grating patterns) the effect of stimulus motion on

traveling waves should be greatest, whereas increases in the spiral

angle of the stimulus should attenuate motion’s effect on the

traveling waves. Specifically, the decrease in the effect of motion

should be proportional to the cosine of the spiral angle, which is 0u
for a radial grating and 90u for a pattern of concentric circles.

Furthermore, if we increase the spiral angle of the stimulus

gratings, it is possible to investigate the interactions between the

effects of motion and those of stimulus collinearity, which is

implemented as an excitatory influence between neighboring

Figure 3. Experiment 2: Spatial shift of arrival ratios across dial
positions. Underlying stimulus motion determines the position of the
meeting point of the two traveling waves in both directions. Stimulus
speeds in angular degrees per second are denoted along the ordinate,
dial position along the abcissa. Gray lines are 9% iso-probability lines,
the 3D profile is shown in the top-right inset. The black dashed line
represents the line of equal m of the best-fitting cumulative Gaussian in
three dimensions. At stimulus speeds greater than approximately 75u/s
in either direction the responses are dominated by the stimulus motion.
In these cases, almost no reports of the traveling wave arriving in the
direction opposite to the carrier grating motion occurred, even for the
most extreme dial position. This means that the traveling wave moved
more than three times faster in the direction of the carrier grating
motion than it did in the opposite direction. Data points are the mean
of 4 subjects. Inset 3D plot of the same data. The red line depicts data
from the range used in experiment 1. These data mirror the data shown
in figure 2A, showing that in the range of stimulus motion used in
experiment 1 the results of experiment 2 show identical trends.
doi:10.1371/journal.pone.0000739.g003
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neurons. Simulations showed that under conditions of identical

angular velocities in the stimuli, increasing the excitatory gain that

neighboring cells exert on one another impedes the effect of

stimulus motion as represented in our model. So, both the

orientation-dependence of the inhibitory asymmetry and the

interaction of the inhibitory and excitatory effects would predict

that the stimulus motion’s effect on the traveling waves depends on

spiral angle.

We tested this prediction by measuring the effect of stimulus

motion (indexed as the probability that the traveling wave would

reach the 12 o’clock mark from the direction of the carrier grating’s

motion) for several spiral angle conditions, with angular rotational

velocity held constant. The model predicts that as the spiral angle of

the annular gratings increases, the probability that the traveling wave

arrives from the direction of carrier grating motion must decrease.

Data from three observers, shown in figure 5B, confirms this

prediction by demonstrating a monotonic decrease of the effect of

stimulus motion on the traveling wave arrival ratio as stimulus spiral

angle increases for each of the observers.

DISCUSSION
We show that stimulus motion propels binocular rivalry traveling

waves to the point that the traveling wave is dominated by stimulus

motion. Binocular rivalry is usually regarded as a process that

occurs at multiple neural sites in concert [2, 20, 21], however, our

model explains our psychophysical results in a single-layer network

using a directional inhibition asymmetry that exerts its influence

on a relatively low neural level. Although this influence may be

due to feedback from higher motion-sensitive areas or attentional

processing [22, 23], our results do imply an important role for low-

level cortical network interactions in the dynamics of binocular

rivalry traveling waves, confirming previous findings using the

same type of stimulus [3, 4].

Moreover, the motion-dependent asymmetry of inhibition

implemented in our model is not limited to the dichoptic

presentation conditions provoking binocular rivalry. In our model

the same lateral interactions will be evoked during ordinary

binocular viewing, which leads us to speculate that the functional

significance of these asymmetric, inhibitory interactions may be

importantly involved in other aspects of vision. Indeed, such

network dynamics could provide valuable functionality in situa-

tions of dynamic occlusions that occur continuously in everyday

life (figure 5B). When an observer views an object moving from

behind an occluding surface, one eye will receive the image of at

least part of that object before the other eye does. If neurons

responsive to motion of that ’’leading eye‘‘ stimulus selectively

Figure 4. Computational model: connectivity and simulations. We adapted the model by Wilson et. al. (3) which incorporates spatially extended
interocular inhibition and collinear facilitation, properties of the functional connectivity within striate cortex. A The model consists of two layers of
cells, each of these layers receives input from one eye. Each cell interacts with neighboring cells in its own layer (collinear facilitation, +) and
negatively interacts with retinotopically nearby cells in the opposing layer via inhibitory interneurons (2). B Illustration of the shape of excitatory
(gray solid lines) and inhibitory (dashed lines) influences exerted by the layer that represents the Carrier -(C)- neurons. Stimulus motion causes an
asymmetry in the inhibitory profile impinging on the Mask -(M)- neurons (green dashed curve), where a standstill stimulus causes a symmetric
inhibition profile (red dashed curve). This direction-selective inhibition acts on the M-neurons, specifically those neurons that code for the opposite
direction of motion. Thus, the increase of inhibition impinging on the M-neurons due to the rising activity of C-neurons is biased in the direction of
the motion of the carrier grating. C The course of binocular rivalry traveling waves under the influence of stimulus motion, as predicted by the model.
With greater stimulus speeds, the asymmetry of motion in the different directions increases and the traveling wave duration decreases. The top and
bottom of the figures represent the bottom of the annular stimulus, and the sample positions used in experiment 2 are shown at the ordinate.
Clearly, the point of arrival under conditions of the higher stimulus speeds lies farther than the 90u mark, meaning that the model accurately
reproduces the psychophysical data. The bottom figure that represents a traveling wave under the influence of a high level of stimulus motion has
a ratio between clockwise and counter-clockwise inhibition width of 4:1.
doi:10.1371/journal.pone.0000739.g004

Motion Propels Traveling Waves

PLoS ONE | www.plosone.org 5 August 2007 | Issue 8 | e739



inhibit neurons registering the opposite direction of motion along

the projected path of the stimulus, the neurons responsive to the

stimulus in the second eye will be ‘primed’ to respond to the

direction of motion already present in the other eye. We envisage

this type of neural wiring to play an important role in the human

ability to perceive depth from interocular temporal order and

motion direction [6, 24].

MATERIALS AND METHODS

Stimuli
Stimuli were dichoptically projected by means of a mirror

stereoscope. Viewing distance was 57 or 47 cm (experiment 1

and 2, resp.). Screen size was 220, and resolution was 160061200

pixels, display refresh rate was 75 Hz. Screen c was linearized.

Maximum stimulus luminance was 71.1 cd m22, background

luminance was 35.5 cd?m. Stimuli were gaussian enveloped (m = 1

dva eccentricity, s= 0.06 dva) sinusoidal spiral grating (32 cycles,

angle 30u) annuli. This spiral angle was varied in experiment 3.

Luminance contrast of the carrier and mask gratings and stimulus

speed range were adjusted per observer, with a mean mask

contrast of 0.9, and a mean carrier contrast of 0.24. The range of

stimulus motions was confined to lie between 238u/s and 38u/s in

experiment 1, whereas this range was larger in experiment 2 (see

figure 3). Stimulus motion was held constant at 623u/s in

experiment 3. A fixation mark consisting of concentric sinusoidal

gratings with a gaussian window (s= 0.2 dva) was always

projected in the middle of the screen. To elicit a binocular rivalry

transition, a gaussian enveloped (s= 12.6 circular degrees)

luminance contrast pulse of contrast 1 was projected in the carrier

grating at the bottom of the stimulus. This transition boundary

then moved upward across the annular grating in the form of

a traveling wave until reaching a red mark projected near the

stimulus as shown in figure 1A. This mark was placed at the top of

the stimulus in experiment 1&3, and at varying locations (690,

645&0 circular degrees from the top of the stimulus) in

experiment 2. Stimulus motion speed was varied in opposite

directions for the carrier and mask gratings. This was done

symmetrically to avoid a strong increase in the relative dominance

of one stimulus half-image relative to the other due to differences

in stimulus motion between the two eyes. Orientation, motion

directions and which eye received a given stimulus pattern were

counterbalanced and randomized during a single session.

Task and Procedure
Observers were seated in a darkened. They initiated a trial, the

sequence of which is depicted in figure 1B, by depressing the space

bar. First, the low-contrast, carrier grating was displayed in one

eye for 500 ms. Subsequently, the high-contrast mask grating was

projected in the other eye, causing perceptual suppression of the

carrier grating due to the difference in contrast and the sudden

onset of the introduction of the mask grating. 500 ms after the

introduction of the mask grating, a transient and local contrast

pulse in the carrier grating was introduced for 300 ms to induce an

transition of perceptual state in the form of a traveling wave. After

the transient pulse the display continued to show the rival targets

while the traveling wave moved upward around the stimulus. At

the moment the traveling wave reached the mark placed near the

stimulus, the observer was instructed to release the space bar. After

the release of the space bar, which was timed, observers indicated

whether the traveling wave arrived from the left or right side of the

mark, or whether a mistrial had occurred (no traveling wave was

initiated, or initial suppression was not achieved). Observers

performed self-paced trials in 1 session (420 trials) for experiment,

2 sessions (320 trials each) for experiment 2 and for experiment 3,

1 session of 360 trials. In total, there were 9 different observers; 5

observers participated in the first experiment, 4 in experiment 2,

and 3 in experiment 3. All observers were naive, except author TK

who participated in all experiments.

Model
We adapted the model by Wilson et. al. [3] that explains the

properties of traveling waves for stationary stimuli in terms of the

characteristics of low-level functional connectivity. In this model

two circular arrays of neurons, each coding for a certain

monocular stimulus’ percept, self-adapt slowly and inhibit one

another through the activity of interneurons (figure 4). These three

components, the stimulus-related (T), interneuronal activity (I) and

stimulus-related activity self-adaptation (H) are represented by the

Figure 5. Experiment 3 and occlusion situation. A. Effect of stimulus
grating collinearity on the influence of stimulus motion on the traveling
wave. In our model a change in spiral angle, i.e. the collinearity of the
pattern, is represented by a change in excitatory influence on
neighboring neurons in the same layer, whereas this change in spiral
orientation causes the effects of stimulus motion to diminish.
Simulations showed that these different elements jointly act in such
a way that the influence of stimulus motion is hampered. We tested this
prediction directly by changing the spiral angle of both carrier and
mask gratings while keeping the angular velocity of rotational motion
equal at 23u/s. Data from three subjects clearly confirms the prediction
of a negative effect of stimulus grating collinearity on the influence of
stimulus motion. The black solid line represents the mean across
subjects (colored lines), error bars are 61 SEM. B. Diagram of the
functional relevance of the implementation of asymmetric inhibition.
The figures represent a top view of a binocular occlusion situation at
two times, t,t. A moving object may be occluded in one eye (R, t) and
visible in the other (L, t). Direction-selective inhibition of the right-eye
neurons in the path of the motion that is visible in the left eye allows
direction-selective right-eye neurons to respond earlier to the
appearance of the target moving leftward at t.
doi:10.1371/journal.pone.0000739.g005
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following differential equations describing one carrier (Cn) cell:

tTLtTCn~{TCnz
100P2

z

10zHCnð Þ2zP2
z

where tT~20 ms

Pz ~ EC {cI

X
k

IMk
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tHLtHCn~{HCnz2TCn where tH~900 ms ð3Þ

Here, IK and EK are inhibitory and excitatory interaction
profiles, respectively.
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The effect of stimulus motion is modeled as increased interocular

inhibition exerted by each of the monocular half-image stimuli in

the direction of its own motion, pictured as the green curve in

figure 4. This corresponds to asymmetric IKs due to differences in

s2
Iccw and s2

Icw. The total amount of interocular inhibition was

held constant regardless of the asymmetry in order to ensure

network stability. Note that when s2
Iccw = s2

Icw we arrive at the

model with stationary stimuli. Simulations included 136 cells for

both the Mask (M) and Carrier (C) gratings, and were run with

a fixed stepsize of 0.25 ms using the GNU scientific library

implementation of the fourth order Runge-Kutta procedure.

Values were = 0.85, cEM (0.0,0.04) for spiral patterns ranging from

radial to concentric, the strenghts of the inputs of Mask and

Carrier gratings = 30 and = 24, s2
E = 6.

Our model also provides clear predictions regarding the optimal

durations of the phases of stimulus presentation during a single

trial. In pilot experiments, for example, shorter flash suppression

durations caused a dramatic decrease in the amount of successfully

triggered traveling waves. The model explains this in terms of the

slow adaptation to the dominant percept, which has to reach

a certain level in order for the carrier grating to be able to suppress

the mask grating.
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