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After hearing a tone, the human auditory system becomes more
sensitive to similar tones than to other tones. Current auditory
models explain this phenomenon by a simple bandpass attention
filter. Here, we demonstrate that auditory attention involves mul-
tiple pass-bands around octave-related frequencies above and be-
low the cued tone. Intriguingly, this “octave effect” not only occurs
for physically presented tones, but even persists for the missing
fundamental in complex tones, and for imagined tones. Our results
suggest neural interactions combining octave-related frequencies,
likely located in nonprimary cortical regions. We speculate that
this connectivity scheme evolved from exposure to natural vibra-
tions containing octave-related spectral peaks, e.g., as produced
by vocal cords.
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When listeners are exposed to an audible cue tone, sensi-
tivity is highest for tones around the same frequency and

diminishes as a function of distance in frequency to the cue tone
(1–5). This process is thought to be mediated by attention (6)
and, to date, is characterized by a bandpass filter. The shape of
this attention filter resembles the shape of the peripheral audi-
tory filter (1–5, 7, 8).
Attention to a tone can be triggered by various cues. For ex-

ample, several studies applied a pure tone to assess frequency
sensitivity (1–5, 7–9). Subjects can also be cued with harmonic
tone complexes, producing a pitch determined by a so-called
“missing fundamental” (MF) (10–12). In this case, a frequency is
perceived that is not physically present. Cueing with an MF
complex heightens sensitivity for targets with the same perceived
pitch. The target may be a pure tone (11) or another MF com-
plex (12). In the abovementioned studies, attention was captured
involuntarily. Hafter et al. (13) showed that voluntarily directing
attention to a frequency relative to a cue frequency (e.g., 1.5 times
the cue frequency) also heightens sensitivity for the attended
frequency. In summary, auditory sensitivity increases not for what
is physically presented, but for what is attended, voluntary or
involuntary, and detection of a signal becomes easier when this
signal is more similar to the attended sound, in particular when
the pitches are similar.
Interestingly, a number of studies have pointed out that two

tones differing by an octave are perceived as more similar than
when they are separated by any other musical interval (14, 15),
not only in humans, but in other species as well (16, 17). The
ability to discriminate between simple frequency ratios (such as
the octave) is apparent in infants, well before their first birthday
(18), suggesting an innate rather than a cultural predisposition
for octave-related sensitivity. This perceived similarity of octave-
separated tones may therefore be a plausible explanation for the
universal occurrence of the octave in western and nonwestern
music. This notion is further supported by statistical properties
of human speech, which, interestingly, show distinct spectral
peaks at octave-related distances (19). Because the shape of the
attention filter has generally been studied only over a narrow
range of frequencies, typically less than one octave (1–5), it is not

clear whether this octave equivalence would also apply to audi-
tory attention. If so, we hypothesize that cueing on a particular
frequency will heighten sensitivity not only for the attended fre-
quency, but for octave-related frequencies as well.
The current study examined how attention in the auditory do-

main operates over a broad range of frequencies (four octaves)
and, by extension, whether sensitivity is also heightened for octave-
related frequencies to the attended frequency. We performed
three experiments with different cue conditions: physically present
cue frequencies (experiment 1), cue frequencies that are per-
ceived, but not present (missing fundamentals; experiment 2), and
imagined cue frequencies (experiment 3).

Results
Experiment 1: Physically Present Cue Tone. To first establish a base-
line for detection performance without a cue tone, eight subjects
performed a two-alternative forced-choice paradigm (2AFC) (Fig.
1A), for frequencies ranging from 250 to 4,000 Hz, at various
signal-to-noise ratios (SNRs). To determine for each frequency the
SNR at which performance was 75% correct, we fitted a sigmoid
function to individual data (Fig. 1A). Next, we tested detection
performance using a pure cue tone of 1,000 Hz and a range of
target frequencies in background noise, each set to individual 75%
performance SNR (Fig. 1B).
Detection performance was best near the cue frequency and,

as expected (1–5, 7, 8, 20), gradually decreased as a function of
distance to the cue frequency (Fig. 1C). However, note the ap-
pearance of distinct peaks at exactly one and two octaves above
and below the cue (i.e., at 250, 500, 2,000, and 4,000 Hz, re-
spectively). For example, detection performance for targets of
250 and 500 Hz is 10–15% better with respect to the surrounding
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frequencies (P < 0.001, Z test for proportions) whereas
performance for 1,000-Hz targets increased by 23% with respect
to 670 and 1,330 Hz (P < 0.001; Z test for proportions; Fig. 1D).

The peak–trough differences (bars in Fig. 1D) were smaller at
250, 500, 2,000, and 4,000 Hz than at 1,000 Hz (significant for
500–670 Hz, 2,000–2,750 Hz, and 4,000–2,750 Hz, P < 0.05,
paired t test). To summarize, we observed a significant relative
enhancement of mean detection performance across all subjects
(Fig. 1D), not only for targets at the cue frequency but, in-
terestingly, also at octaves above and below the cue frequency.
We performed three control experiments. First, to exclude

a possible role for the most peripheral and monaural stages
along the auditory pathway (cochlea and the cochlear nucleus)
underlying this octave effect, we repeated the experiment, by
presenting the cue tone (f0 = 500 Hz) to the left ear, i.e., con-
tralateral to the ear in which the targets and broadband noise
were presented. This test produced the same data pattern: higher
performance for the cue frequency and at octave distances to the
cue (Fig. 2). Second, to exclude the possibility that subjects may
have been influenced, or overtrained, by the frequencies they
attentively listened to in the baseline experiment, we performed
an alternative baseline test in two new subjects at different fre-
quencies (205, 410, 820, 1,640, and 3,280 Hz). After completing
this baseline experiment, the subjects immediately performed
experiment 1 using a 1,000-Hz cue, again producing performance
enhancement sensitivity at octave-related tones (Fig. 3). We fi-
nally repeated experiment 1 with subject TB at a higher spectral
resolution by applying an increased number of target frequencies
(15 frequencies per octave; Fig. 4), which again confirmed the
octave effect.
One consequence of our results is that, whereas the attention

filter was previously reported to resemble a bandpass filter (1–5,
7, 8, 11–13), a more accurate description would be a filter con-
sisting of multiple pass bands, centered at the cue frequency and
at octaves above and below the cue.

Experiment 2: Missing Fundamentals as Cue Tone. To shed more light
on the potential neural origin of the octave effect, we performed
two further experiments to verify whether the octave effect
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Fig. 1. Paradigm and results for experiment 1. (A) A 75%-performance signal-
to-noise ratio (SNR) was determined for 250, 500, 1,000, 2,000, and 4,000 Hz by
fitting a sigmoid function to detection performance as a function of SNR. By
linear interpolation of a neighboring pair of these baseline SNRs, baseline SNRs
for other target frequencies were determined. The slope of the psychometric
curve at 75% performance is about 8%/dB. (B) Cueing paradigm. An audible
cue tone precedes a two-alternative forced-choice detection task. (C and D)
Individual andmean data, showing higher performance for targets identical to
the cue tone (1,000 Hz) and octave-related target tones than for other target
tones. Bars in D represent peak–trough differences, with the peak frequency
indicated above the bar and trough frequency below the bar. Error bar rep-
resents SEM. Data were collapsed across subjects providing a single proportion
correct per target frequency (41) (*P < 0.05, **P < 0.01, ***P < 0.001). The
scale on the y axis (change-percentage scores) refers to the bars, not to the
mean performance scores (connected symbols), which are included for illus-
trative purposes. “TB” refers to the first author.
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quencies were presented, indicated along the x axis. A total of 50 trials were
collected for each target frequency per subject. Local performance peaks
occurred at 500 Hz (the cue frequency), at 250 Hz (−1 octave of the cue
frequency), and at 1,000 Hz (+1 octave of the cue frequency).
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generalizes to cue frequencies that are perceived, yet are not
physically present. To that end, the second experiment used
MF tone complexes (10–12). In these harmonic complexes, lis-
teners perceive a clear pitch at an MF frequency (f0) that is not
present in the physical sound spectrum.
Four subjects performed a detection task, in which the cue was

an MF complex (consisting of four tones with frequencies of
1,500, 2,500, 3,000, and 3,500 Hz) with an f0 of 500 Hz. We took
care that the tone complex did not contain any acoustic energy at
the lower octave, or at the first two higher octaves of f0. Seven
pure-tone targets were used, with frequencies ranging from 180
to 1,330 Hz. All four subjects convincingly showed increased

local performance, both for targets of 500 Hz (i.e., f0) and for
targets at 250 Hz, i.e., one octave below f0 (Fig. 5A). Three out
of four subjects also showed increased performance for 1,000 Hz,
which is one octave above f0. Mean detection performance for
targets with frequencies identical to f0 and an octave above and
below f0 increased by ∼20% with respect to the surrounding
target frequencies (Fig. 5B). The octave effect is therefore not
restricted to the physically presented frequency but extends to
perceived frequencies as well.

Experiment 3: Imagined Frequencies as Cue Tones. We next in-
vestigated the attention filter when subjects were instructed to
imagine a particular frequency. Although it is known that imag-
ining a tone improves target detection for targets at and around
the imagined tone (13), it is unclear whether this facilitation also
holds for targets at octave-related distances to the imagined tone.
Four subjects were trained to correctly identify a perfect

fourth presented above 1,000 Hz (2AFC training task 1, Fig. 6A),
and to indicate whether a musical interval was smaller or larger
than a perfect fourth (training task 2, Fig. 6B). Performance
ranged from 75% to 91% on the first task, and from 89% to 97%
on the second training task. For the actual experiment, all four
subjects were presented with a tone of 1,000 Hz and instructed to
imagine the well-known musical interval known as a “perfect
fourth” (identical to the interval between the first two tones of
“O Christmas Tree”) above 1,000 Hz. The imagined cue thus
equaled 1,335 Hz (Fig. 7A). Target frequencies ranged from 500
to 2,670 Hz. Fig. 7B shows the presence of performance peaks
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at the physical cue of 1,000 Hz and at corresponding octave
distances (500 and 2,000 Hz), and, crucially, also at the imagined
cue (1,335 Hz) and its octave-related frequencies (667.5 and
2,670 Hz). The peak–trough differences at both cues and low-
frequency octave distances were significant (ranging from 9%
to 24%).
Two important insights emerge from these data. First, the

octave effect also holds for an imagined frequency. Second, both
physical and imagined cues lead to enhanced detection. Thus,
even though attention was presumably drawn toward the imag-
ined tone, attention toward the physical cue frequency (as in
experiment 1) was not “overruled.”

Discussion
We found relative performance enhancement for target tones
that differed by multiples of an octave with respect to the cue
tone. This improvement holds true for physically presented cue
frequencies (experiment 1), cue frequencies at the missing
fundamental (experiment 2), and even for imagined cue fre-
quencies (experiment 3). These findings challenge the current
views of the auditory attention filter, so far assumed to re-
semble a single pass band centered at the cue frequency (1–5, 7,
8, 11–13).
Apart from the range of frequencies tested (four octaves

versus about one octave), our study differed from previous
studies (1–5, 7, 8, 11–13) in the following important aspect. In
our experiments, the target frequency was equal to the cue fre-
quency in only 7–14% of the trials (equiprobable) whereas pre-
vious studies used a high proportion of the target-cue match
(e.g., 75%). This is a relevant difference, as off-cue targets are
more suppressed in a high-proportion condition than in a low-
proportion condition, as demonstrated by Tan et al. (7), who
compared low (20%) and high (75%) proportions of a target-cue
match. In other words, the higher the probability that a target
frequency is identical to a cue frequency, the more other target
frequencies, possibly including those at octave distances, will be
suppressed, resulting in decreased detection performance. This
probability effect could be the reason that increased sensitivity at

octave distances from the cue has not been reported in previous
studies, including those applying targets around an octave dis-
tance (8, 9).
There is evidence that attentional focus can lead to neuronal

changes in the auditory cortex (21–23). This notion is relevant
with respect to the neuronal origin of auditory perception in
relation to learning, cognition, and disorders such as tinnitus
(24). The question arises then which potential neuronal mech-
anisms account for the classic attention filter, and whether they
may be reconciled with the octave effect. A candidate mecha-
nism for the classic attention filter (i.e., a relative increase in
performance for targets identical to the cue tone) is rapid plas-
ticity. Recordings from ferrets trained to attend to a tone showed
a rapid form of plasticity in the spectrotemporal receptive fields
of single neurons in primary auditory cortex (21, 22). These
changes were facilitative and consistent with enhanced perfor-
mance during a tone-detection task and were hypothesized to
arise from connections between frontal cortex and primary audi-
tory cortex. However, as this rapid type of plasticity seems to be
restricted to the attended frequency, and not to extend to neigh-
boring (octave-related) frequencies, it does not seem to account
for the octave effect.
A further candidate mechanism for the octave effect could

reside in tuning to multiple, harmonically related frequencies as
observed in a subpopulation of mammalian primary auditory
cortex neurons (25, 26). However, so far, only a few studies have
described this multifrequency tuning, and, in those studies, har-
monic relations between the tuning peaks have not been con-
sistently reported (25, 27–29). Interestingly, the response for
a neuron with a characteristic frequency of 1,000 Hz is facilitated
when a 500-Hz tone is presented either synchronously (25) or
within an interval of 400 ms (26). Because the interval to the
target in our experiments was considerably longer (1,000 or 1,450
ms), it seems unlikely that this type of time-critical facilitation in
primary auditory cortex would underlie the octave effect.
We suggest that involvement of secondary auditory cortex in

the octave effect is more likely for the following reasons. First,
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corresponding to a non-perfect fourth interval relative to 1,000 Hz are 1,296, 1,309, 1,322, 1,348, 1,361, and 1,374 Hz. Performance ranged from 75% to 91%.
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are equal to those in training task 1, i.e., ranging from 1,296 Hz to 1,374 Hz in 13-Hz increments and excluding the perfect fourth (1,335 Hz). Performance
ranged from 89% to 97% for training task 2. A total number of 300 trials were collected per subject for each training task.
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the effect also arises for the missing fundamental. It therefore
seems plausible that pitch neurons play a role, which are located
anterolateral to the primary auditory cortex (30). Second, an
imagined tone causes the same octave effect, and functional
MRI (fMRI) studies have indicated that imagining a frequency
predominantly activates secondary auditory areas (31, 32), rather
than primary auditory cortex.
Our findings may have significant consequences for pure-tone

audiometry. As known in audiometry, exposure history has an effect
on tone detection. Our data indicate that the detection of, e.g.,
a 4-kHz tone significantly improves after prior exposure to 2 kHz.
At the same time, detection at 3 kHz becomes worse than without
prior presentation of the 2 kHz tone. Although we have not ex-
amined how long the cueing effect lasts, it may survive successive
frequency presentations in typical tone audiometry. If so, the order
of tone presentation would influence the audiogram.

One consequence of our results is that attention in the auditory
domain is not drawn to an absolute stimulus property such as the
frequency of the tone, but rather to a more general perceptual
class of the tone, called “tone chroma” (corresponding to the
pitch class of the note, ranging in western music from A to G).
It is plausible that the octave effect reflects neural connectivity
at octave-related frequencies. From an ecological perspective,
such connectivity might have evolved from exposure to envi-
ronmental sounds (e.g., speech, animal vocalizations, and vibra-
tions such as in strings), which contain multiple harmonics such as
octaves, which correspond to the second, fourth, eighth, etc. har-
monic. Connectivity at octave-related distances has been impli-
cated by harmonic template models (33–37). The octave effect is
reflected in the phenomenon of octave equivalence: two tones
differing by one octave are perceived as more similar than tones
differing by any other musical interval (14, 15, 38, 39), reported in
both humans and animals (16, 17). Our results may thus be
interpreted as behavioral evidence for a mechanism in the auditory
system, possibly mediated by attention, that processes tones based
on their chroma, rather than on their absolute frequency. Impor-
tantly, the octave effect might explain why both western and
nonwestern music is based on a universal interval: the octave.

Materials and Methods
Detection performance was measured using a two-alternative forced choice
(2AFC) design. Target tones appeared in one of two 250-ms intervals, sep-
arated by 200 ms and indicated on screen with “1” or “2.” Gaussian white
noise was present during the whole experiment (except for the training
tasks for experiment 3), set by the subject to a comfortable level, ranging
from 80 to 90 dB sound pressure level (SPL). Audio was generated by
a Power Mac G5 computer (sample rate: 50 kHz) and presented through
a Texas Instruments TAS3004 sound card and a Philips SBC HP 910 head-
phone to the right ear. Cue and target-tone stimuli had a duration of 250 ms
with 8-ms onset and offset ramps. Sound levels of tones and noise were
measured with a Bruel and Kjaer 2260 Investigator and artificial ear 4153;
harmonics or subharmonics with levels greater than 37 dB below the level of
the fundamental of the tone were not detected. Subjects responded with a
keypress of “1” or “2” in which interval they detected the target tone, without
feedback. Experiments were self-paced, with the next trial beginning 1,000 ms
after each response. Cue tones were presented at a signal/noise ratio of −7 dB:
clearly audible. Experiments were written in Matlab 7.2, using the Psycho-
physics Toolbox extensions (40). Data were acquired in five sessions for each
experiment. Experiments were carried out in a sound-attenuated, darkened
room, with each experiment run on different days for every subject. All sub-
jects reported normal hearing. Experiments were conducted after obtaining
informed consent from the subject. Experimental protocols were approved
by the Local Ethics Committee of the University of Utrecht.

Baseline Experiment. For each subject participating in either experiment 1, 2,
or 3, a 75%-performance signal-to-noise ratio (SNR) was determined for
targets of 250, 500, 1,000, 2,000, and 4,000 Hz by fitting a sigmoid function to
detection performance as a function of SNR. Tone conditions (frequency,
SNR) were presented in interleaved fashion, randomized per block; each
block consisted of 10 trials per condition (250 trials), and the total baseline
experiment consisted of 5 blocks (1,250 trials). By linear interpolation of a
neighboring pair of these baseline SNRs, baseline SNRs for other target
frequencies were determined. The baseline experiment, carried out before
experiment 1, was conducted at least 24 h before experiment 1 (with
a maximum time in between of 6 d). One subject did not participate in
experiments 1 and 2, and performed the baseline experiment 6 d before
experiment 3.

Experiment 1. Cue tones (1,000 Hz) were presented 1,250 ms before detection
interval 1. Target frequencies were chosen from the following 15 frequencies:
250, 360, 500, 670, 880, 920, 960, 1,000, 1,040, 1,080, 1,120, 1,330, 2,000, 2,750,
and 4,000Hz. Fifty trials were collected per target frequency. Eight subjects (one
female, sevenmale) participated in experiment 1. Four of the subjects reported
to have receivedmusical training.Musical training is definedashaving practiced
a musical instrument (including voice) for more than 1 y.

Experiment 2. Cue tones (a missing fundamental complex consisting of four
toneswith frequencies of 1,500, 2,500, 3,000, and 3,500Hz) with a fundamental
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Fig. 7. Paradigm and results for experiment 3. (A) Trained subjects are
instructed to imagine a perfect fourth above a presented tone of 1,000 Hz,
i.e., 1,335 Hz. This instruction is followed by a two-alternative forced-choice
detection task. (B) Individual data. (C) Mean data. Detection performance,
for targets identical to the imagined tone (1,335 Hz) and an octave below, is
significantly increased. Performance for targets identical to the 1,000-Hz phys-
ical-cue tone and an octave below is increased. Same format as Fig. 1 C and D.
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frequency (pitch, f0) of 500 Hz, were presented 1,250 ms before detection
interval 1. Target frequencies were chosen from the following seven fre-
quencies: 180, 250, 360, 500, 670, 1,000, and 1,330 Hz. One hundred trials
were collected per target frequency. Four subjects (all male) participated
in experiment 2, after participating in experiment 1. Subjects were
tested at least 2 wk after participating in the baseline experiment. Two
of the subjects reported to have received musical training. Note that
potential distortion products at the fundamental, which are caused by
the cochlea responding to the harmonic complex, are masked by the
broadband noise.

Experiment 3. Cue tones (1,000 Hz) were presented 3,500 ms before detection
interval 1. Subjects were instructed to imagine a “perfect fourth” interval

above 1,000 Hz (i.e., 1,335 Hz). Target frequencies were chosen from the
following 11 frequencies: 500, 584, 667.5, 830, 1,000, 1,130, 1,335, 1,667,
2,000, 2,335, and 2,670 Hz. Fifty trials were collected per target frequency.
Four subjects participated in experiment 3. Three subjects were tested at
least 1mo after participating in the baseline experiment, and one subject
performed experiment 3 one week after participating in the baseline ex-
periment. Two of the subjects reported to have received musical training.
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