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ABSTRACT
Immersive virtual reality (IVR) may boost neglect recovery, as it can provide an engaging experi-
ence in a 3D environment. We designed an IVR rehabilitation game for neglect patients using the
Oculus Rift. Multisensory cues were presented in the neglected visual field in a patient-tailored
way. We acquired pilot data in 15 neurologically healthy controls and 7 stroke patients. First, we
compared cybersickness before and after VR exposure. Second, we assessed the user experience
through a questionnaire. Third, we tested whether neglect symptoms corresponded between the
VR game and a computerized cancelation task. Fourth, we evaluated the effect of the multisensory
cueing on target discrimination. Last, we tested two algorithms to tailor the game to the charac-
teristics of the neglected visual field. Cybersickness significantly reduced after VR exposure in six
stroke patients and was low in healthy controls. Patients rated the user experience neutral to posi-
tive. In addition, neglect symptoms were consistent between a computerized cancelation and VR
rehabilitation task. The multisensory cue positively affected target discrimination in the game and
we successfully presented sensory stimulation to the neglected visual field in a patient-tailored
way. Our results show that it is promising to use gamified patient-tailored immersive VR for neg-
lect rehabilitation.
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Introduction

Hemispatial neglect is a complex neuropsychological syn-
drome frequently occurring after unilateral stroke. Neglect
patients typically fail to detect or respond to stimuli on their
contralesional side (Heilman et al., 1987). Although the
prevalence estimates of neglect vary across studies (Bowen
et al., 1999), hemispatial neglect has consistently been asso-
ciated with worse post-stroke recovery of postural control
and upper limb motor functioning (Nijboer et al., 2014; van
Nes, van der Linden, et al., 2009; van Nes, van Kessel, et al.,
2009), and worse daily life functioning (Nijboer et al., 2013).

There is a paucity of effective rehabilitation techniques
for hemispatial neglect. A systematic review in 2013 con-
cluded that there is no effective cognitive rehabilitation for
hemispatial neglect (Bowen et al., 2013). Cognitive rehabili-
tation encompasses strategies that either teach patients how
to compensate for their neglect (e.g., visual scanning train-
ing) or strategies that aim to alter the underlying spatial
impairments through various bottom-up stimulation techni-
ques (e.g., passive or active limb activation, prism adapta-
tion, optokinetic stimulation, galvanic vestibular stimulation)
(Bowen et al., 2013). Researchers have also explored other

techniques such as noninvasive brain stimulation (Salazar
et al., 2018) and pharmacological treatments (van der Kemp
et al., 2017). A recent meta-analysis concluded that there
was moderate-quality evidence in favor of the effectiveness
of noninvasive brain stimulation (Salazar et al., 2018). In
contrast, there was little evidence for the effectiveness of
pharmacological interventions (van der Kemp et al., 2017).

In recent years, cognitive treatment using virtual reality
(VR) has also been suggested as a potential avenue toward
effective rehabilitation of hemispatial neglect (Fasotti & van
Kessel, 2013; Pedroli et al., 2015; Tsirlin et al., 2009).
However, none of these newer methods have reached clinical
practice yet (Chen et al., 2018). Interestingly, a recent survey
showed that clinicians viewed noninvasive brain stimulation
and pharmacological treatments as less feasible or desirable
to use in clinical practice than VR (Chen et al., 2018).
Therefore, it is important to explore the potential of VR for
rehabilitation of hemispatial neglect.

Virtual reality rehabilitation of hemispatial neglect

VR offers many opportunities for rehabilitation (Fasotti &
van Kessel, 2013; Pedroli et al., 2015; Tsirlin et al., 2009).
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It allows for presenting complex, dynamic, interactive and
realistic 3D scenarios to patients. This may increase the eco-
logical validity of training tasks and could produce better
transfer of training into daily life (Rizzo et al., 2004).
Furthermore, unlike the real world, VR allows more control
over the stimulus environment, which can aid standardiza-
tion of behavioral measurements (Foerster et al., 2016). An
additional advantage of VR rehabilitation is that it allows to
measure behavior in a detailed way which can be used to
give automated feedback on patient’s behavior (Rizzo
et al., 2004).

Some researchers have developed VR tools for neglect
rehabilitation (Table 1). The term VR has been used to refer
to semi-immersive VR systems using a regular 2D monitor
with a limited field of view or a large projection, but also to
more immersive systems (Table 1). We identified six systems
that used a head-mounted display (HMD) of which three
studies used an HMD with lower quality than current
HMDs such as the Oculus Rift or HTC Vive, two studies
used the Oculus Rift development kit and one study used
the FOVE HMD, which is a headset that includes an eye-
tracker (Table 1). There was also considerable variability
in the input devices used to interact with the systems
(Table 1). Six systems used a motion-capture camera that
tracked patient’s upper-limbs or body. Two systems used
haptic force-feedback devices that can simulate a touch sen-
sation, one system tracked hand movements with a data
glove, one system used a steering wheel and one system
used a computer mouse. Thus, few studies have explored
the potential of the newest generation of commercially avail-
able immersive VR headsets, such as the Oculus Rift CV1 or
the HTC Vive.

The therapeutic principles underlying the VR systems also
varied. There were two systems that developed a VR alterna-
tive to prism adaptation (Ansuini et al., 2006; Castiello et al.,
2004; Won-Seok et al., 2017), in which a dissociation was
introduced between the real and virtual position of the hand
(Table 1). Researchers have also used VR to block parts of the
ipsilesional visual field in order to promote contralesional
orientation (Myers & Bierig, 2000; Yasuda et al., 2017, 2018),
resembling the classic approach of eye-patching (Walker,
1996). Many systems used tasks in which patients had to reach
or grasp objects on the ipsi- and contralesional side of space,
either seeing themselves projected onto the virtual scene
(Mainetti et al., 2013; Sedda et al., 2013) or viewing the virtual
scene from a first-person perspective (Ekman et al., 2018;
Fordell et al., 2016; Luca et al., 2019; Moon et al., 2019;
Pirovano et al., 2016; Tobler-Ammann et al., 2017; Yasuda
et al., 2017, 2018). In some of the tasks, support was provided
to help patients respond to unattended targets, either using
sensory cues (Kim et al., 2007; Mainetti et al., 2013; Sedda
et al., 2013) or by guiding the contralesional hand toward the
target (Ekman et al., 2018; Fordell et al., 2016; Pirovano et al.,
2016; Tobler-Ammann et al., 2017).

The extent to which the rehabilitation tasks resembled
activities of daily living varied considerably. Two studies used
virtual street crossing tasks (Katz et al., 2005; Kim et al., 2007),
one used a simple drive simulator (van Kessel et al., 2013) and

another used virtual scenarios based on items of the Catherina
Bergego Scale (Moon et al., 2019). Additionally, the extent to
which gamification was used varied considerably. In one of the
rehabilitation games patients lost points when they made
errors (Fordell et al., 2016; Pirovano et al., 2016), while in two
other games patients received points if they made correct
responses (Mainetti et al., 2013; Moon et al., 2019). Moreover,
many rehabilitation games used simple stimuli and environ-
ments (e.g., cubes and spheres) rather than rich stimulus envi-
ronments, used a limited game narrative and did not tailor the
difficulty of the rehabilitation tasks to individual patients in an
automatic way (Table 1).

The efficacy and feasibility of VR rehabilitation for
hemispatial neglect

The efficacy of these new therapy approaches has been
explored in a few studies (Supplementary Table S1). Two
studies report data from their rehabilitation tasks with par-
ticipants using the system for a single session (Aravind &
Lamontagne, 2014; Kim et al., 2007). Other studies used a
design without a control group in which patients with stable
neglect symptoms participated in multiple sessions of VR
therapy. Although these studies often reported improve-
ments after VR therapy, most studies reported inconsistent
findings across all the outcome measures or did not statistic-
ally test the effects (Fordell et al., 2016; Luca et al., 2019;
Mainetti et al., 2013; Yasuda et al., 2018). Moreover, the
majority of these studies used classic pen-and-paper assess-
ment tools to evaluate neglect recovery. However, these tools
are not ideal to test treatment effects as they lack measure-
ment precision (Bailey et al., 2004; Huygelier et al., 2020).

Moreover, there is a lack of studies that compare different
treatment approaches. Only two studies compared the differ-
ence in rehabilitation effects between an experimental and con-
trol group of stroke patients who completed a different type of
therapy for multiple sessions (Katz et al., 2005; van Kessel
et al., 2013). In the study of van Kessel et al. (2013), patients
in the control group completed standard visual scanning ther-
apy and a simple task in a virtual drive simulator. The experi-
mental group completed the same training, but instead used a
dual-task version of the drive simulator task. The experimental
group did not show greater improvements than the control
group. Katz et al. (2005) compared a semi-immersive VR street
crossing training to a semi-immersive visual scanning task and
found no evidence for better treatment effects with the street
crossing training. Given the lack of studies that have compared
an immersive VR training to a placebo version of an immer-
sive VR training, it remains unclear to what extent immersive
VR can contribute to rehabilitation of hemispatial neglect.
Additionally, there has been little research on the feasibility of
these rehabilitation approaches, as only one study investigated
how patients and clinicians experienced the VR rehabilitation
game and system (Tobler-Ammann et al., 2017).

In summary, more research is necessary to establish the
efficacy and feasibility of immersive VR rehabilitation games
for hemispatial neglect. For this reason, we designed an
immersive VR game for neglect rehabilitation.
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Intervention principles

The proposed rehabilitation game combines seven interven-
tion principles that may positively impact neglect recovery
and of which their potential for neglect rehabilitation has
not been fully explored yet (Figure 1). We explain each of
these intervention principles in detail below.

Immersive virtual reality
A first intervention principle is to use immersive VR using
an HMD that tracks patient’s head and hand movements
and provides a 3D environment surrounding the viewer
(i.e., HMD-VR). The immersive nature of the newest gener-
ation of HMDs could increase engagement with training
tasks, possibly producing better treatment effects (Rizzo &

Koenig, 2017; Tieri et al., 2018). Interestingly, HMD-VR
offers the opportunity to systematically register and correct
for head movements. In the majority of rehabilitation tasks
for neglect patients, patients are free to move their eyes,
head and trunk. As neglect patients have a tendency to ori-
ent their head and eyes toward the ipsilesional side of space
(Fruhmann-Berger & Karnath, 2005), it is typically difficult
to know the true location of the stimulus in the patient’s
visual field. In one study, researchers aimed to control head
movements during rehabilitation using a chin rest, but
patients found it unpleasant to have their head position
fixed and clinicians did not support this approach as it
resulted in bad body posture (Tobler-Ammann et al., 2017).
HMDs offer a unique opportunity in this regard, as the
head-tracking allows to position the stimuli relative to the
head midline thereby overcoming the difficulties associated

Figure 1. Intervention principles. The seven intervention principles were operationalized into several game characteristics, which are assumed to affect four under-
lying mechanisms, which should then translate into three observable behavioral outcomes.

Figure 2. Schematic representation of different spatial reference frames relative to the trunk and head (A) and positioning target stimuli in the visual field corrected
for head rotation (B).
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with head fixation (Figure 2). Moreover, the head position
can be a good proxy for the position of the eyes, as human
observers typically show coordinated eye and head move-
ments in free viewing (Einh€auser et al., 2009; Guitton &
Volle, 1987). Eye rotations indeed precede head movements,
and eye- and head movements are more strongly coordi-
nated in an HMD than in the real world (Pfeil et al., 2018).
Thus, HMDs may produce better control over the presenta-
tion of stimuli in the visual field compared to rehabilitation
systems using a monitor at a fixed position.

Serious games
A second intervention principle is to use serious games.
Researchers hope that they can leverage the motivational
aspects of gaming to increase participation and engagement
in rehabilitation tasks (Burke et al., 2009). Indeed, research
in stroke rehabilitation has shown positive effects of gami-
fied feedback on patient’s motivation and recovery of hemi-
plegia (Popovi�c et al., 2014). Moreover, serious games may
allow patients to complete longer training sessions, as stroke
patients reported less fatigue using a robotic device when
they could use it to navigate a virtual plane than when they
used the robotic device without such feedback (Mirelman
et al., 2009). A recent meta-analysis confirmed that serious
games were more effective at promoting post-stroke recov-
ery of motor functions compared to conventional rehabilita-
tion (T�aut et al., 2017). For this reason, we gamified our
rehabilitation tasks. However, at the moment, there is a lack
of evidence-based guidelines for designing serious games for
stroke patients, as there is little research that compares the
effects of different serious game features on motivation and
treatment efficacy (T�aut et al., 2017). Thus, which features
make serious games effective for rehabilitation in the stroke
population remains unclear.

Patient-tailored contralesional stimulation
A third intervention principle is to stimulate the contrale-
sional side of space more frequently than the ipsilesional
side of space. Since the severity of the spatial attention bias
may vary across patients (Rorden & Karnath, 2010), we tail-
ored the stimulus presentation to each patient. To accom-
plish this, the spatial attention distribution was first
measured in the VR environment. Then, a logistic model
was fitted on the performance of the patient following the
approach of Chatterjee et al. (1999). Based on this model,
stimuli were positioned in a patient-tailored way during
rehabilitation.

Peripheral salient informative cues
A fourth intervention principle is to use peripheral inform-
ative multisensory looming cues to promote endogenous
and exogenous spatial attention orientation toward the con-
tralesional side of space. Previous studies have identified
several factors that can modulate the spatial bias in neglect
patients. For instance, patients were slightly faster to detect
contralesional targets when targets were more likely to

appear on the contralesional side of space compared to
when targets were equally likely to appear on the contra-
and ipsilesional side of space (Geng & Behrmann, 2006;
Shaqiri & Anderson, 2012). Bartolomeo et al. (2001) used a
Posner paradigm in which the cue only occurred on the
same side of the visual field (i.e., valid) in 20% of trials and
on the other side (i.e., invalid) in 80% of trials. In this para-
digm it is expected that observers orient away from the cued
location. In this experiment, neglect patients were faster to
detect contralesional targets preceded by an ipsilesional cue
compared to trials in which contralesional targets were pre-
ceded by a contralesional cue. Moreover, there was no dif-
ference in response times to contralesional and ipsilesional
targets for the invalid-cued trials (Bartolomeo et al., 2001).
Hence, endogenous (top-down) orientation toward the con-
tralesional field can be facilitated in neglect patients.

Bottom-up cues can also increase the chance to detect
contralesional stimuli. For example, neglect patients detected
a flash of light in the contralesional field more frequently
when it occurred at the same spatial location and at the
same time as an auditory beep (Frassinetti et al., 2002).
Moreover, an expanding (looming) stimulus was more often
detected than a contracting stimulus in the contralesional
field during bilateral simultaneous stimulation (Dent &
Humphreys, 2011).

In sum, informative peripheral cues can promote endogen-
ous orientation and audiovisual and looming signals can
exogenously attract attention toward the contralesional side of
space in neglect patients. For this reason, we used peripheral
informative audiovisual looming cues to promote endogenous
and exogenous spatial attention orientation toward the
neglected side of space in our rehabilitation game.

Partial reinforcement
A fifth principle is to use partial reinforcement. Non-human
animal research has shown that behavioral change was more
persistent after training when animals were not reinforced
for their behavior on each trial (i.e., partial reinforcement).
Moreover, the persistence of the behavioral change increased
as the percentage of trials on which a reward was provided
reduced (Robbins, 1971). This principle has also been
applied in clinical contexts. For instance, biofeedback train-
ing has more persistent effects after training with partial as
compared to continuous reinforcement schedules (Parnandi
& Gutierrez-Osuna, 2018). Moreover, it has been hypothe-
sized that partial reinforcement, better known as the
virtual skinner box in the game world, is one of the
key ingredients of why games are motivating and even
addictive (Ducheneaut et al., 2006; Richter et al., 2015;
Wilkinson, 2016).

Continuous monitoring and alerting cues
Patients with hemispatial neglect also frequently have non-
spatial impairments, such as a reduced sustained attention
and alertness (Husain & Rorden, 2003; Van Vleet & DeGutis,
2013). Researchers have proposed that rehabilitation of hemi-
spatial neglect is more effective when rehabilitation also
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targets non-spatial impairments (Husain & Rorden, 2003;
Robertson et al., 1998; Van Vleet & DeGutis, 2013). Some
researchers have used non-spatial training methods in neglect
patients. For instance, one study used a computerized train-
ing in which patients drove a virtual car on a road as quickly
as possible. To avoid obstacles, patients had to press one key
to drive the car and another key to stop the car, requiring
them to sustain their attention on this repetitive task.
Performance on clinical neglect tasks improved in chronic
neglect patients after a 3-week training, but did not remain
stable after discontinuation of training (Thimm et al., 2006).
Later, this training approach was combined with optokinetic
stimulation targeting the spatial component of neglect, but
this combined approach did not generate better treatment
results (Sturm et al., 2013).

In another study, patients completed a computerized
training with a task in which visual scenes were presented
with a variable inter-trial-interval. Patients had to press a
button when they saw a scene and withhold their response
for one specific target scene that occurred in 10% of the tri-
als. This training approach resulted in more improvement in
neglect symptoms than a visual search training (DeGutis &
Van Vleet, 2010). Thus, a training task in which patients
have to continuously monitor the environment for unpre-
dictable events may promote recovery of hemispatial neglect
(Van Vleet & DeGutis, 2013). In line with this research, we
used a variable inter-trial-interval in our rehabilitation game
so that patients would have to continuously monitor the vir-
tual environment for targets and presented audiovisual alert-
ing signals when patients did not respond to a target.

Current study

In sum, we hypothesized that a combination of the seven
abovementioned intervention principles could be effective in
the rehabilitation of hemispatial neglect. In the current
study, we present pilot results that were gathered throughout
the game development process. First, we evaluated the safety
and usability of our VR game. To this end, we compared
cybersickness complaints before and after exposure to the
VR game in six stroke patients. Second, we assessed multiple
aspects of the user experience (i.e., usability, presence,
motivation) through a questionnaire. In addition, four stroke
patients played our VR game for multiple sessions in order
to perform a preliminary assessment of our game design.
More specifically, we tested whether neglect symptoms in
the VR game corresponded to neglect symptoms on a com-
puterized cancelation task. We evaluated the effect of the
multisensory cue on performance. Finally, we tested the
effect of two different game algorithms to tailor the sensory
stimulation to the patient’s neglected visual field.

Game design

We made several adjustments to our game throughout the
development process. An overview of the main differences
between game versions is included in Supplementary Table
S2. Here we present the design of the most recent version.

The game design is also illustrated in a supplementary video
(https://doi.org/10.6084/m9.figshare.6194591.v2).

Apparatus

We used the Oculus Rift CV1 (Oculus Rift, n.d.) (Figure 3A).
The Oculus Rift headset uses an OLED panel for each eye,
each having a resolution of 1080 by 1200 pixels with a refresh
rate of 90Hz and a field of view of 110�. Integrated head-
phones can provide real time 3D audio effects. There are two
infrared sensors that provide full rotational and positional
tracking in a 1m2 area. The right Oculus Touch Controller
was used to provide responses (Figure 3B). A 3D printed cap
in plastic was placed on top of the Oculus Touch Controller
to cover the Oculus Home Button to prevent accidental button
presses. Moreover, the soft side of a Velcro sticker was pasted
on button B so that patients could more easily discriminate
buttons A and B (Figure 3B). The VR game was developed in
Unity 3D using the Oculus integration package. Code was
written in C#. Data of game events are stored in a local SQL
database. The application runs on a Windows computer.

User interface and introduction to using the touch
controllers

The clinician logged into the application through a graphical
user interface on the computer monitor. Afterwards, the
game started in the VR environment. While the participant
wore the headset, the clinician could see the game events on
the computer monitor. Instructions were presented via short
written text dialogs. They were presented until the partici-
pant pressed a button to continue. The text displays and
buttons were presented in the center of the visual field and
for each button there was an icon and short text that indi-
cated the functionality of the button. Moreover, to facilitate
reading the text instructions, starting on the left side, each
word in the instructions changed color sequentially in the
reading direction for 1 second coinciding with a short click-
ing sound.

First, the use of the touch controllers was taught to
patients in a separate half-hour game session. Patients saw a
virtual representation of their hand holding the controller in
the VR environment (Figure 3C) and a picture of the con-
troller was shown with the relevant button indicated.
Patients were instructed to press the button. If the patient
pressed the correct button, feedback was presented to indi-
cate that the patient did the task accurately. If the patient
pressed two buttons simultaneously, the patient was
instructed that they should only press 1 button. The patient
had to complete the task accurately 10 times before learning
to use a new button. The player was sequentially introduced
to the use of the two buttons, index trigger and joystick on
the right controller through this procedure (Figure 3B).
After having practiced each of the button presses sequen-
tially, the different button presses were practiced once more
in randomized order.
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Gameplay

Game world and narrative
The game world consisted of a vegetable garden, lake and
forest. We chose natural outdoor scenes, as they have previ-
ously been described as relaxing and have been positively
experienced by individuals with dementia using a virtual
environment (Bruun-Pedersen et al., 2016). Each of these
three scenes were presented to patients with one of three
lighting conditions: day, evening or night (Figure 3D). Each
of these 9 combinations of scenes and lighting conditions
were presented twice during the rehabilitation game, consti-
tuting 18 levels, with an option to start the game over. There
was an additional assessment module of 3 levels encompass-
ing the three scenes (i.e., garden, lake, forest), which did not
differ from the rehabilitation scenes. The narrative of the

game involved a good deeds theme, as research has shown
that older adults are interested in this theme (De Schutter &
Vanden Abeele, 2008). The player was told that the farmer
of the village became ill and needed help with, for example,
maintaining his vegetable garden or watching his children.
Before each level, the player was instructed on a specific task
which was part of the storyline. When the entire game was
completed, the player was informed that the farmer was no
longer ill and that he was grateful for all the help he received
from the patient.

Stimuli
The cue was a white or yellow transparent disk that changed
size according to a looming function following the design of
Parker & Alais (2007). The size of the disk increased

Figure 3. A patient wearing the Oculus Rift headset and holding the touch controllers (A). Note that, in contrast to the picture, patients only held the right touch
controller and the left touch controller was disabled. The right touch controller (B). Note that a 3D printed cap was placed on top of the controller which blocked
the functionality of the Oculus Home Button. The virtual model of the hand and right touch controller that patients saw in the VR environment (C). Scenes and tar-
get stimuli of 9 of the 18 levels (D).
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exponentially for 80% of the time and decreased in size
according to a cosine function for 20% of the time with
each cycle lasting 1 s. A looming auditory cue was created
by manipulating the amplitude of a pure 200Hz tone
according to the same looming function. The visual and
auditory cue changed size or amplitude at the same fre-
quency and in phase. For each game level, a pair of target
stimuli was presented. The two target stimuli within each
level differed in color and shape, so that patients with
object-centered neglect would be able to visually discrimin-
ate the two targets (Figure 3D). In some levels, the targets
were 3D objects, while in other levels, the targets were 2D
images. The location of the cue and the target were adjusted
based on the orientation of the HMD at the start of the trial.
That is, the cue and target were presented at a certain hori-
zontal location relative to the HMD and rotated so that they
faced the observer.

To ensure a patient-tailored game difficulty, we first
assessed patient’s individual spatial attention distribution in
an assessment module. The assessment was performed once
by patients before entering the rehabilitation module. In the
assessment, target positions were sampled from a uniform
distribution with a visual angle of 30� in the left and right
visual field, and a visual angle of 5� in the upper and lower
visual field. The game can be played under two conditions:

active and placebo. For the active version of our game, a
logistic regression model was estimated on the performance
of patients in the assessment. This logistic regression model
was mirrored along the x-axis to create a probability distri-
bution of target locations, with a high probability of targets
at those locations where patients missed many targets in the
assessment (Figure 4A). This probability distribution was
then used to sample target locations during the rehabilita-
tion trials. For the placebo version of the game, target events
were sampled from a uniform distribution centered on 0� of
the visual field with a horizontal angle of 1.5� in the left and
right visual field and a vertical visual angle of 5� in the
upper and lower visual field. All other game aspects were
identical between these two conditions.

Task
The game consisted of two variations of a visual discrimin-
ation task (Figure 4). A cue was presented in 50% of the tri-
als, which always predicted the location of the target. Then, a
target was presented in front of the cue. The target stimulus
was presented for 3 s or until a response was provided. There
were two types of target stimuli for each level. The patient
was asked to report which target stimulus was presented by

Figure 4. Illustration of patient-tailored design (A) and design of the tasks (B, C). If patients detect less targets for the left visual field during the assessment (panel
A, left figure), then the probability that a target appears at those locations was higher during rehabilitation (panel A, right figure). In Task 1 (panel B), a cue was pre-
sented for 3 s in 50% of trials. Then, the target and cue were presented for 3 s or until a response was provided. Afterwards, feedback was presented. In Task 2
(panel B), the cue moved toward a location after being presented in the center of the visual field for 3 s and the target was presented without the cue and
moved downward.
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pressing the corresponding button. The target-response map-
ping was practiced before the start of each level.

If the patient pressed the correct button, a green check-
mark was presented to signal that the response was correct.
If the patient pressed the wrong button, a red cross was pre-
sented. If no response was provided within the response
time window, a blue exclamation mark accompanied by a
sound was presented. In 25% of trials in which the patient
gave an accurate response, an audio-visual reward was pre-
sented. Feedback and reward stimuli were presented for 1 s.
All feedback and reward stimuli were presented in the cen-
ter of the visual field with their position and orientation
adjusted according to the orientation of the HMD in real-
time. In between trials, there was an interval in which no
events took place. The duration of this interval could be
equal to 1, 2 or 3 s with equal probability.

In Task 1 (i.e., nonmoving cue/target), the cue was pre-
sented for a fixed duration of 3 s. Afterwards, a target was
presented. In Task 2 (i.e., moving cue/target), the cue was
first presented for 3 s in the center of the visual field and
then moved from the center of the visual field to the target
location at a constant speed (Figure 4C). For more periph-
eral target locations, the cue was presented for a longer time
period. Once the cue reached the target location, the cue
disappeared and a target appeared. The target moved down-
ward until it reached the floor or until the patient gave a
response. The speed at which the target moved toward the
floor was determined by the distance of the target stimulus
to the floor so that it always reached the floor after a fixed
duration of 3 s. Once the object collided with the floor,
which coincided with the end of the response time window,
the patient could no longer respond to the target.

Level design
The game consisted of 18 levels. The levels were presented in
a fixed order. Each three levels constituted 1 day. The lighting
conditions of the scenes were always presented in the order
of day – evening – night. Each level was finished once a
patient had accumulated sufficient points. Points were
awarded with a 25% probability per correct trial. To ensure
that patients would not advance too slowly through the
game, points were scaled as a function of their performance,
using the formula (1/performance)/reward probability, in
which performance refers to the proportion accurate
responses. The score they received for a correct response was
updated using this formula every 10 trials. If patients did not
provide any correct responses in these 10 trials, performance

was set to 0.05. Before each level, patients received the oppor-
tunity to practice the task of the next level. Progress in the
game was saved and patients could play further the next ses-
sion. Before entering the 18 game-levels, patients were
assessed in a block of 3 assessment-levels. This assessment
was performed once before the rehabilitation module started.
In the assessment, each level finished after a fixed number of
75 trials. Moreover, no rewards were presented and the
assessment trials needed to be completed within a sin-
gle session.

Game development

We followed the guidelines for designing usable systems,
which emphasize the importance of observing participants
using early prototypes of the system, iteratively fixing usabil-
ity issues and retesting the system (Gould & Lewis, 1985).
We iterated through multiple versions of our game design
(Supplementary Table S2), optimizing the design on the
basis of observations made during pilot testing in several
phases. All patients played the active version of our game.
Phase 1 and 2 were designed to optimize the user interface
and observe usability issues, while Phase 3 aimed to evaluate
usability and user experience over a longer user period and
to assess certain game mechanisms.

Participants

In Phase 1, a convenience sample of 15 neurologically
healthy individuals used our VR game at an open science
event. The age of 12 of these 15 participants is known and
was on average 44 years (SD ¼ 19, Range: 23� 75). The
gender of 10 participants is known (6 female). We recorded
education levels of 11 participants and they all had a degree
of higher education. Of the 15 participants, 11 had never
used VR before the demo.

In Phase 2 and 3 we recruited 7 stroke patients (Table 2)
in the rehabilitation centers UZ Leuven Pellenberg and
RevArte. In Phase 2, there were no criteria regarding pres-
ence or absence of hemispatial neglect and in Phase 3 we
asked clinicians to only refer hemispatial neglect patients.
Clinical MRI or CT scans were used to delineate lesions
with the Clusterize toolbox (de Haan et al., 2015) (Figure 5).
Scans were normalized using age-specific CT and MRI tem-
plates (Rorden et al., 2012). All patients were screened for
domain-specific cognitive impairments with the Dutch
Oxford Cognitive Screen (OCS-NL) (Huygelier et al., 2020)

Table 2. Patient characteristics.

Patient Age (years) Gender Years of education Handedness DSS Stroke etiology Lesion side Pilot phase

P1 68 F 15 R 72 Ischemic L 2a
P2 61 M 11 R 56 Ischemic L 2b
P3 69 M 18 R 113 Ischemic R 2b
P4� 62 M 10 R R 3a
P5 48 M 14 R 48 Ischemic R 3a
P6 65 F 17 R 129 Ischemic R 3b
P7 44 M 13 R 113 Haemorrhagic R 3c

Note. DSS: days between stroke and first screening session. R: right, L: left. �: no CT or MRI scan nor radiologist protocol available, patient was admitted in a
rehabilitation center in the stroke unit.
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(Figure 6) and the patients in Phase 3 were also screened
for neglect (Table 3).

Individuals with a history of epilepsy, a medical implant
such as a pacemaker, a craniotomy or severe visual acuity
problems were excluded. Phase 1 was approved by the
Social and Societal Ethics Committee of the KU Leuven (G-
2017 11 988). Phase 2 and Phase 3 were approved by the
ethical committee for research of the UZ Leuven (S61410).
All participants gave written informed consent. All study
procedures respected the Helsinki declaration.

Materials

Neuropsychological assessment
In Phase 2 and 3, we administered a battery of validated
pen-and-paper neuropsychological tests in order to charac-
terize the cognitive profiles of the included stroke patients.
The Dutch version of the Oxford Cognitive Screen (OCS-NL)
is a stroke-specific screen that measures impairments in 5
domains: language, numeric cognition, memory, praxis and
executive functioning/attention. Receptive language impair-
ments were assessed with the subtest semantics, while
expressive language impairments were assessed with the
naming and reading subtests. Numeric cognition involved

one subtest in which patients wrote numbers that were read
aloud (i.e., numbers) and another subtest in which patients
performed additions and subtractions (i.e., calculation).
Memory was assessed through recognition of verbal (i.e.,
verbal memory) and episodic content (i.e., episodic mem-
ory). Praxis was assessed through imitation of meaningless
gestures. Executive functioning was assessed with a task-
switching test and attention was assessed using a cancelation
task with 50 targets and 150 distractors. Moreover, visual
field was assessed with a simple visual confrontation test.
Age-adjusted norms were used to interpret test scores
(Huygelier et al., 2020). In addition, in Phase 3, we adminis-
tered the Behavioral Inattention Test (BIT) letter cancelation
task and figure copy task (Cermak & Hausser, 1989). In the
letter cancelation task, patients canceled each letter “E” and
“R” in rows of letters with a total of 40 target letters pre-
sented on an A4 paper in landscape orientation. In the fig-
ure copy task, patients copied three drawings. If important
parts of the drawing were missing, the copy was scored a
zero, with a total of 3 as the best possible score. The
Weintraub cancelation task is a cancelation task with 60 tar-
get shapes embedded among 300 distractors presented on an
A4 paper in landscape orientation (Weintraub &
Mesulam, 1988).

Figure 5. Lesion maps projected on axial slices of a T1-weighted MRI template in MNI space in neurological convention. Lesions were delineated on clinical Fluid
Attenuated Inversion Recovery scans for P1, P2, P5, P6 and on clinical CT scans for P3 and P7. There was no MRI or CT scan available of P4.
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Computerized cancelation task
In Phase 3, we also administered a computer version of a can-
celation task on a monitor with a resolution of 1920 by 1080
pixels. Patients were seated at a distance of approximately
70 cm from the monitor without a chin rest. Patients had to
give responses by clicking the left mouse button. Code was
written in Python 2.7 using Psychopy 1.90.3 for stimulus pres-
entation and response registration. Targets (i.e., full-outlined
hearts) and distractors (i.e., hearts with left or right gap) were
presented in a grid with a width of 28 cm and a height of
18 cm. At a distance of 70 cm, stimuli were placed within a
horizontal angle of 11� to the left and right side and within a
vertical angle of 7.3� to the upper and lower side. Stimuli
were located in the grid at 15 horizontal locations of which
their position relative to the center of the screen were:
�13.01, �11.2, �9.33, �7.47, �5.6, �3.73, �1.87, 0, 1.87,
3.73, 5.6, 7.47, 9.33, 11.2 and 13.01 cm. Stimuli were located at

10 vertical locations: �8.1, �6.3, �4.5, �2.7, �0.9, 0.9, 2.7,
4.5, 6.3 and 8.1 cm. The stimuli that were placed in the cells
had a size of 0.9 by 0.9 cm. The location of the stimuli was
based on these 150 locations, but a random amount of jitter
was added to make the search array disorganized with a max-
imum displacement of 0.45 cm.

For each trial, 50 targets and 100 distractors were pre-
sented. The target stimuli were spread randomly across the
cells for each trial. Every three trials, a break was presented.
Each trial was presented for a maximum duration of
4minutes or until patients indicated that they had finished
the task by pressing the space bar. The patient was
instructed to click on the targets. Once a target had been
clicked, a blue line appeared on the target. A total of 12 tri-
als were presented. One practice trial was presented, in
which feedback was provided. When the patient clicked on
a target stimulus, a green “V” sign appeared and a 400Hz
tone was presented during 150ms. When the patient clicked
on a distractor stimulus, a red “X” sign appeared and a
200Hz tone was presented during 150ms.

Questionnaires
Cybersickness was measured with the Simulator Sickness
Questionnaire (SSQ)41 that was translated to Dutch by our
research team. Each of the 16 SSQ items were rated on a
scale with four levels representing no, mild, moderate or
severe discomfort.

In Phase 1 and 2, we asked participants to evaluate differ-
ent aspects of the game design using a 23-item User
Experience scale with items rated on a 5-point Likert scale
going from totally disagree (1) to totally agree (5) with 3 as
a neutral midpoint. Participants were asked questions about

Figure 6. OCS-NL profiles. The blue line represents age-adjusted 5th percentiles of a neurologically healthy group from Huygelier et al. (2020). The surface repre-
sents test scores of patients (proportion correct). R: reading, S: semantics, Na: naming, EF: executive functions, P: praxis, Nu: numeric cognition, Ca: calculation, Em:
episodic memory, Vm: verbal memory, O: orientation.

Table 3. Neglect screening results.

Patient
VF VF Hearts Hearts LC LC RS RS Figure
R L Total R-L Total R-L Total R-L copy

P1 2 2 49 �1� NA NA NA NA NA
P2 2 2 44 �4� NA NA NA NA NA
P3 2 2 41 �1� NA NA NA NA NA
P4 2 0 11 81 36 2� 35 111 1
P5 2 2 46 3� 40 0� 59 �1� 3
P6 2 0 30 81 37 1� 53 3� 1
P7 2 2 42 5� 38 0� 49 �1� 2
best score 2 2 50 0 40 0 60 0 3

Note. VF: confrontation task OCS-NL, Hearts: OCS-NL hearts cancelation, LC:
Behavioral Inattention Test Letter cancelation, RS: Weintraub Random Shape
Cancelation, Figure copy: Behavioral Inattention Test figure copy task, NA:
not administered. The difference in performance between left and right on
the cancelation tasks was tested using a Bayesian contingency table test,
with þ: BF10 > 3 (evidence for dependency), �: BF10 < 0.33 (evidence for
no dependency) and �: BF10 � [0.33, 3] (inconclusive evidence).
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the usability of the touch controllers and user interface, the
amount of presence they experienced, their experience of
the narrative and their motivation. The questions about the
narrative were translated to Dutch based on the Narrative
Engagement Scale (Busselle & Bilandzic, 2009). The motiv-
ation items were based on the intrinsic motivation inventory
(McAuley et al., 1989) taxing interest and enjoyment, while
the presence items were translations of the International
Test Commission Sense of Presence Inventory items
(Lessiter et al., 2001). In Phase 3, the items regarding the
user interface and the narrative were not administered.

Design and procedure

Phase 1 and 2 were designed to optimize the user interface
and observe usability issues, while Phase 3 aimed to evaluate
usability and user experience over a longer period and to assess
certain game mechanisms (Figure 7). In Phase 1 and 2, partici-
pants played the game for a single session. In Phase 1, after a
short experience with the game, the User Experience scale and
SSQ were administered (Figure 7A). In Phase 2, we first per-
formed a general screening of patients (Figure 7B). In the gen-
eral screening we administered a semi-structured interview
about their health and demographic characteristics, and then
administered the OCS-NL. Then, in a second session, patients
played the VR game. In this session, the SSQ was first admin-
istered, then the VR game was played and afterwards the User
Experience scale and SSQ were administered. In Phase 2b,
patients played two versions of the game, each in one session

(Figure 7C). In Phase 3, we added a neglect screening session
and patients played the game for 6 sessions spread across 6
workdays, playing approximately 3 levels per session (Figure
7D). In each of these game sessions, patients were asked
whether they liked the game in general and whether they expe-
rienced any physical discomforts. Throughout these pilot
phases, we iterated through multiple game versions (Figure 7E,
Supplementary Table S2). The design of the first version (i.e.,
v1.3) is described elsewhere (Huygelier et al., 2017).

Data-analysis

Cybersickness and user experience
To summarize results of the cybersickness questionnaire, we
averaged the ratings of participants across the 16 items of
the SSQ scale. We visualized and reported descriptive statis-
tics of the average SSQ scores. Additionally, we estimated a
Bayesian model with the BayesFactor package (Rouder et al.,
2009) treating each individual SSQ item as repeated meas-
ures within participants, to evaluate whether there was a dif-
ference in SSQ scores before and after VR exposure in the
six stroke patients who completed the pre- and post SSQ
questionnaire. For the user experience scale, we averaged
ratings across items per subscale.

Game data
Correspondence of spatial attention impairment between
computer and VR tasks. We first evaluated whether the spa-
tial attention impairment of patients could be detected with

Figure 7. Overview of pilot phases. Pilot phase 1 (A), Pilot phase 2a (B), Pilot phase 2b (C), Pilot phase 3 (D). Overview of patient samples, game versions and dur-
ation of game sessions per pilot phase (E).
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our VR rehabilitation game. To this end, we tested whether
there was an interaction of the target location (i.e., left ver-
sus right visual field) and the task used to measure perform-
ance (i.e., computerized cancelation task, VR rehabilitation
task with moving cue and target, and VR rehabilitation task
without moving cue and target). These three conditions dif-
fer in many aspects, such as the distribution of target loca-
tions, the response time limit, type of stimuli used, number
of trials, presence of distractor stimuli. Thus, this compari-
son cannot clarify which aspects may lead to differences, but
it can reveal whether our VR task is able to pick up on the
spatial attention impairment of the patients who we tested.
To test this hypothesis, we performed a Bayesian logistic
regression analysis with the brms package (B€urkner, 2017).
We performed these analyses per patient as each patient
played a different version of the game.

Effect of cue and target location on performance.
Additionally, we tested whether the cue in the VR rehabilita-
tion game affected performance. We predicted that patients
would detect more targets in the cued than uncued trials.
Moreover, we predicted that the cue would also improve tar-
get detection in the contralesional (i.e., left) visual field. In
addition, we tested whether the cue had the same effect in
the VR rehabilitation task in which the cue moved versus
when the cue did not move. Note that the VR environment
was not independent of this task condition. That is, we only
presented the task with the moving cues and targets in the
forest scene and the task with nonmoving cues and targets
in the garden and lake scenes. Thus, differences between
these conditions can reflect a mix of multiple aspects. To
test our predictions, we performed a Bayesian logistic regres-
sion analysis including the interaction of target location (i.e.,
left versus right visual field), the presence or absence of the
cue and the type of task (i.e. moving cue/target, nonmoving
cue/target). We performed these analyses per patient as each
patient played a different version of the game.

Patient-tailored design. One of our intervention principles is
to present target stimuli more frequently at those locations
where patients did not detect targets in the VR assessment.
If our game algorithm worked, the target locations in the
rehabilitation game should be biased more toward the con-
tralesional side of space for patients who have a more severe
spatial attention impairment.

In the game played by patients P4 and P5, we adjusted
target locations throughout the game based on the average
location of undetected targets in the 5 most recent trials
(i.e., Center of Cancelation (CoC) algorithm). In the game
played by patients P6 and P7, we first assessed the spatial
attention impairment, then fitted a logistic model on their
performance and used this logistic model to sample the tar-
get locations (i.e., Logistic model algorithm). To evaluate
which of these two algorithms worked best, we tested the
interaction of algorithm and neglect status. If an algorithm
worked better, the target locations should differ more
between patients with versus without neglect. The neglect
status was determined on the basis of whether patients

showed a significant difference in cancelation performance
between the left and right visual field on the computerized
cancelation task. We chose this task to subdivide patients, as
this task should produce more precise estimates of perform-
ance compared to clinical tasks due to the higher number of
trials. Based on this task, P4 and P6 were assigned to the
“neglect group” and P5 and P7 were assigned to the “no
neglect group”. These analyses were only done for the four
patients who participated in Phase 3, as multiple game ses-
sions were necessary to provide sufficient data to perform
these analyses.

Moreover, as only 4 patients played the VR game for
multiple sessions, we further assessed whether the two algo-
rithms truly differed using Monte Carlo simulations. We
simulated performance on the VR task using a simple bino-
mial model of neglect, which is discussed in detail in
Huygelier and Gillebert (2020). We simulated data for 4
patient cases who varied in the severity of the spatial (i.e.,
R-L difference, difference in probability to detect targets
between left and right visual field) and non-spatial attention
impairments (i.e., non-spatial errors). More specifically, the
R-L differences were equal to 0.20, 0.40 and 0.60. The non-
spatial errors were equal to 0.20 or 0.40. For each of these 4
cases and 2 patient-tailored algorithms, we simulated game
data for 1000 repetitions. The location of target positions
was determined by the patient-tailored algorithm and per-
formance was simulated using the binomial model. Then, to
obtain the expected value of the horizontal target positions,
we averaged the simulated horizontal target positions across
the 1000 repetitions.

Results

Cybersickness

Of the 15 healthy participants, 1 participant reported severe
discomfort on the SSQ item “fullness of the head” and 2
participants reported severe discomfort on the SSQ item
“blurry vision” after VR exposure. The average ratings across
all items were low after VR exposure in healthy participants
(M¼ 0.25, SD ¼ 0.42, Range: 0–1.62, Figure 8A). We did
not assess SSQ symptoms before VR exposure in healthy
participants. None of the stroke patients reported severe
physical discomforts on the SSQ, neither before or after VR
exposure (M¼ 0.05, SD ¼ 0.04, Range: 0–0.09). Moreover,
the BF10 (BF10 ¼ 169, 95% CI Post-Pre ¼ [�0.17, �0.05])
indicated that the average rating of discomforts on the SSQ
was lower after VR exposure compared to before (M¼ 0.30,
SD ¼ 0.30, Range: 0–0.75) (Figure 8B). In addition, the
drop in SSQ ratings was consistent across each SSQ item
(Figure 8C).

User evaluations

A total of 15 healthy controls and 3 stroke patients eval-
uated different aspects of the game. The healthy controls
rated the usability of the user interface (M¼ 4.3, SD ¼ 0.5,
Range: 3–5) and the touch controllers (M¼ 3.7, SD ¼ 1,
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Range: 2–5) of our first game prototype on average in a
positive way (i.e. > 3) (Figure 9A, Figure 9B). However, the
stroke patients experienced issues with the touch controller
and gave a neutral rating regarding the usability of the touch
controllers (M¼ 3.3, SD ¼ 1, Range: 2–5). P1 had a ten-
dency to clinch the hand rather than pressing a single but-
ton. For this reason, we added an elaborate practice to learn
to push the buttons of the controller separately to our game.
Moreover, some patients pressed the Oculus Home Button,
which made them accidentally leave the game. For this rea-
son, a 3D printed cap blocking the functionality of this but-
ton was added. In addition to some usability issues, healthy

controls (M¼ 2.8, SD ¼ 0.7, Range: 2–4) and stroke patients
(M¼ 3.1, SD ¼ 1.1, Range: 1–4.5) gave neutral ratings on
average regarding sense of presence (Figure 9C). Healthy
controls and stroke patients on average did report feeling
motivated (healthy controls: M¼ 3.7, SD ¼ 0.7, Range:
1.7–4.4; stroke patients: M¼ 3.7, SD ¼ 0.3, Range: 3.1–4.1)
(Figure 9D). Moreover, healthy controls rated the game nar-
rative in a negative way (M¼ 2.5, SD ¼ 1.1, Range: 1–4),
but the stroke patients rated the narrative neutral to positive
(M¼ 3.6, SD ¼ 0.7, Range: 2.8–4.4) (Figure 9E).
Additionally, the 4 stroke patients who played the game for
6 sessions were asked whether they enjoyed the game and

Figure 9. User evaluations across multiple versions of the game of healthy participants and stroke patients. Note that there are not always 7 data points for the
stroke group, because patients P2 and P3 evaluated two versions of the game (v1.5 and v1.6) and patient P7 evaluated game version 1.9.2.1 in two subsequent
game sessions.

Figure 8. Cybersickness ratings. Post-VR SSQ ratings of healthy participants (A), pre-post VR SSQ ratings of 6 stroke patients (B). One stroke patient only completed
the SSQ after the VR exposure. Pre-post VR SSQ ratings averaged across patients for each individual SSQ item (C). There are 16 SSQ items, but some of the data
points overlap.
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experienced any physical discomforts at the end of each ses-
sion. No physical discomforts were reported. The rating of
the user experience was consistently positive (M¼ 4.9, SD ¼
0.3, Range: 4–5) across sessions.

Game data

Correspondence of spatial attention impairment between
computer and VR tasks
There was a significant two-way interaction between visual
field and task for patient P4 (Figure 10A, Table 4). That is,
the performance difference between the left and right visual
field was more pronounced in the non-VR cancelation task
compared to the VR rehabilitation task with the nonmoving
cues and targets (95% CI ¼ [0.07, 0.40]) and there was no
significant difference compared to the VR rehabilitation task
with the moving cues and targets (95% CI ¼ [�0.06, 0.19]).
In each of these three tasks there was a significant difference
in performance between the left and right visual field (non-
VR: 95% CI [�0.74, �0.62], VR moving cue/target: 95% CI
[�0.72, �0.50], VR nonmoving cue/target: 95% CI [�0.59,
�0.29]). For patient P6, there was no interaction between
the task and visual field. Performance was worse in the left
than right visual field in the non-VR cancelation task (95%
CI [�0.23, �0.08]), in the VR task with the nonmoving cue/

target (95% CI [�0.33, �0.14]), and in the VR task with
moving cue/target (95% CI [�0.22, �0.00]). For patient P7,
there was no significant interaction between the visual field
and task, neither a main effect of task nor a main effect of
visual field. P5 performed close to ceiling in all conditions
(M ¼ .99, SD ¼ 0.01, Range: 0.98–1).

Effect of cue and target location on performance
For P4, there was a significant three-way interaction of the
cue, visual field and type of VR task (Figure 10B, Table 4).
The effect of the cue on performance differed significantly
between the two VR tasks in the right visual field (95% CI
¼ [0.08, 0.38]), but not in the left visual field (95% CI ¼
[�0.12, 0.29]). That is, in the right visual field, performance
was better with the cue than without the cue in the task
with the nonmoving cue/target (95% CI ¼ [0.05, 0.23]).
There was no significant difference in performance with ver-
sus without cue in the task with the moving cue/target (95%
CI ¼ [�0.22, 0.03]). In the left visual field, performance was
better with cue versus without the cue in the task with the
nonmoving cue/target (95% CI ¼ [0.04, 0.36]). There was
no significant difference in performance with versus without
the cue in the task with the moving cue/target (95% CI ¼
[�0.01, 0.23]).

Figure 10. Performance as a function of the type of task (i.e., non-VR cancelation task, VR moving cue/target, VR nonmoving cue/target) and visual field (A).
Performance as a function of type of VR task (i.e. VR moving cue/target, VR nonmoving cue/target), visual field and presence or absence of cue (B). Data are shown
for each individual patient. Bars represent observed accuracy, error bars represent the 95% credible intervals of accuracy. Data of P5 is not shown as he performed
close to ceiling in all conditions.
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For P6, there was no significant three-way interaction of the
cue, visual field and type of VR task. There was a significant
two-way interaction of the cue and VR task. That is, in the
right visual field, performance was better with versus without
cue in the VR task with the nonmoving cue/target (95% CI ¼
[0.19, 0.39]), while there was no significant difference with ver-
sus without cue in the VR task with the moving cue/target
(95% CI ¼ [�0.05, 0.15]). In the left visual field, performance
was better with versus without cue in the VR task with the
nonmoving cue/target (95% CI ¼ [0.30, 0.44]), while there was
no significant difference with versus without cue in the VR
task with the moving cue/target (95% CI ¼ [�0.09, 0.12]).

For P7, there was no significant three-way interaction,
nor a significant two-way interaction, nor a main effect of
visual field, cue or task on performance. P5 always per-
formed close to ceiling (M¼ 1, SD ¼ 0.01, Range: 0.99–1).

Patient-tailored design
There was a significant interaction between the patient-tail-
ored algorithm and whether the patient had neglect or not.
That is, the target locations were significantly more biased
toward the left visual field for the neglect patients compared
to the patients without neglect for the algorithm based on
the logistic model versus the algorithm based on the CoC
(95% CI ¼ [0.56, 4.81], Figure 11A, Table 5). For both algo-
rithms, the target locations were more biased toward the left
visual field for the neglect than the control case (CoC: 95%
CI ¼ [�4.53, �1.39]; Logistic model: 95% CI [�6.99,
�4.27]). These results were also confirmed by a simulation.
That is, target locations were more biased toward the left
visual field for simulated neglect cases for the algorithm
based on the logistic model than for the algorithm based on
the CoC (Figure 11B).

Figure 11. Distribution of target locations split up for the patient-tailored algorithm that was used and whether the patient had neglect or not (A) and the
expected horizontal target positions of 500 trials for 4 different simulated patient cases (B). R-L: difference in probability to detect targets between the right and
left visual field, NSE: probability to miss targets on the right visual field, representing non-spatial errors.

Table 4. Results of game data.

P4 P6 P7

Predictor E 95% CI E 95% CI E 95% CI

Correspondence of spatial attention impairment between computer and VR tasks
Intercept �1.44 �1.74 �1.16 0.48 0.24 0.73 1.24 0.70 1.84
Right 3.36 2.91 3.83 0.74 0.37 1.13 0.36 �0.45 1.20
VR Moving cue/target 0.33 �0.20 0.87 �0.16 �0.58 0.26 0.08 �0.78 0.96
VR nonmoving cue/target 1.04 0.44 1.65 �1.38 �1.72 �1.05 �0.10 �0.84 0.60
Right � VR Moving cue/target �0.32 �1.24 0.67 �0.24 �0.86 0.39 �0.31 �1.55 0.94
Right � VR nonmoving cue/target �1.17 �2.18 �0.16 0.28 �0.27 0.83 0.13 �0.98 1.18
Effect of cue and target location on performance
Intercept �0.59 �0.98 �0.21 0.39 0.09 0.71 1.39 0.87 1.94
Right 1.83 1.18 2.53 0.68 0.23 1.15 0.50 �0.38 1.45
No cue �0.56 �1.13 0.02 �0.06 �0.52 0.38 �0.06 �0.93 0.81
VR nonmoving cue/target 1.01 0.39 1.67 0.29 �0.09 0.67 0.46 �0.33 1.24
Right � No cue 1.24 0.17 2.32 �0.19 �0.87 0.48 �0.46 �1.78 0.83
Right � VR nonmoving cue/target 2.38 0.28 5.49 0.20 �0.45 0.83 0.51 �0.86 1.86
No cue � VR nonmoving cue/target �0.29 �1.19 0.61 �1.51 �2.06 �0.97 �0.71 �1.85 0.42
Right � No cue � VR nonmoving cue/target �3.23 �6.65 �0.82 0.31 �0.58 1.25 0.02 �1.81 1.77

Note. Detection probabilities were modeled using a Bayesian logistic regression model, estimated with the brms package in R (B€urkner, 2017). Estimates are pre-
sented in log odds. E: point estimate, 95% CI: 95% credible interval.
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Discussion

We iteratively designed an immersive VR rehabilitation
game for neglect patients combining multiple intervention
principles and pilot-tested our game in small samples of
healthy controls and stroke patients.

The immersive VR rehabilitation game did not induce
cybersickness

We found no signs of severe or moderate cybersickness, nei-
ther in healthy controls nor in stroke patients. Stroke
patients even reported less cybersickness symptoms after
playing the game compared to before. There may be mul-
tiple reasons for this trend. One possibility is that the antici-
pation of using new technology introduced some physical
discomfort before the VR exposure which then dissipated
after the exposure. An alternative explanation is that patients
engaged their attention with the sensory stimulation in the
VR environment and payed less attention to internal body
signals. Indeed, many researchers are exploring the potential
of VR to distract patients from painful experiences (Keefe
et al., 2012). Thus, in contrast to the concern that immersive
VR may introduce cybersickness in patients, our results sug-
gest instead that immersive VR may have a positive effect
on physical comfort in stroke patients. Whether this trend
toward less cybersickness after using immersive VR would
remain present in a larger and more representative sample
of stroke patients requires further examination. Moreover,
our results clarify the importance of obtaining a baseline-
measurement of cybersickness symptoms.

User experience was neutral to positive

Ratings of the user experience were generally neutral to
positive. The four stroke patients who played the game for 6
sessions rated the game consistently positively across the ses-
sions. These results suggest that our immersive VR game
can keep patients motivated across many sessions. However,
our measurement of user experience for each game session
was limited to a simple question: “did you like the game
today?”, as game sessions needed to be short to fit into
patient’s treatment schedules. We cannot exclude that a
more extensive user experience questionnaire at the end of
each game session would have led to a more nuanced result.
Furthermore, our results regarding user experience must be
further evaluated in a larger and systematically recruited
stroke sample.

Immersive VR games must be designed specifically for
the stroke population

Observations of usability issues in Phase 1 and Phase 2 clari-
fied that the user interface and use of the touch controllers
needed to be designed specifically for stroke patients. It was
apparent that patients needed practice before being able to
use the controllers independently. We also had to make sev-
eral adjustments to the touch controller such as adding a 3D
printed cap and stickers. In Phase 3, we observed consider-
ably less usability issues, suggesting that the iterative design
helped mitigate usability issues. Our results may be inter-
preted as a sign that more intuitive interaction devices, such
as motion-capture wearable devices or cameras may improve
usability of IVR systems. Indeed, other researchers have
advised to avoid using handheld controllers when working
with the stroke population (Alankus et al., 2010). However,
gesture-based interaction methods are not necessarily more
intuitive or easier to use and problems of cultural differen-
ces in the meaning of different gestures can also introduce
difficulties in designing intuitive easy-to-use interactions
suitable for different cultures (Norman, 2010). Moreover,
handheld controllers are the default interaction devices of
recent commercially available HMDs. Thus, using the
default commercially available hardware without excessive
customization, may make IVR systems more feasible to
adopt and use in clinical practice.

Another aspect that may need to be designed specifically
for the patient population is the game narrative.
Interestingly, it seemed that stroke patients rated the game
narrative more positively compared to the healthy control
group. This may relate to the fact that the healthy group
was on average younger compared to the stroke patients
and we designed the narrative specifically for older adults.
However, given the small sample size in the current study,
further research is required to establish whether there is
indeed a reliable relation between how game narratives are
experienced by stroke patients and how this may be related
to age.

Preliminary assessment of game mechanics

Last, we assessed the most important game mechanics in 4
stroke patients who played the game for multiple sessions.

Spatial attention impairments in VR corresponded to a
non-VR cancelation task
Spatial impairments measured with a non-VR cancelation
task corresponded with spatial impairments measured with
our VR task, irrespective of the exact game version that was
used. Thus, it is feasible to detect hemispatial neglect with
our VR game. To know to what extent our game versions
would differ from each other in their ability to detect hemi-
spatial neglect, a larger stroke sample would need to be
recruited that plays the different game versions for several
sessions. Moreover, in the future, it would be interesting to
explore to what extent a more adaptive game would result
in a more sensitive assessment (and potentially more

Table 5. Results of patient-tailored design comparison.

Predictor Estimate 95% CI

Intercept �2.36 �3.58 �1.19
Logistic model �3.15 �4.55 �1.68
No neglect 3.00 1.39 4.53
Logistic model � No neglect 2.65 0.56 4.81

Note. Detection probabilities were modeled using a Bayesian logistic regres-
sion model, estimated with the brms package in R (B€urkner, 2017). E: point
estimate, 95% CI: 95% credible interval.
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effective rehabilitation) of hemispatial neglect. That is, rather
than being fixed, one could automatically adapt the dur-
ation, size or other features of the target and cues to the
performance of individual patients. This individualization
may maximize the efficacy of the VR game for rehabilitating
hemispatial neglect, as the game would match better with
the individual patient’s abilities. Indeed, some studies
suggest that adaptive training can be more effective in
improving cognitive functions or attaining learning goals
than non-adaptive training in various populations (Pedull�a
et al., 2016; Plass et al., 2019; Sampayo-Vargas et al., 2013;
although see Vanbecelaere et al., 2020). However, increased
adaptivity comes at a cost. Automatically optimizing many
game features to individual patients requires a large amount
of data as one needs to estimate the effect of changing each
of the game features on patients performance. If game fea-
tures are adjusted based on too little data, the adaptivity can
fail to adequately adjust to the individual patient, potentially
leading to an overly difficult or overly simple game. For this
reason, we now chose to make certain game features
non-adaptive.

Predictive multisensory looming cues improved tar-
get detection
Our rehabilitation game aims to promote spatial attention
orientation toward the neglected visual field using a predict-
ive multisensory looming cue. To evaluate whether our
game succeeded in achieving this goal, we tested the effect
of the cue on performance in four stroke patients. The cue
in our VR game resulted in better performance and, more
importantly, increased target detection in the left visual field.
Thus, patients were able to use the cue to detect more tar-
gets. However, we also found that the cueing effect on per-
formance was weaker in the game scenes in which the cue
and target moved. The moving cues and targets were only
presented in the forest scenes. Thus, it is unclear whether
the cueing effect was reduced due to the scene itself or due
to the fact that the cue and/or target moved.

Successful patient-tailored presentation of sensory stimu-
lation in the neglected visual field
Our rehabilitation game aims to present sensory stimulation
in the neglected visual field in a patient-tailored way. To
evaluate whether the game algorithms successfully presented
sensory stimulation in the patient’s neglected visual field, we
tested whether the target locations in our VR game were
biased toward the contralesional side of space in patients
with significant spatial attention impairments. Our results
confirmed that indeed the target locations were biased
toward the neglected visual field and that this was more
pronounced using an algorithm based on a logistic model
than an algorithm based on the average location of missed
targets. This finding was further confirmed in a simulation.

However, although our rehabilitation game aims to present
sensory stimulation in the neglected visual field, it is unclear
what the neglected side of space exactly is. That is, some
researchers have proposed that the orientation of the trunk

determines what constitutes the neglected versus non-
neglected side of space (Karnath et al., 1991). Evidence for
this idea came from 4 neglect patients who had faster
response times to targets presented in the left visual field
when the trunk was rotated toward the left side so that the
targets in the left visual field were actually located to the right
side of the trunk midline (Karnath et al., 1991). One problem
with these findings was that the opposite result was not
found. That is, if the trunk midline would be the sole deter-
minant of neglected space, then there should be worse per-
formance for right visual field stimuli located to the left of
the trunk midline. The neglect patients in Karnath’s study
did not show this expected increase in response times for
right visual field targets when the trunk was rotated toward
the right side. Moreover, it has also been reported that neg-
lect patients showed reading impairments for stimuli in the
left visual field with the body rotated so that the left visual
field stimuli were located on the right side of the body (Hillis
et al., 1998). The latter suggests that the visual field position
of the stimuli is also important. Moreover, given the hetero-
geneity and size of brain lesions of neglect patients, it is more
likely that the position of the eyes, head and body all influ-
ence the spatial reference frame (Corbetta & Shulman, 2011).

Conclusions

To conclude, we have presented the rationale and pilot
results of a new immersive virtual reality neglect rehabilita-
tion game. We showed that self-reported cybersickness com-
plaints decreased after VR exposure in 6 stroke patients.
Moreover, our pilot results suggest that immersive virtual
reality gaming can be experienced in a positive way by stroke
patients, even after playing the game for 6 sessions. We also
assessed the most important game mechanics, showing that
neglect symptoms corresponded between our VR game and a
computerized cancelation task and that we were successful at
tailoring the game to neglect symptoms of individual
patients. These data suggest that our immersive VR game is
feasible, and promising, to use in stroke patients.
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