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1 Analysis of Neural Excitability and Oscillations

1.1 Introduction

Qualitative features of excitable or oscillatory dynamics are shared by broad classes of
neuronal models. Expressed in models for single-cell behavior as well as for ensemble
activity, these features include excitability and threshold behavior; beating and bursting
oscillations and phase locking; and bistability and hystersis. Our goal here is to illus-
trate, by exploiting a specific model of the excitable membrane, some of the concepts and
techniques that can be used to understand, predict, and interpret these dynamic phenom-
ena biophysically. Our mathematical methods include numerical integration of the model
equations, graphical or geometric representation of the dynamics (phase plane analysis),
and analytic formulae for characterizing thresholds and stability conditions. The concepts
are from the qualitative theory of nonlinear differential equations and nonlinear oscilla-
tions, and from perturbation and bifurcation theory. In this chapter, we will not consider
the spatiotemporal aspects of distributed systems. Thus our methods apply directly only
to a membrane patch, to a spatially uniform, equipotential cell, or to a network with each
cell type perfectly synchronized.

Even seemingly simple models, that exhibit one or two of the different dynamic behav-
iors, such as generation of individual or repetitive action potentials, may display a great
variety of response characteristics when a broad range of parameters is considered. This
means that a given cell or ensemble may behave in many different modes, for example, as
a generator of single pulses, as a bursting pacemaker, as a bistable ”plateauing” cell, or
as a beating oscillator, depending upon the physiological conditions (neuromodulator or
ionic concentrations) or stimulus presentations (applied currents or synaptic inputs) (see
1). The nonlinear nature of the models provides the substrate for this broad repertoire.

In this chapter, we show that a simple, biophysically reasonable, two-current excitable
membrane model is sufficiently robust to exhibit such behavioral richness, when param-
eters are systematically varied. The underlying qualitative structure for these behaviors
will be revealed with graphical phase plane analysis, complemented by a few analytic
formulas. The concepts we will cover include steady states, trajectories, limit cycles, sta-
bility, domains of attraction, and bifurcation of solutions. Phase plane characteristics and
system dynamics will be interpreted biophysically in terms of activation curves, current-
voltage relations, and the like. The concepts apply to higher-order systems, for which
appropriate projections of phase space, motivated by differences in time scales for certain
variables, can lead to similar insights.

1.2 Models for Excitable Cells and Networks

Most models for excitable membrane retain the general Hodgkin-Huxley (HH) format
(Hodgkin and Huxley 1952), and can be written in the form

C
dV

dt
+ Iion(V, W1, ..Wn) = I(t) (1)

dWi

dt
= φ

Wi,∞ − Wi

τi(V )
(2)
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where V denotes the membrane potential (say, deviation from a reference, or ”rest”
level), C is the membrane capacity, and Iion is the sum of V- and t-dependent currents
through the various ionic channel types. I(t) is the applied current. The Wi(t) variables
describe the fraction of channels of a given type that are in various conducting states (e.g.,
open or closed) at time t. The first-order kinetics for Wi typically involve V dependence
in the time constant τi; φ is a temperature-like time scale factor that may depend on i.
If the current, Ij , for channel type j may be suitably modeled as ohmic, then it might be
expressed as

Ij = ḡjσj(V, W1, ..., Wn)(V − Vj) (3)

where ḡj is the total conductance with all j-type channels open (product of single-
channel conductance with the total number of j channels), σj is the fraction of j channels
that are open (it may depend on several of the Wi variables), and Vj is the reversal
potential (usually Nernst potential) for this ion. For some channel types the current-
voltage relation may be more appropriately represented by the Goldman-Hodgkin-Katz
equation and the gating kinetics might involve a multistate Markov description. In the
classical HH model for the squid giant axon, there are three variables Wi, denoted as m,
h, and n, to describe the fractions m3h and n4 of open Na+ channels and K+ channels,
respectively.

1.3 The Fitzhugh-Nagumo model

In the Hodgkin-Huxley (HH)-model the membrane potential V(t) and the sodium acti-
vation m(t) evolve on similar (fast) time scales during an action potential, while sodium
inactivation h(t) and potassium activation n(t) change on a slower time scale. Given
the great similarity of V(t) and m(t), it makes sense to simplify the model in terms of
the number of parameters by lumping V(t) and m(t) into a single ”activation” variable
V. By the same argument, we can combine the parameters n(t) and 1-h(t) into a new
single variable W, characterizing the degree of ”accomodation” or ”refractoriness” of the
system. This provides the basis for the Fitzhugh-Nagumo (FN) model, which has only 2
parameters.

The equations underlying the FN model have their origin in the work by van der Pol,
who formulated a nonlinear oscillator model to describe the cardiac pacemaker dynamics.
The van der Pol oscillator is defined by the following set of differential equations:

d2x

dt2
+ c(x2 − 1)

dx

dt
+ x = 0 (4)

This equation can be cast into the form

dx

dt
= c

(
x + y − x3

3

)

dy

dt
= − x

c

where y = 1
c

dx
dt

+ x3

3
− x.
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Independently, Fitzhugh and Nagumo derived the following equations for the 2-parameter
membrane dynamics for an excitable neuron:

V̇ = V − V 3

3
− W + I (5)

Ẇ = φ(V + a − bW ) (6)

where φ is the inverse of the time constant, which determines how fast the variable W
changes relative to V. Typical values for the constants are φ=0.08, a=0.7, and b=0.8.

Due to the nonlinearities, closed form analytical solutions for equations 5 and 6 can-
not be obtained. The only alternatives are numerical computer simulations, and local
linearization. The latter is only useful in regions, where linearization makes sense, which
is near the stable states of the system. A useful way to deduce the topological properties
of the dynamic behavior is to define a vector r(t) = (V (t), W (t))T .

In order to understand how the system evolves in time, we will consider the so-called
isoclines. An isocline is a curve in the (V,W) plane along which one of the (V̇ or Ẇ ) is
zero. The null-cline associated with the fast variable V, is the cubic function W = V −
V 3/3 + I (see figure 2). If the system is located on the V nullcline, its imminent future
trajectory must be vertical, pointing either upward (for Ẇ > 0) or downward (for Ẇ < 0).
Furthermore, for all points in the plane above this cubic polynomial V̇ < 0, with the
converse for the points below the cubic polynomial. The nullcline associated with the
slow variable W is specified by the linear equation W = (V + a)/b. Thus, if the evolution
of the system brings it onto the W nullcline, its trajectory in the immediate future must
be horizontal, for only V, not W, can change.

1.4 Stability of the equilibrium points.

The critical or singular points r∗ of the system are the points (Vi, Wi) at which both
derivatives are zero (i.e. : (V̇ (Vi, Wi), Ẇ (Vi, Wi)=0). These singular points can be stable
or unstable. In the absence of noise, the system would stay in a singular point forever.
However, for a stable point, any perturbation by noise will bring the system back to the
singular point, whereas for an unstable point, any noise will bring the system out of the
neighbourhood of the singular point and will move it away from the singular point.

The stability of singular points can be evaluated by linearizing the system around the
singular point. The linearization procedure corresponds to moving the origin of the system
to the singular point and considering the fate of points in the immediate neigbourhood of
the singular point. We can write for any perturbation δr around the fixed point r∗

˙̄V + δV̇ = (V̄ + δV ) − (V̄ + δV )3/3 − (W̄ + δW ) + I

˙̄W + δẆ = φ((V̄ + δV ) + a − b(W̄ + δW ))

Remembering that (V̄ −V̄ 3/3−W̄ +I) = 0 and φ(V̄ +a−bW̄ ) = 0 and that ˙̄V = ˙̄W = 0
and neglecting higher order terms in δV and δW , we arrive at

δV̇ = (1 − V̄ 2)δV − δW

δẆ = φ(δV − bδW )
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Figure 1: Various types of oscillations of intracellular [Ca2+] concentration in 3 differ-
ent cells of Xaenopus Laevis (klauwpad): Deterministic, repetitive oscillations (bottom
panel), chaotic oscillations (middle panel), and bursting behavior (top panel).

Figure 2: Phase plane associated with the FN model. The fast variable V corresponds
to the membrane excitability, while the slower variable W can be visualized as the state
of the membrane accomodation. The arrows are proportional to (V̇ , Ẇ ) and indicate the
direction and rate of change of the system.
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or in matrix notation
δṙ = M δr (7)

with the matrix M given by

M =

(
(1 − V̄ 2) −1

φ −bφ

)
(8)

We can characterize the behavior around the singular point by finding the eigenvalues
and corresponding eigenvalues of M. The associated characteristic equation is

λ2 + (V̄ 2 − 1 + bφ)λ + (V̄ 2 − 1)bφ + φ = 0

The eigenvalues are given by

λ1,2 = 1/2[−(V̄ 2 − 1 + bφ) ±
√

(V̄ 2 − 1 − bφ)2 − 4φ]

The evolution of the system takes the following form

δr = c1r1e
λ1t + c2r2e

λ2t (9)

with r1 and r2 the two eigenvectors. Obviously, if both eigenvalues are real and negative,
the system is stable at the singular point and it is often called a sink. If one of the
eigenvalues is greater than zero, the system is unstable. If both eigenvalues are real and
positive, the singular point is called a source. If the two eigenvalues have opposite signs,
the singular point is called a saddle point.

In this spirit, FitzHugh (1960) considered reductions of the HH and then introduced
and idealized, an analytically tractable two-variable model widely studied as a quali-
tative prototype for excitable systems in many biological and chemical contexts. A
FitzHugh-Nagumo/Hodgkin-Huxley hybrid was formulated and studied by Morris and
Lecar (1981). The model incorporates a Voltage-gated Ca2+ channel and a Voltage-
gated, delayed-rectifier K+ channel; neither current inactivates. A simple version of this
model is represented by the equations

C
dV

dt
= − Iion(V, w) + I (10)

dw

dt
= φ

w∞(V ) − w

τw(V )
(11)

where

Iion(V, w) = ḡCam∞(V )(V − VCa) + ḡKw(V − VK) + ḡL(V − VL). (12)

In eqs. 10-12, w is the fraction of K+ channels open, and the Ca2+ channels respond to
V so rapidly that we assume instantaneous activation. One might introduce dimensionless
variables in order (1) to reduce the number of free parameters and identify equivalent
groups of parameters, and (2) identify and group ”fast” and ”slow” processes together.
However, in the interest of clarity, we will keep all equations in their original form. In eq.
11, τw has been scaled so its maximum is now one, and φ equals the temperature factor
divided by the prescaled maximum.
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Figure 3:

7



1.5 The Geometry of Excitability

We begin by considering the Morris-Lecar model , in the case that there is a unique rest
state and a threshold-like behavior for action potential generation. The Morris-Lecar
model is defined by the following differential equations and V-dependent functions:

C
dV

dt
= − ḡCam∞(V )(V − VCa) − ḡKw(V − VK) − ḡL(V − VL) + I (13)

dw

dt
= φ

w∞(V ) − w

τw(V )
(14)

where
m∞(V ) = 0.5 ∗ [1 + tanh{(V − V1)/V2}] (15)

w∞(V ) = 0.5 ∗ [1 + tanh{(V − V3)/V4}] (16)

and

τw(V ) = 1/cosh{(V − V3)/(2V4)} (17)

For Figs. 3-5 we used the parameters V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, V4 = 30
mV, ḡCa = 4.4 mS/cm2, ḡK = 8.0 mS/cm2, ḡL = 2 mS/cm2, VK = −84 mV, VL = −60
mV, VCa = 120 mV, C=20 µF/cm2, and The same parameters are used for figures 6-8
with the exceptions V3 = 12 mV, V4 = 17.4 mV, ḡCa=4.0 mS/cm2, and φ = 1/5. In
Figs. 9- 10 the parameters are as in Figs. 6-8 but φ = 0.23. The current I in µA/cm2 is
generally the only free parameter.

Figure 3A shows the V responses to brief current pulses of different amplitudes. The
peak V is graded, but the variation occurs over a very narrow range of stimuli; in this
case, as in the standard HH model, the threshold phenomenon is not discrete, but rather,
steeply graded. In figure 3B, these same responses are represented in the V-w plane. The
solution path in the space of dependent variables is called a ”trajectory,” and direction
of motion along a trajectory is often indicated by an arrowhead. In figure 3B, the flow
is generally counterclockwise. All the trajectories shown here ultimately lead to the rest
point: V = V̄ , w = w̄ = w∞(V̄ ). The rest state is said to be ”globally attracting.”
Each trajectory has a unique initial point, a horizontal displacement from the rest point
corresponding to instantaneous depolarization by a brief current pulse. A trajectory’s
slope conveys the relative speed of w to V; thus a shallow slope means V is changing faster.
The trajectory of an action potential shows the following features: an upstroke with rapid
increase in V (trajectory is moving rightward with little vertical component) and then
the transient depolarized plateau with the delayed major increase in w, corresponding to
the slower opening of K+ channels. When w is large enough, the abrupt downstroke in V
occurs-the trajectory moves leftward, nearly horizontal, as V tends toward VK . Finally,
as w decreases (the potassium channels close), the state point returns to rest with a slow
recovery from hyperpolarization.

In the phase plane, the slope of a trajectory at a given point is dw/dV, which is simply
the ratio of dw/dt to dV/dt, and these quantities are evaluated from the right-hand sides
of the differential equations (eqs. 10-11). Thus a trajectory must be vertical or horizontal
where dV/dt = 0 or dw/dt = 0, respectively. The conditions
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0 = − ḡCam∞(V )(V − VCa) − ḡKw(V − VK) − ḡL(V − VL) + I (18)

0 = φ
w∞(V ) − w

τw(V )
(19)

define curves, the V and w nullclines, which are shown dashed in figure 3B. This
provides a geometrical realization for where V and w can reach their maximum and
minimum values along a trajectory in the V-w plane (notice how the trajectories cross
the nullclines either vertically or horizontally in figure 3B). The w nullcline is simply the
w activation curve, w = w∞(V ). The V nullcline, from eq. 18, corresponds to V and
w values at which the instantaneous ionic current plus applied current is zero; below the
V nullcline, V is increasing and above it, V is decreasing. The cubic-like shape seen here
reflects the N-shaped instantaneous I- V relation, Iion(V, w) versus V with w fixed (Eq.
12), typical of excitable membrane models in which the V-gated channels carrying inward
current activate rapidly. From another viewpoint, motivated by the slower time scale of
w, suppose we fix w, say, at a moderate value. Then the three points on the V nullcline
at this w correspond to three pseudo-steady states; at the low- V state, small outward
and inward currents cancel while at the high V state, both currents are larger but are
again in balance. These states are transiently visited during the plateau phase and the
return-to-rest phase of an action potential. Notice how the trajectory is near the right
and left branches of the V nullcline during these phases.

If φ were smaller still, then the phase plane trajectories (except when near the V null-
cline) would be nearly horizontal (because dw/dV would be small); the action potential
trajectory during the plateau and recovery phases would essentially cling to, and move
slowly along, either the right or left branch of the V nullcline. The downstroke would
occur at the knee of the V nullcline. Also, in the case of smaller φ, the threshold phe-
nomenon would be extremely steep; the middle branch of the V nullcline would act as an
approximate separatrix between sub- and superthreshold initial conditions. In contrast,
for larger φ, the response amplitude is more graded.

1.6 Oscillations Emerging with Nonzero Frequency

In the phase plane treatment, the rest state of the model is realized as the intersection of
the two nullclines; such steady-state solutions are also referred to as singular or equi-
librium points. From the geometrical viewpoint, one sees how different parameter values
could easily lead to multiple singular points by changing the shapes and positions of the
nullclines. In figure 3, the unique singular point is attracting. Technically, we say it is
asymptotically stable, that is, for any nearby initial point the solution tends to the singu-
lar point as t → ∞. In general, the local stability of a singular point can be determined
by a simple algebraic criterion. The procedure is to linearize the differential equations
near the singular point, evaluate the partial derivatives at the singular point (this matrix
of partial derivatives is called the Jacobian), and to determine whether the eigenvalues of
the Jacobian are positive or negative. If they are positive, the singular point is unstable;
if all eigenvalues are negative, it is stable. For eqs. 10-12, the linearized equations that
describe the behavior of small disturbances, V ≈ V̄ + x, w ≈ w̄ + y, from the singular
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point are
dx

dt
= ax + by (20)

dy

dt
= cx + dy (21)

where

a = − ∂Iion(V, w)

∂V

1

C
(22)

b = − ∂Iion(V, w)

∂w

1

C
(23)

c =
φ

τw

dw∞
dV

(24)

d = − φ

τw

(25)

Solutions are of the form exp(λ1t), exp(λ2t), where λ1,2 are the eigenvalues of the
Jacobian matrix in eqs. 20-21. They are roots of the quadratic

λ2 − (a + d)λ + (ad − bc) = 0 (26)

For the parameters of figure 3, the two eigenvalues are both real and negative. As
parameters are varied, the singular point may lose stability. In our example, the rest
state could then no longer be maintained and the behavior of the system would change.
It may fire repetitively or tend to a different steady state (if a stable one exists). Let us
consider the effect of a steady applied current and ask how repetitive firing arises in this
model. We will apply linear stability theory to find values of I for which the steady state
is unstable. First, we note that for eqs. 10-12 a steady-state solution V̄ for a given I must
satisfy I = Iss(V̄ ), where Iss(V ) is the steady-state I-V relation of the model given by

Iss = Iion(V, w∞(V )) (27)

If Iss is N-shaped, there will be three steady states for some range of I. If however,
Iss is monotonically increasing with V, as in the case of figure 3, then there is a unique V̄
for each I. Moreover, (V̄ , w̄) cannot lose stability by having a single real eigenvalue pass
through zero. Destabilization can only occur by a complex conjugate pair of eigenvalues
crossing the axis Reλ = 0 as I is varied through a critical value I1. At such a transition,
a periodic solution to eqs. 10-12 is born and we have the onset of repetitive activity.
This solution, for I close to I1, is of small amplitude and frequency proportional to Imλ.
Emergence of a periodic solution in this way is called a Hopf bifurcation. From eqs. 20-21,
or eq. 26, we know that λ1 + λ2 = a + d. Thus loss of stability occurs for the I whose
corresponding V satisfies

1

C

∂Iion(V, w)

∂V
+

φ

τw

= 0 (28)

The first term here is the slope of the instantaneous I-V relation and the second is the
rate of the recovery process; this condition also applies approximately to the HH model.
From eq. 28 we conclude that loss of stability occurs:
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1. only if the instantaneous I-V relation has negative slope at V;

2. when the destabilizing growth rate of V from this negative resistance just balances
the recovery rate; and

3. only if recovery is sufficiently slow, i.e. if φ is small (low ”temperature”).

In figure 4A, V is plotted versus I (this is the steady-state I-V relation, but shown as
V against I) and the region of instability is shown dashed. Figure 4A also shows the maxi-
mum and minimum values of V for the oscillatory response. Just as a singular point can be
unstable, so, too, can a periodic solution; unstable periodics are indicated by open circles.
Here we see that the small amplitude periodic solution born at I = I1 = 93.85µA/cm2

from the loss in stability of V̄ is itself unstable; it would not be directly observable. Note
that solutions along this branch depend continuously on parameters and they gain stabil-
ity at the turning point or knee at I = Iν = 88.3µA/cm2. A stable periodic solution is
called a ”limit cycle.” The upper branch (solid) corresponds to the limit cycle of observed
repetitive firing. The frequency increases with I over most of this branch (figure 4B). At
sufficiently large I, repetitive firing ceases (depolarization block) as V̄ regains stability at
I = I2 = 212µA/cm2. This figure is referred to as a ”bifurcation diagram”; it depicts
steady-state and periodic solutions, and their stability, as functions of a parameter and it
shows where one branch bifurcates from another. Bifurcation theory allows one to char-
acterize the solution behavior analytically in the neighborhood of bifurcation points; for
example, the frequency of the emergent oscillation at the Hopf point is proportional to
|Im λ1,2|. When the Hopf bifurcation leads to unstable periodic solutions, i.e., when the
emergent branch bends back into the parameter region where the steady state is stable,
then the bifurcation is subcritical (i.e., a hard oscillation); if the opposite occurs, it is
supercritical.

Intermezzo about Hopf bifurcations

A simple Hopf bifurcation generates a limit cycle starting from a fixed point. For example, consider the
following differential equation in polar coordinates:

dr

dt
= − (Γr + r3) ; Γ = a − ac

dθ

dt
= ω

Their solutions are

r2(t) =
Γr2

0e
−2Γt

r2
0(1 − e−2Γt) + Γ

with r0 = r(t = 0) and θ(t) = ωt with θ(t = 0) = 0. For Γ ≥ 0 the trajectory approaches the
origin (fixed point), whereas for Γ < 0 it spirals towards a limit cycle with radius r∞ = |(a − ac)|1/2.
Transformation of the differential equation in polar coordinates into cartesian coordinates gives

dx

dt
= − [Γ + (x2 + y2)]x − yω

dy

dt
= − [Γ + (x2 + y2)]y − + xω

Linearization about the origin gives
df
dt

= Af
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Figure 4:
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Figure 5:
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where f = (∆x, ∆y) and A is the matrix

A =
( −Γ −ω

ω −Γ

)
(29)

with eigenvalues λ± = −Γ± iω. This means that at a Hopf bifurcation a pair of conjugate eigenvalues
crosses the imaginary axis. These eigenvalues indicate, in another way, that the origin is a stable attractor
for Γ > 0. If Γ = 0 the origin is still a stable attractor (verify !). However, when Γ < 0, the real part of
the eigenvalue becomes positive at the origin, making the origin an unstable attractor. For Γ < 0, the
system starts approaches oscillations with a radius

√−Γ.

For a range of I values (between the knee, Iν and the Hopf bifurcation, I1), our model
exhibits bistability: a stable steady state and a stable oscillation coexist. Figure 5A
illustrates the phase plane profile in such a case; a periodic response here appears as a
closed orbit. There is a stable fixed point shown as the intersection of the two nullclines
and a stable periodic orbit (labeled SPO). The two attractors are separated by an unstable
periodic orbit (UPO). Initial values inside the unstable orbit tend to the attracting steady
state, while initial conditions outside of it will lead to the limit cycle of repetitive firing.
A brief current pulse, whose phase and amplitude are in an appropriate range, can switch
the system out of the oscillatory response back to the rest state. In figure 5B, two 30
µA/cm2 current pulses with 5 ms duration are given, at t = 100 ms and then at t = 470
ms. The first pulse switches the membrane from rest to repetitive firing, while the second
pushes the membrane back to rest. This bistable behavior is critical for the occurence of
bursting oscillations when a very slow conductance is added to the model.

1.7 Oscillations Emerging with Zero Frequency

The Hopf bifurcation is one of a few generic mechanisms for the onset of oscillations in
nonlinear differential equation models. In that case, the frequency at onset of repetitive
activity has a well-defined, nonzero minimum. In contrast, some membranes and mod-
els exhibit zero (i.e., arbitrarily low) frequency as they enter the oscillatory regime of
behavior. A basic feature in such systems is that Iss versus V is N-shaped rather than
monotonic, as in the previous section. For eqs. 10-12, this occurs if the V dependence
of K+ activation is translated rightward, so that the inward component of Iss dominates
over an intermediate V range. Thus, for some values of I, below the repetitive firing
range, there are three singular points in the phase plane and the system is excitable.

We discuss this case first. In figure 6B, we see the nullclines intersecting three times.
As determined by linear stability theory, the singular points are the stable rest state
(R), and unstable saddle point threshold (T), and an unstable spiral (U). The system is
excitable, with the lower state being a globally attracting rest state: initial conditions
near R lead to a prompt decay to rest, while larger stimuli lead to an action potential-a
long trajectory about the phase plane. The phase plane portrait moreover reveals that
this case of excitability indeed has a distinct threshold which is due to the presence of the
saddle point, T. To understand this, we note that associated with the saddle are a unique
pair of incoming trajectories (bold dashed lines) corresponding to the negative eigenvalue
of the Jacobian matrix; together, these represent the stable manifold. Corresponding
to the positive eigenvalue are a pair of trajectories (bold lines) that enter the saddle as
t → ∞; these are the unstable manifold. The stable manifold defines a separatrix curve
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Figure 6:
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in the phase plane that sharply distinguishes sub- from superthreshold initial conditions.
For initial conditions near the threshold separatrix, there is a long latency before a firing
or decaying sub-threshold response (see figure 6A). This is because the trajectory starts
close to (but not exactly on) the stable manifold and thus the solution comes very near
the saddle singular point (where it moves very slowly) before taking off. If w is started
at rest, WR, then there is a unique value of V = VT (between 22.1 and -22.2mV in the
present example) called the ”voltage threshold,” where the stable manifold intersects the
line w = WR.

The action potential trajectory follows along the unstable manifold (bold lines), which
passes around the unstable spiral and eventually tends to the rest point. Such a trajectory
joining two singular points is called a ”heteroclinic orbit.” The other branch of the unstable
manifold is also a heteroclinic orbit from the saddle to the rest point. This heteroclinic
pair forces any trajectory that begins outside it to remain outside it-thus preserving the
amplitude of the action potential. In this case we do not find graded responses for any
brief current pulses from the rest state.

Next, we tune up I and ask when repetitive firing occurs. Because Iss is N-shaped,
we know that the lower and middle values of V move toward each other as I increases,
and there is a critical value I1 where they meet. In the phase plane, this means that
the rest point and the saddle coalesce and then disappear; this is called a ”saddle node
bifurcation.” Moreover, the heteroclinic pair becomes a single closed loop, a limit cycle,
which for I just above I1 has a very long period (figure 7). Thus, in this parameter regime,
the transition to repetitive firing is marked by arbitrarily low frequency (figure 8). When
I = I1, the limit cycle has infinite period; it is called a ”saddle node loop”. Generally,
an infinite period limit cycle is called a ”homoclinic orbit,” one that begins and ends at
a singular point. The saddle node loop is one type of homoclinic orbit; we will encounter
another type in the next section. This type of zero-frequency onset is generic and occurs
over a range of parameters. Changing another parameter will typically lead to a smooth
change in I1. We emphasize that this mechanism allows arbitrarily low firing rates without
relying on channel gating kinetics, which are necessarily slow. The value I1 is determined
by evaluating ISS at the value of V for which ∂Iss/∂V = 0, and this latter condition is
equivalent to having the determinant ad − bc of the Jacobian matrix equal to zero.

The global picture of repetitive firing is shown in the bifurcation diagram of figure 8A,
with frequency versus I in figure 8B. The branch of steady states (unstable shown dashed)
form the S-shaped curve, and the oscillatory solutions are represented by the forked curve
whose open end begins at I = I1. As I increases beyond I = I1 the peak-to-peak
amplitude on the stable (repetitive firing) branch decreases and the frequency increases.
The family of periodic solutions terminates at I = I2 via a subcritical Hopf bifurcation.
Except for I in a small interval of this upper range, this system is monostable. Annihilation
of repetitive firing, as in figure 5, cannot be carried out for I near I1 in this case (although
at the high-current end where there is bistability, annihilation can occur).

1.8 More Bistability

It is important to realize that the solution behavior we have described in our bifurcation
diagrams depends on other parameters in the model. The temperature parameter φ is
particularly convenient, with useful interpretative value for additional parametric tuning:
it plays no role in Iss and thus does not affect the values along the S-shaped curve of
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Figure 7:
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Figure 8:

18



Figure 9:

steady states in figure 8, or the corresponding curve in figure 4. The stability of a steady
state does, however, depend on φ. As is seen from eq. 28, when φ is large, oscillatory
destablization is precluded; a Hopf bifurcation from a steady state only occurs when the
time scale of w is slow compared to that of V. Thus, for large φ, both the upper and lower
branches of the S-curve are stable; the middle branch is of course unstable. This system
is bistable. In this large-φ limit, the kinetics of the K+ system are so fast (essentially
instantaneous, with w = w∞(V ) that the model reduces to one dynamic variable, V.
Then stability is determined only by the slope of Iss with the two ”outer” states being
stable and the ”middle” unstable. This simple example also shows that sometimes a
model can be conveniently reduced to a lower dimension when there are significant time
scale differences between variables.

For intermediate values of φ, the dynamics of both V and w influence stability, and
the upper branch is unstable for a certain range of I. Figure 9 shows a bifurcation diagram
analogous to that in figure 8A, in which the branch of steady states is S-shaped and the
stable rest state disappears at a turning point (point A). The high voltage equilibrium
is stable for large currents but, as the current is reduced, loses stability at a subcritical
Hopf bifurcation (point B). An unstable branch of periodic solutions emanates from the
Hopf bifurcation point and then becomes stable at a turning point (C). Unlike figure 8A,
however, this branch of stable periodic orbits (solid circles) does not terminate on the
knee (point A) but instead on the unstable middle branch (point D on the diagram) as
the current decreases to a critical value, 1D Again the frequency of the limit cycle tends
to zero for this branch. At the critical value of current, 1D, the closed orbit has infinite
period; it is called a ”saddle loop homoclinic orbit.” Recall that the middle branch of
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solutions is a saddle point. For certain values of the current, this system has three stable
states. If I is chosen to lie between the I values for points B and C, then the lower branch
still exists and is stable, the upper branch of equilibria is stable, and there is a stable
periodic orbit. Figure 10A shows the phase plane for this case. The stable manifold for
the saddle point (bold dashed trajectory) acts to separate the stable periodic orbit from
the lower rest state. The small unstable periodic orbit separates the upper rest state from
the stable periodic solution. As in figure 5B, we can use brief current pulses to switch
between states. Figure 10B shows the effect of three 5 ms current pulses switching from
the periodic orbit to the lower rest state, back to the periodic orbit, and then to the upper
rest state. (Note that perturbations from the upper rest state decay very slowly.) The HH
model, adjusted for higher than normal external potassium, exhibits similar multistable
behavior.

This example of coexistence between a depolarized limit cycle and a lower resting state
is important because it also forms the basis for a general class of bursting phenomena.

1.9 Phase-Resetting and Phase-Locking of oscillators

We now turn our attention to a brief description of periodically forced and coupled neural
oscillators. The behaviors generally involve issues that are difficult to analyze and we
will only touch on them briefly. Before treating a specific example, it is useful to discuss
certain important aspects of oscillators. We say that a periodic solution to an autonomous
differential equation is (orbitally) ”asymptotically stable” if perturbations from the oscil-
lation return to the oscillation as t → ∞. The difference between asymptotic stability of
an oscillation and that of a steady-state solution is that, for the oscillation, the time course
may exhibit a shift (see figure 11A) due to the time translation invariance of the periodic
solution. Indeed, in phase space, the periodic trajectory is unchanged by translation in
time. The shift that accompanies the perturbation of the limit cycle can be exploited in
order to understand the behavior of the oscillator under external forcing. Suppose that
an oscillator has a period, say T. We may let t = 0 correspond to the time of peak value
of one of the oscillating variables, so that at t = T we are back to the peak. Given that
we are on the periodic solution, if some I is specified, then we know precisely the state of
each oscillating variable. This allows us to introduce the notion of phase of the periodic
solution. Let θ = t/T define the phase of the periodic solution so that θ =0,1,2,...
all define the same point on the periodic solution. For example, if θ = 8.5, then we are
halfway through the oscillator’s nineth cycle.

1.9.1 Phase Response Curves

With the notion of phase defined, we now examine how a perturbation shifts the phase of
the oscillator. In figure 11A, we show the voltage time course for the Morris-Lecar system
in the oscillating regime. At a fixed time, say t, after the voltage peak, we apply a brief
depolarizing current pulse. This shifts the time of the next peak (figure 11A) and this
shift remains for all time (the solid curve is the perturbed oscillation and the dashed curve
is the unperturbed - in this case the time for the next peak is shortened). If the time of
the next peak is shortened from the natural time, we say that the stimulus has ”advanced
the phase”; if the time of the next peak is lengthened, we say that we have ”delayed the
phase.” Let T1 denote the time of the next peak. The phase shift is (T - T1 ) / T , and T1

20



Figure 10:
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Figure 11:
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depends on the time t or the phase θ = t/T at which the stimulus is applied. Thus we
can define a phase shift ∆(θ) ≡ (T − T1(θ))/T . The graph of this function is called the
”phase response curve” for the oscillator. If ∆(θ) is positive, the perturbation advances
the phase and the peak will occur sooner. On the other hand, if ∆(θ) is negative, the
phase is delayed and the next peak will occur later. We can easily compute this function
numerically, and the same idea can be used to analyze an experimental system. Moreover,
this curve can be used as a rough approximation of how the oscillator will be affected
by repeated perturbation (periodic forcing) with the same current pulse. In figure 11B,
we show a typical PRC for the Morris-Lecar model computed for both a depolarizing
stimulus (solid line) and a hyperpolarizing stimulus (dashed line). The stimulus consists
of a current pulse of magnitude 480 µA/cm2 applied for 0.5 msec at different times after
the voltage peak. The time of the next spike is determined, which yields the PRC, as
above. The figure agrees with our intuition; if the depolarizing stimulus comes while
V(t) is increasing (i.e., during the upstroke or slow depolarization of recovery), the peak
will occur earlier and we will see a phase advance. If the stimulus occurs while V(t) is
decreasing (i.e., during the downstroke), there will be a delay. The opposite occurs for
hyperpolarizing stimuli. The curves show that it is difficult to delay the onset of an action
potential with a depolarizing stimulus or advance it with a hyperpolarizing one.

We now show how this function can be used to analyze a periodically forced oscillator.
Suppose that every P time units a current pulse is applied to the cell. Let θn denote
the phase right before the time of the nth stimulus. This stimulus will either advance
or delay the onset of the next peak depending on the phase at which the stimulus oc-
curs. In any case, the new phase after time P and just before the next stimulus will be
θn + ∆(θn) + P/T . To understand this, first consider the case where there is no stimulus:
after time P the oscillator will advance P/T in phase, but because the stimulus advances
or delays the phase by an amount ∆(θn), this amount is just added to the unperturbed
phase, resulting in an equation for the new phase just before the next stimulus:

θn+1 = θn + ∆(θn) + P/T. (30)

This difference equation can be solved numerically. Here we consider the question of
whether the periodic stimulus can entrain the voltage oscillation. That is, we ask whether
there is a periodic solution to this forced neural oscillation. In general, a periodic solution
is one for which there are M voltage spikes for N stimuli, where M and N are positive
integers. When such a solution exists, we have what is known as ”M : N phase-locking.”
Finding M:1 phase-locked solutions is quite easy. We require the oscillator to undergo M
oscillations per stimulus period. In terms of eq. 30, this means we seek a solution that
satisfies

θ + M = θ + ∆(θ) + P/T (31)

for some value of θ. If such a solution exists and is stable (to be defined below), then,
starting near θ, we can iterate eq. 30 and end up back at θ. This θ is the locking phase
just before the next stimulus and because it does not change from stimulus to stimulus,
the resulting solution must be periodic. Obviously, a necessary condition for a solution
to eq. 31 is that M - P/T lie between the maximum and minimum of ∆(θ), that is, we
must solve

M − P/T = ∆(θ) (32)

Having solved eq. 32, we need to determine the stability of the solution. For equations
of the form of eq. 30, a necessary and sufficient condition for θ to be a stable solution
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Figure 12:

is that −2 < ∆′(θ) < 0. Because ∆(θ) is periodic and continuous, there will in general
be two solutions to eq. 32 (see figure 11B). But because only one of them will occur
where ∆(θ) has a negative slope, there will be a unique stable solution. We must also
worry about whether the negative slope is too steep (i.e., more negative than -2); for small
stimuli, this will never be the case - stability is assured. When ∆′(θ) < −2 (instability),
very complex behavior can occur such as chaos. The case of M : N phase-locking where
N > 1 is more difficult to explain and will not be considered here. It is clear that if the
stimulus is weak, the magnitude of ∆(θ) will also be small so that M - P/T must be small
in order to achieve M:1 locking. On the other hand, if the stimulus is too strong, then
we must be concerned with the stability of the locked solution. We note that, in a sense,
eq. 30 is only valid for stimuli that are weak compared to the strength of attraction of
the limit cycle; for stronger stimuli, it will take the solution more than a single oscillation
to return to points close to the original cycle. The PRC in figure 11B shows that, when
the stimulus is depolarizing, it is easier to advance the Morris-Lecar oscillator and thus
force it at a higher frequency (0 < P/T < 1) than it is to force the oscillator at a lower
frequency (P/T > 1). For hyperpolarizing stimuli, we can more easily drive the oscillator
at frequencies below the natural frequency.

To illustrate these concepts, we have periodically stimulated the Morris-Lecar model
(natural period of 95 msec) with the same brief depolarizing current pulse repeated every
76 msec. Figure 12 shows that the oscillation is quickly entrained to the new higher
frequency. Equation 32 allows us to predict the time after the voltage peak that the
stimulus will occur for 1:1 phase-locking. From the PRC we can see that ∆(θ) = 1 −
76/95 = 0.2 corresponds to two values of θ, one stable (cross in figure 11B) θ = 0.702
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and the other unstable. Thus the locking time after the voltage peak, that is, when the
stimulus occurs, is predicted from the PRC to be t = Tθ = 67 ms. This is exactly the
shift observed in figure 12.

The technique illustrated here is useful for analyzing the behavior of a single oscillator
when forced with a short pulsatile stimulus. For more continuous types of forcing, such
as an applied sinusoidal current, other techniques must be used. One such technique is
the method of averaging, applicable when the forcing is weak. Periodic forcing is a special
case of coupling, which we will now describe.

An example of forced synchronization: Dynamics of

cardiac cells

In this section we will elaborate a detailed example of forced synchronization. This section
is partly taken from Schuster (1988). Please note, that contrary to the previous section,
which dealt with phase leads ∆(θ) as positive and phase leads (delays) as negative, this
section defines phase delays the other way around. As a consequence, the equation, which
defines the time of the new phase θn+1 has a negative sign for ∆(θ) in this chapter,
contrary to equation 30, which has a positive sign for the same term.

It has been found by M. R. Guevara, L. Glass, and A. Shrier (1981) that circle maps
are also relevant for explaining the dynamics of cardiac cells. Fig. 13 shows the temporal
behavior of the transmembrane electric potential from an aggregate of embryonic chick
heart cells, which beat spontaneously. If the system is periodically stimulated via a current
pulse through a microelectrode, the nature of the response depends on the interstimulus
interval. The main idea is to reduce this response to a single stimulus by constructing an
appropriate circle map.

Fig. 14 shows that the influence of a single pulse changes the period of the spontaneous
beats from τ to T. The assumption is now that their ratio T/τ depends only on the phase
shift θ = δ/τ of the stimulus with respect to the natural signal, that is,

T/τ = g(θ) (33)

This assumption is supported by the experimentally determined function g(θ) dis-
played in Fig. 15.

Next we consider a train of stimuli separated by a uniform time interval ts. Consulta-
tion of Fig. 16 leads to the relation

δi+1 + Ti = δi + ts (34)

Division by τ , and assuming that the influence of a single stimulus decays sufficiently fast
such that eq. 33 holds for every i, yields the phase relationship:

θi+1 = θi + Ω − g(θi) ; Ω = ts/τ (35)

which has the form of a circle map (see Fig. 17) where the rate of rotation Ω = ts/τ -is
set by the interstimulus distance ts.

Using g(θ) from Fig. 15, eq. (35) has been used to successfully predict the -esponse to a
train of stimuli as a function of ty (see Fig. 18). The so-called Wenckebach phenomenon
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Figure 13: Influence of periodic stimulation as a function of the interstimulus interval ts,:
a) Stable phase locked pattern (i) 2:1 ts = 210 msec; (ii) 1:1, ts = 240 msec; (iii) 2:3 ts =
600 msec. b) Irregular dynamics displaying the Wenckebach phenomenon, ts = 280 msec.
(After Guevara et al., 1981; copyright 1981 by the AAAS.)

Figure 14: Time course of the transmembrane electrical potential from an aggregate of
embryonic heart cells. Left: Spontaneous pulses. Right: After administration of a brief
depolariz-ing stimulus (off-scale response) which occurs δ msec after the action potential
upstroke. The graph sharply rises, and the spontaneous-state period τ is shifted to a new
value T. (From Guevara et al., 1981; copyright 1981 by the AAAS.)
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Figure 15: The function g(θ) defined in eq. (33), as experimentally determined for em-
bryonic chick heart cell aggregates (from Guevara et al., 1981; copyright 1981 by the
AAAS).

Figure 16: Graphical demonstration of the relation Ti+δi+1 = δi+ts for Ti < δi+ts < Ti+τ
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Figure 17: Experimentally determined circle map that describes the dynamics of beating
chicken heart cell aggregates. This graph is obtained by using g(θ) from Fig. 15 in eq.
(35). (From Guevara et al., 1981; copyright 1981 by the AAAS.)

in Fig. 13c (i. e., the gradual prolongation of the time between a stimulus and the
subsequent action potential until an active potential is skipped either irregularly or in
a phase locked pattern) occurs also in human electrocardiograms. There the external
stimulus is replaced by the stimulus provided by the sinoatrial node.

1.9.2 Averaging and Weak Coupling

Although the general behavior of coupled neural oscillators is very difficult to analyze,
limiting cases can be treated. We will describe one method, the method of averaging,
used successfully to study the dynamics of two or more neural oscillators that are weakly
coupled. In this limit, the coupling is sufficiently weak that each oscillator’s trajectory
remains close to its intrinsic limit cycle. The primary effect of the coupling is to perturb
the relative phase between the oscillators, much as we described above. Because the per-
turbation per cycle is small (with weak coupling), however, the net effect occurs only over
many cycles, and the per cycle effect is seen as averaged. For illustration, we summarize
the use of averaging to describe the phaselocking properties of two identical Morris-Lecar
oscillators when coupled with identical mutually excitatory synapses.

We assume that motion of each oscillator along its limit cycle can be rewritten in terms
of a phase variable. Thus an oscillator’s membrane potential is periodic with period T
and follows the function V (θj), where θj is the phase of the j-th oscillator, j = 1,2, and
V is the voltage component of the limit cycle trajectory. In the absence of coupling, the
dynamics are given simply as θj = t + Cj , where Cj is an arbitrary phase shift. Now
consider the effect of small coupling. A brief, weak synaptic current Isyn to cell i from
activity in cell j will cause a phase shift in cell i:

∆θi = − ∆∗(θi)(t)Isyn(θi(t), θj(t)), (36)

where ∆∗(t) is the infinitesimal phase response function, the minus sign converts ex-
citatory current to positive phase shift. The synaptic current is given by

Isyn(θi, θj) = gcα(θj(t))(V (θi(t)) − Vsyn) (37)
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Figure 18: Experimentally determined and theoretically computed responses to periodic
stimulation of period ts with the same pulse durations and amplitudes as in Fig. 13 a), a)
Experimentally determined dynamics: 2:1,1:1,2:3 mode locking regions and three zones
α, β, γ of complicated dynamics, b) Theoretically predicted dynamics obtained via eq.
(35). (After Guevara 3.L. 1981; copyright 1981 AAAS.)

where the postsynaptic gating variable α(t) in cell i is activated by the presynaptic voltage
V (θj), Vsyn is the reversal potential for the synapse, and gc is the strength of the synaptic
coupling. The gating variable α(t) could be represented by a so-called (event-triggered)
alpha function, which looks like the impulse response of a second order low-pass filter, e.g.
te−t/τ . Alternatively, it could obey a voltage-gated differential equation. In the method
of averaging we simply ”add up” all the phase shifts due to the synaptic perturbations
and average them over one cycle of the oscillation. Thus, after averaging, the coupled
system is found to satisfy

dθ1

dt
= 1 + gcH(θ2 − θ1) + Order(g2

c) (38)

dθ2

dt
= 1 + gcH(θ1 − θ2) + Order(g2

c) (39)

where H is a T-periodic ”averaged” interaction function, given by

H(φ) =
1

T

T∫
0

∆∗(t)α(t + φ)(Vsyn − V (t))dt (40)

The key to these models is the computation of H.
In figure 19A, we show the function V ∗(t) along with the synaptic gating variable α(t)

over one cycle for exactly the same parameters as in figure 11B. Here α(t) = 0.04te t/5

is an alpha-function with a 5 ms time constant. Note the similarity (except for scale) of
the excitatory PRC and the infinitesimal PRC, V ∗(t). As with the PRC, V ∗(t) is mainly
positive, showing that the predominant effect of depolarizing perturbations is to advance
the phase or, equivalently, to speed up the oscillator. In only a very small interval of
time can the phase be delayed, and this is a general property of membranes that become
oscillatory through a saddle node bifurcation.
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Figure 19:
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Figure 19B shows the function H(t) defined in eq. 40 for that figure’s alpha function
and for Vsyn = 0 mV. We can use this function along with eqs. 38-39 to determine the
stable phase-locked patterns for this coupled system. Let Θ = θ2 − θ1 denote the phase
difference between the two oscillators. From eqs. 38-39 we see that Θ satisfies

dΘ

dt
= gc(H(−Θ) − H(Θ)) + Order(G2

c) ≡ − 2gcG(Θ) + Order(g2
c) (41)

Here G(Θ) is just the odd part of the function H. Because the coupling is weak, the
higher-order terms, Order(g2

c) are ignored. Equation 41 is just a first-order equation.
Phase-locked states are those for which Θ does not change, that is, they are roots of the
function G(Θ) and they are stable fixed points if G′(Θ) > 0. Because any odd periodic
function has at least two zeros, Θ = 0 and Θ = T/2, there will always exist phase-
locked states, although, these may not be stable. Synchronous solutions (Θ = 0) imply
that both membranes fire together. Antiphase solutions (Θ = T/2) are exactly one-half
cycle apart. Figure 19B shows the function G(Θ), from which we see, that there are
four distinct fixed points: the synchronous (precisely in-phase) solution; the antiphase
solution; and a pair of phase-shifted solutions at Θ ≈ +/ − 15ms. Both the synchronous
and antiphase solutions are unstable but the phase-shifted solution is stable. Thus, if two
of these oscillators are coupled with weak excitatory coupling and the parameters chosen
as above, they will phase-lock with a phase shift of about 20% of the period. Although the
classical view is that mutual excitation leads to perfect synchrony, computations with a
variety of neuronal models suggest that this is not generally the case. This type of analysis
is easily extended to systems where the oscillators are not exactly identical, coupling is
not symmetric, and there are many more oscillators. The behavior of such phase models
and the forms of the interaction functions, H, are the topics of current research.

Summary

We have introduced and used some of the basic concepts of the qualititative theory of
differential equations to describe the dynamic repertoire of a representative model of ex-
citability. We believe that a geometrical treatment, as in the phase plane, gives one an
opportunity to see more clearly and to appreciate the underlying qualitative structure of
models. One can see which initial conditions, for example, those resulting from a brief
perturbing stimulus, will lie in the domain of attraction of any particular stable steady
state or limit cycle. This is especially helpful for the design of experiments to switch a
multistable system from one mode to another. Analytic methods are also important for
determining and interpreting the stability of solutions (e.g., eq. 28 for the Hopf bifurca-
tion) and for approximating aspects of the solution behavior. Another useful conceptual
device is the bifurcation diagram by which we have provided compact descriptions of the
system attractors. Although in several of our illustrations, the bifurcation parameter was
I, and the steady-state I-V relation appeared explicitly in the diagram, channel density,
synaptic weight, or any other parameter can be used.

We have shown how a minimal but biophysically reasonable membrane model can be
massaged to exhibit robustly a variety of physiologically identifiable firing behaviors. For
the simplest two-variable Morris-Lecar model, we illustrated some qualitative differences
in threshold behavior. When the steady-state current-voltage relation is monotonic, ac-
tion potential size may be graded, although generally quite steeply with stimulus strength,
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and latency for firing is finite; when it is N-shaped, there is a true (saddle point) threshold
for action potentials, latency may be arbitrarily long, and intermediate-sized responses are
not possible. Correspondingly, for a steady stimulus, the monotonic case leads to onset of
oscillations with a well-defined, nonzero frequency (Hopf bifurcation), and with possibly
small amplitude (super-critical). In contrast, in the N-shaped case repetitive firing first
appears with zero frequency (homoclinic bifurcation). These features are consistent with
some of those used to distinguish axons with different repetitive firing properties. Addi-
tionally, we have provided a geometric interpretation of some common forms of bursting
neurons. Many bursters can be dissected into fast dynamics coupled to one or more slow
processes that move the fast dynamics between resting and oscillatory states. Coupled
and forced oscillators can often be reduced to maps or to continuous low-dimensional
systems of phase equations, especially when the interactions are weak.
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Excercises

Excercises 1 to 4 require the use of the software APSIM. Ask your assistent for this pro-
gram !

Problem 1. Parameters of the action potential
Set the Mode to Active. Set the Stimulus Strength to 30 nAmps and Duration to 0.5

msec. Click on Run to elicit an action potential. Use the Measure Window to measure
the voltage at the peak of the action potential and the corresponding time at which the
peak occurs by centering the cross hair on the peak.

How close is this voltage to ENa (normally +55 mV)? Why doesn’t it equal ENa ?

Opgave 2. Membrane currents and conductances
Open up the Membrane Conductances and Membrane Currents windows from the

Plots Menu on the menu bar.
Click on the view Vm box in the Membrane Conductances window.
Click Run to elicit an action potential.
Note the relationship between membrane voltage, membrane conductances and mem-

brane currents.

• Why do you think the sodium current shows an initial brief peak during the rising
phase of the action potential?

• Why does the sodium conductance rapidly decline after the action potential reaches
its peak?

• Why does the sodium current continue to increase even as the sodium conductance
declines?

• Why does the K current decline more rapidly than the K conductance?

Opgave 3. Channel gates
Close the Membrane Currents window by clicking on the small box in the upper left

hand corner.
Now open up the Channel Gates window by choosing this option under the Plots

Menu. Click on Clear and then click Run to start a simulation. Note how the Na
channel inactivation gates (h, plotted in green), activation gates (m, plotted in red), and
channel activation gates (n, plotted in blue) open and close during the action potential.

• Why does the Na conductance fall more rapidly than the rate at which its activation
(m) gates close?

• What fraction of Na channel inactivation gates are shut at the resting potential?

• Rank the m, h. and n gates in order of speed, from slowest to fastest, during the
rising and falling phases of the action potential.
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opgave 4. Effect of changing sodium concentration on the action potential
Now close the Channel Gates and Membrane Conductance windows. Click on

Clear and then run the simulation. Next choose the Ionic Concentrations option from
the Edit menu.

Alter the external Na concentration from its normal value of 460 mM to 310 mM
(approximately 2/3 of normal) and re-run the simulation.

How does this change the peak value of the action potential, action potential duration,
after- hyperpolarization, resting potential, maximal rate of rise of the action potential,
and maximal rate of repolarization?

Now re-determine the value of the threshold potential and the amount of stimulating
current required to reach threshold (using a 0.5 msec long stimulus pulse).

Explain the observed changes (Hint: try opening up the Membrane Conductances
and/or Channel Gates windows to gain insight into what is happening.)
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Problem 5.
a. Consider the second-order equation

ÿ + bẏ + y = 0

What is the stability type of the equilibrium point at the origin for various values of b ?

b. Consider the second-order equation

ÿ + bẏ3 + y = 0

What is the stability type of the equilibrium point at the origin for various values of b ?

Problem 6
Use MATLAB to simulate and to discuss the stability and instability of the equilibrium

point of the system
ẋ1 = − x2 + x3

2

ẋ2 = − x1 + x3
1

Note especially the equilibrium point (1,0).

Problem 7
Use MATLAB to simulate and to show that the system

ẋ1 = 2x1x2

ẋ2 =
1

4
− x2

1 + x2
2

has two centers. Hint: use the change of variables x1 → 1
2

+ x1 to find one of the centers.

Problem 8
Discuss the stability properties of the origin for the system

ẋ1 = x2 + x1x2 + ax1x
2
2

ẋ2 = − x1 − x2
1 + x2

2

for various values of a.

Problem 9.
Use MATLAB to simulate and to analyze the van-der-Pol oscillator, given by

ẍ + C(x2 − 1)ẋ + ω2x = 0

• Which of the parameters c and ω determine the frequency of the oscillations along
the limit cycle ?

• Does the amplitude of the oscillations along the limit cycle depend on c and ω?

• Which of the parameters c and ω determine the rate of convergence towards the
limit cycle ?
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Problem 10
Consider the Rayleigh oscillator:

ÿ + ẏ3 − 2λẏ + y = 0

where λ is a small positive scalar.
Convert this into a set of two first-order differential equations and investigate the

Hopf-bifurcation at λ = 0. Determine the stability of the periodic orbit.
Hint: The approximate bifurcation cruve is λ = a2/8 + O(a3).

Problem 11.
Discuss the Hopf bifurcation near the periodic orbits of the system

ẋ1 = λx1 + x2 + x1x2 + x1x
2
2

ẋ2 = − x1 + λx2 − x2
1 + x2

2

near the origin for |λ| small.
Problem 12.
The simple Hopf-bifurcation is obtained by a system with the following dynamics:

dr

dt
= r(c − r2)

dφ

dt
= 2π

where the system is in polar coordinates with radius r and phase φ.
a. Plot the bifurcation diagram for this simple case. (i.e. plot the value of the steady-state
solution of the radius r as a function of the value of parameter c).
b. Consider now the system

dr

dt
= r(c + 2r2 − r4)

dφ

dt
= 2π

Plot the bifurcation diagram for this system. What happens to r when c starts from -2
to larger values up to +2 ? What happens if the value of c changes from +2 to -2 ?

Problem 12. Assume that we can ignore any stochastic input to neuron firing and
that neurons tend to fire regularly at a constant firing rate. Assume that the firing of
a neuron corresponds to sinusoidal oscilations of the phase where the action potential
corresponds to one particular phase in the cycle. Also assume that neuron i in a network
of coupled oscillators has the (constant) ”firing rate” ωi. In that case the only relevant
parameter is the phase of neuron. The dynamics is given by

dθ

dt
= ωi +

K

N

N∑
j=1

sin(θj − θi)

where

• ωi is ”firing rate” of neuron i
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• θi is phase of neuron i

• K is coupling strength between neurons

• N is number of neurons.

a. Suppose that the frequencies ωi are symmetrically distributed around a mean
frequency ω0. This allows us to introduce new variables ψi = θi − ω0t. By replacing ωi

with ωi − ω0, we obtain

dψi

dt
= ωi − K

N

N∑
j=1

sin(ψi − ψj) (42)

b. Show that the mean-field approximation for dolving the behavior of the network of
neurons gives rise to the differential equation

dψi

dt
= ωi − Krsin(ψi − Θ) (43)

where

• rexp(iΘ) = 1
N

N∑
j=1

exp(iψj)

• r provides a measure for the amount of synchrony, with r=0 indicating independent
uncoupled behavior of all oscillators and r=1 indicating perfect in-phase locking.

• Θ indicating the average phase of the oscillators.

c. show that Θ is an order parameter. Find the solutions for the differential equation
as a function of K; indicate which solutions are stable modes for the system and which
are unstable.

Problem 13. The circle map is a standard procedure to investigate whether a map-
ping of a process has stable states and whether or when it converges to the stable state(s).
Consider the mapping

xn+1 = axn(1 − xn)

for the interval 0/leqx/leq1. a. Show that x=0 is a stable attractor for 1 ¡ a 1.
b. Show that there is another attractor on the interval 0 ≤ x ≤ 1 for 1 ¡ a ¡3.

Problem 14.
Assume two neurons, each with a different firing rate. Assume that the neuron with

the lower firing rate receives spike input from the neuron with the higher firing rate, such
that the next action potential of the neuron with the lower firing rate arrives earlier in
time (see Fig. 16 in lecture notes) according to the relation

Θn+1 = Θn + ∆(Θn) + P/T

Show that a necessary and sufficient condition for convergence to a fixed phase relation Θ∗

with one-to-one firing of the neurons with ∆(Θ∗) = −P/T requires that −2 < ∂∆(Θ)
∂Θ

< 0.
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1 Introduction

Transient synchronization of masses of neurons is believedto be common in the brain and important for brain
function. In a seminal paper, van Vreeswijk et al. (1994) showed that often synaptic inhibition, not excitation, leads
to synchronized activity. Fast-spiking inhibitory interneurons are believed to play the central role, in particular,
in the generation of gamma (30–90 Hz) rhythms (Traub et al., 1997; Whittington et al., 2000; Traub et al., 2003;
Csicsvari et al., 2003; Hájos et al., 2004; Mann et al., 2005; Compte et al., 2008).

Arguably the simplest example of synchronizing inhibitionis that of a population of uncoupled neurons re-
ceiving a common strong inhibitory input pulse. Such a pulsecan transiently drive all neurons of its target pop-
ulation towards a common quasi-steady state, thereby driving them (that is, the quantities characterizing their
states, such as membrane potentials and ionic gating variables) towards each other. This is the foundation of the
“PING” (Pyramidal-Interneuronal Network Gamma) mechanism (Whittington et al., 2000; Börgers and Kopell,
2003; Börgers and Kopell, 2005), in which gamma rhythms arise from the interaction between excitatory pyramidal
cells (E-cells) and inhibitory fast-spiking interneurons(I-cells): Population spike volleys of the I-cells synchronize
the E-cells, and population volleys of the E-cells trigger synchronous spike volleys of the I-cells. By “PING” we
mean “strong PING” here in the terminology of Börgers et al.(2005),i.e., PING with deterministic drive to the E-
cells. “Weak PING”, in which each E-cell is driven stochastically and spikes irregularly and infrequently (Börgers
et al., 2005), will be addressed briefly in the Discussion.

In this paper, we take another look at the approximate synchronization of a population of neurons by a single
inhibitory pulse, and find that it often fails for classical Hodgkin-Huxley neurons. The reason lies in the nature
of the transition from excitability to spiking. For the classical Hodgkin-Huxley neuron, this transition involves a
subcritical Hopf bifurcation. For many other neuronal models, on the other hand, it involves a saddle-node bifur-
cation on an invariant cycle; the simplest model of this sortis the theta neuron (Ermentrout and Kopell, 1986;
Hoppensteadt and Izhikevich, 1997; Gutkin and Ermentrout,1998). Neuronal models are often called of type I
if the transition from rest to spiking involves a saddle-node bifurcation on an invariant cycle, and of type II if it
involves a Hopf bifurcation (Rinzel and Ermentrout, 1998; Gutkin and Ermentrout, 1998; Ermentrout, 1996).

For both type I and type II neurons, a sufficiently strong inhibitory pulse introduces an attracting quasi-steady
state. For the classical Hodgkin-Huxley neuron, this quasi-steady state is a focus,i.e., the center of a spiral; as
the inhibition decays, it turns from attracting to (weakly)repelling. For the theta neuron, on the other hand, and
for other model neurons of type I, the attracting quasi-steady state is a node, which is annihilated altogether in a
saddle-node collision as the inhibition decays. As we will show, this difference gives rise to crucial differences in
synchronization behavior. Theta neurons are easily synchronized by a pulse of inhibition, provided only that the
pulse is strong and long-lasting enough. On the other hand, for classical Hodgkin-Huxley neurons, synchronization
by a pulse of inhibition is fragile. It often fails when the inhibition is shunting (that is, when the reversal potential
is near the resting potential). Surprisingly, it is more likely to fail, even for hyperpolarizing inhibition, for stronger
and longer-lasting inhibitory pulses.

We expect these results to have significance for the questionwhich neurons in the brain participate in or are
entrained by gamma oscillations. We briefly outline two possible implications here; for details and references, see
the Discussion section. First, our results suggest that robust strong PING may require type I pyramidal cells. Several
studies indicate that pyramidal cells in superficial layersof the cortex may in fact be of type I with cholinergic
modulation, but of type II without it. This raises the possibility that cholinergic modulation may be required for
robust strong PING. Second, gamma oscillations generated by purely inhibitory networks, often called “ING”
(Interneuronal Network Gamma) (Whittington et al., 1995; Whittington et al., 2000), may be fragile when the
neurons are of type II. There are reports in the literature suggesting that the fast-spiking inhibitory intereneurons
believed to underlie gamma oscillations may in fact be of type II.

2 Methods

We describe here the models used in our computational study.

2.1 The theta neuron

The theta model (Ermentrout and Kopell, 1986; Hoppensteadtand Izhikevich, 1997; Gutkin and Ermentrout, 1998)
represents a neuron by a pointP= (cosθ,sinθ) moving on the unit circle in the plane. This is analogous to Hodgkin-
Huxley-like, conductance-based models, which represent aperiodically spiking space-clamped neuron by a point
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moving on a limit cycle in a higher-dimensional phase space.In the absence of synaptic input, the differential
equation defining the theta neuron is

dθ
dt

= 1−cosθ+ I (1+cosθ) . (1)

Heret should be thought of as time measured in milliseconds (see B¨orgers and Kopell, 2003, Section 2) andI as
the analogue of an external input current. ForI < 0, Eq. (1) has exactly two fixed points in(−π,π), namely

θ±
0 = ±arccos

1+ I
1− I

= ±2arccos
1√

1− I
. (2)

(The second equality in Eq. (2) is a consequence of the angle doubling formula for the cosine function.) The fixed
point θ−

0 ∈ (−π,0) is stable, andθ+
0 ∈ (0,π) is unstable. AsI increases, the fixed points approach each other. AsI

crosses 0 from below, a saddle-node bifurcation occurs: Thefixed points collide atθ−
0 = θ+

0 = 0, and there are no
fixed points forI > 0. For a theta neuron, to “spike” means, by definition, to reach θ = π (modulo 2π). For I > 0,
the theta neuron spikes with period

T =
π√
I

.

The transition fromI < 0 to I > 0 is the analogue of the transition from excitability to spiking in a neuron.
The theta neuron is equivalent, up to a change of variable, toa quadratic integrate-and-fire neuron with threshold

potentialVT = +∞ and reset potentialVreset = −∞; see Börgers and Kopell (2005) for a detailed discussion ofthis
connection.

2.2 The theta neuron with inhibitory input

In Results, we will review the effect of adding an exponentially decaying inhibitory term to Eq. (1), discussed
in detail in Börgers and Kopell (2003, 2005). Following Börgers and Kopell (2003), we model the inhibition as
follows:

dθ
dt

= 1−cosθ+
(

I −
{

ge−(t−t∗)/τi if t ≥ t∗

0 if t < t∗

})
(1+cosθ) , (3)

whereg > 0 is the strength of the pulse of inhibition,t∗ is its arrival time, andτi its decay time constant. We
primarily focus onτi = 10, since the decay time constant of GABAA-receptor mediated inhibition is on the order
of 10 ms. However, we will also discuss the effects of varyingτi .

Eq. (3) can be derived from the quadratic integrate-and-fireneuron with an exponentially decaying inhibitory
current input term added to the right-hand side. A variation on this equation is obtained when starting with the
quadratic integrate-and-fire neuron with an exponentiallydecaying inhibitorysynapticinput term added to the
right hand side, in the formge−(t−t∗)/τi (Vsyn−V), whereV denotes the membrane potential,g the maximal synaptic
conductance, andVsyn the synaptic reversal potential (see Börgers and Kopell, 2005, for a detailed derivation). How-
ever, the difference between current inputs (Börgers and Kopell, 2003) and synaptic inputs (Börgers and Kopell,
2005) is not crucial in the current context. Here we will use current inputs,i.e., Eq. (3), for simplicity.

2.3 E/I networks of theta neurons

For illustration, we show in Fig. 6 a spike rastergram resulting from a simulation of a network of 400 excitatory
theta neurons (E-cells) and 100 inhibitory theta neurons (I-cells). All details of this simulation were as in Börgers
and Kopell, 2003, Fig. 1B, with the following three exceptions. (1) Connectivity was all-to-all here, whereas it was
sparse and random in Börgers and Kopell, 2003, Fig. 1B. (2) The (random) initializations were not the same. (3)
We simulated only 100 ms here, whereas 200 ms were simulated in Börgers and Kopell, 2003. As in Börgers and
Kopell, 2003, Fig. 1B,τi = 10 in Fig. 6.
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2.4 The classical Hodgkin-Huxley neuron

The classical Hodgkin-Huxley equations (Hodgkin and Huxley, 1952) for the space-clamped squid giant axon are

C
dV
dt

= gNam
3h(VNa−V)+gKn4(VK −V)+gL(VL −V)+ I , (4)

dm
dt

= αm(V)(1−m)−βm(V)m , (5)

dh
dt

= αh(V)(1−h)−βh(V)h , (6)

dn
dt

= αn(V)(1−n)−βn(V)n . (7)

The lettersC, V, t, g, and I denote capacitance density, voltage, time, conductance density, and current density,
respectively. The units used for these quantities areµF/cm2, mV, ms, mS/cm2, andµA/cm2, respectively. For brevity,
units will often be omitted from here on. Up to a change in notation, the parameter values that Hodgkin and Huxley
chose areVNa = 45,VK = −82,VL = −59.387,gNa = 120,gK = 36, gL = 0.3, andC = 1. The lettersm, h, andn
denote the gating variables, which are dimensionless real numbers between 0 and 1. The rate functionsαx andβx,
x = m,h,n, are given by

αm(V) =
(V +45)/10

1−exp(−(V +45)/10)
, (8)

βm(V) = 4exp(−(V +70)/18) , (9)

αh(V) = 0.07exp(−(V +70)/20) , (10)

βh(V) =
1

1+exp(−(V +40)/10)
, (11)

αn(V) =
(V +60)/100

1−exp(−(V +60)/10)
, (12)

βn(V) = 0.125exp(−(V +70)/80) . (13)

Although of course a Hodgkin-Huxley model neuron has spikesof positive width, we say that there is a spike “at
time t0” if

V(t0) = 0 and
dV
dt

(t0) > 0. (14)

2.5 The classical Hodgkin-Huxley neuron with inhibitory input

To model synaptic inhibition, we modify Eq. (4) by adding a term of the form

Isyn= gs(t)(Vsyn−V) (15)

to the right-hand side.Constantinhibitory input corresponds to

s(t) = 1

for all t. A decaying pulseof inhibition is modeled by{
ge−(t−t∗)/τi (Vsyn−V) if t ≥ t∗ ,

0 if t < t∗ ,
(16)

wheret∗ denotes the arrival time of the inhibitory pulse. The parameterVsyn is the synaptic reversal potential, andg
is the maximum conductance associated with the synaptic input. The reversal potential of GABAergic synapses can
be below the resting potential (hyperpolarizinginhibition), at the resting potential (shuntinginhibition), or even
above the resting potential (Isaev et al., 2007; Jeong and Gutkin, 2007; Lu and Trussell, 2001). We will therefore
experiment with the valuesVsyn = −80 (hyperpolarizing inhibition) andVsyn = −65 (shunting inhibition) in this
paper.
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2.6 E/I networks in which the E-cells are classical Hodgkin-Huxley neurons

We will present simulations of networks in which the E-cellsare classical Hodgkin-Huxley neurons (Eqs. (4)–(13)).
The external driveI in Eq. (4) will in this context be denoted byIe. Some of our simulations include a heterogeneous
drive to the E-cells. By this we always mean that the externaldrive to the j-th E-cell is

Ie, j = (1+0.2Xj )Ie, (17)

where theXj are independent Gaussian random variables with mean 0 and variance 1. The drivesIe, j are time inde-
pendent. However, in the simulations in which drive to the E-cells is heterogeneous, we also add time-dependent
noisy drive. This is done by adding a term to the right-hand side of the equation describing the time evolution of
the membrane potential of thej-th E-cell in the form

−0.05sstoch, j (t)Vj(t), (18)

where the functionssstoch, j jump to 1 at random times, and decay exponentially with time constant 3 ms between
jumps. The jumps occur on Poisson schedules with mean frequency 10 Hz. The noisy inputs to different E-cells
are independent of each other. Eq. (18) is intended to mimic the effect of excitatory synaptic input pulses arriving
at random times. The decay time constant of 3 ms is motivated by the fact that the decay time constant of AMPA-
receptor mediated glutamatergic synapses is on the order of3 ms.

In the model networks in which the E-cells are classical Hodgkin-Huxley neurons, the I-cells are Wang-Buzsáki
model neurons (Wang and Buzsáki, 1996). The Wang-Buzsákineuron has the same general form as the classical
Hodgkin-Huxley neuron (Eqs. (4)–(7)). However, the differential equation for the gating variablem, Eq. (5), is
replaced by

m= m∞(V) =
αm(V)

αm(V)+βm(V)
,

and the parameters areVNa = 55,VK = −90,VL = −65,gNa = 35,gK = 9, gL = 0.1. As for the classical Hodgkin-
Huxle neuron,C = 1. The rate functionsαx andβx, x = m,h,n, are given by

αm(V) =
0.1(V +35)

1−exp(−(V +35)/10))
, (19)

βm(V) = 4exp(−(V +60)/18) , (20)

αh(V) = 0.07exp(−(V +58)/20) , (21)

βh(V) =
1

exp(−0.1(V +28))+1
, (22)

αn(V) =
0.01(V +34)

1−exp(−0.1(V +34))
, (23)

βn(V) = 0.125exp(−(V +44)/80) . (24)

The external drive to the I-cells is denoted byIi . Heterogeneity and noise in external inputs are modeled forthe
I-cells in precisely the same way as for the E-cells.

We adopt the synaptic model of Ermentrout and Kopell (1998).Each synapse is characterized by a synaptic
gating variables associated with the presynaptic neuron, with 0≤ s≤ 1, which evolves according to the equation

ds
dt

= ρ(V)
1−s

τR
−

s
τD

,

whereρ denotes a smoothed Heaviside function:

ρ(V) =
1+ tanh(V/4)

2
,

andτR andτD are the rise and decay time constants, respectively. To model the synaptic input from neuronj to
neuronk, we add to the right-hand side of the equation governing the membrane potentialVk of neuronk a term of
the form

gjksj(t)(Vsyn−Vk) ,

wheregjk denotes the maximal conductance associated with the synapse,sj denotes the gating variable associated
with neuron j, andVsyn denotes the synaptic reversal potential.
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We use the notationVsyn,e andVsyn,i for the reversal potentials associated with excitatory andinhibitory synapses,
respectively,τR,e andτD,e for the rise and decay time constants of excitatory synapses, andτR,i and τD,i for the
rise and decay time constants of inhibitory synapses. We always useτR,e = 0.1, τD,e = 3, andVsyn,e = 0, values
reminiscent of AMPA-receptor-mediated glutamatergic synapses. We useτR,i = 0.3, but varyτD,i andVsyn,i . In most
simulations, we useτD,i = 10, reminiscent of GABAA-receptor-mediated synapses.

Our model networks of Hodgkin-Huxley and Wang-Buzsáki neurons include 40 E-cells and 10 I-cells. The
connectivity is all-to-all. We take the maximal conductance of the synaptic connection from thej-th I-cell to the
k-th E-cell to begie/10, wheregie is independent ofj andk. Thus the maximum possible value of the sum of all
inhibitory conductances affecting an E-cell isgie. Similarly, the maximal conductance of the connection froman
E-cell to an I-cell isgei/40, and the maximal conductance of the connection from an I-cell to an I-cell isgii /10. We
do not include E→E synapses in these simulations.

We always usegei = 0.2. This parameter is chosen so that a population spike volleyof the E-cells promptly
triggers a population spike volley of the I-cells, but does not cause I-cells to spike multiple times. Unless otherwise
indicated, we usegii = 0.1. PING does not require the presence of I→I synapses, but they significantly stabilize
the rhythm (Börgers and Kopell, 2005). We experiment with various values ofgie.

2.7 Visualizing the synchronizing effect of inhibition

To illustrate the synchronizing effect of a pulse of inhibition, we consider a model neuron (either a theta neuron, or
a classical Hodgkin-Huxley neuron), with constant driveI above the spiking threshold. We denote byT the natural
period of the neuron, that is, the period that would be seen without any additional input.

We assume that at timet = 0, the neuron spikes. For a theta neuron, this meansθ = −π mod 2π. For a classical
Hodgkin-Huxley neuron, it meansV = 0 anddV/dt > 0 (compare Eq. (14)). For the classical Hodgkin-Huxley
neuron, we also assume, in addition toV(0) = 0 anddV/dt(0) > 0, that the point(V(0),m(0),h(0),n(0)) lies on
the limit cycle. (These conditions uniquely determinem(0), h(0), andn(0).) We now consider an inhibitory pulse
arriving at some timet∗ with 0 < t∗ < T. We denote byt1 andt2 the times of the first and second spikes following
time t∗, respectively, and define

Ti = ti − t∗, i = 1,2.

Plots ofT1 andT2 as functions oft∗, as for instance in Fig. 1, help visualize the synchronizingeffect of inhibition.
Note for instance that immediate and perfect synchronization would correspond toT1 andT2 being independent of
t∗.

2.8 Numerics

All differential equations were solved using the midpoint method, with the fixed time step∆t = 0.02. All codes are
available from the first author upon request.

3 Results

3.1 Synchronization of theta neurons by a pulse of inhibition

The effect of adding an exponentially decaying inhibitory term to Eq. (1), as shown in Eq. (3), was discussed in
detail in Börgers and Kopell (2003,2005). We review some ofthe material from Börgers and Kopell (2003,2005)
here, and add a discussion of the parameter regime in which aninhibitory pulse synchronizes effectively.

First, to illustrate the synchronization resulting from aninhibitory pulse, we show in Fig. 1 the delaysT1 and
T2 between the arrival timet∗ of a pulse of inhibition and the next two spikes (see Methods). T1 andT2 depend on
I , g, andτi . Fig. 1 shows the exampleI = 0.1 (thusT = π/

√
I ≈ 9.935),g = 0.25, andτi = 10. In this example,

T1 is approximately independent oft∗ as long ast∗ is not too close toT. Thus most neurons in an asynchronous
population will be brought to approximate synchrony by a single pulse of inhibition. Only those neurons that are
quite close to spiking when the inhibition arrives(t∗ ≈ T) will escape. These neurons will spike soon after the
arrival of the inhibitory pulse. However, Fig. 1 also shows that nearly all of those neurons will spike a second time
at approximately the same time at which the others spike first. Thus a single pulse of inhibition comes very close
to synchronizing the entire population.
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Fig. 1 Graphs of T1 and T2, the time delays between the arrival time t∗ of the inhibitory pulse and the first and second spikes following
it, respectively, for the theta neuron. Here and in later figures, relevant parameter values are shown at the top.

The mathematics underlying this synchronization effect were discussed in Börgers and Kopell (2003). There,
the synchronization was interpreted as the effect of an attracting “river” (Diener, 1985a; Diener, 1985b)1 in a phase
plane parameterized byθ and the variableJ = I −ge−(t−t∗)/τi . We will review and discuss the “river” picture below.
Briefly, and without making reference to the geometry, the mechanism can be described as follows. Ifg > I , the
inhibitory pulse transiently creates an attracting quasi-steady state, which is initially located at

θ−
g = −arccos

1+(I −g)
1− (I −g)

(compare Eq. (2)). While the inhibition decays, trajectories approach this quasi-steady state, and thereby approach
each other.

3.2 The river picture for theta neurons

We review here the “river” picture described in Börgers andKopell (2003,2005), and add some observations rele-
vant to the present work. We consider a theta neuron with an inhibitory pulse arriving at timet∗ = 0:

dθ
dt

= 1−cosθ+
(

I −ge−t/τI

)
(1+cosθ) for t ≥ 0. (25)

Following Börgers and Kopell (2003), we make Eq. (25) autonomous by introducing the variable

J = I −ge−t/τi .

Eq. (25) then becomes

dθ
dt

= 1−cosθ+J(1+cosθ), (26)

dJ
dt

=
I −J

τi
. (27)

Fig. 2 shows the phase plane for Eqs. (26) and (27) forI = 0.1 andτi = 10. (Very similar figures were presented
in Börgers and Kopell, 2003 and 2005.) The flow in Fig. 2 is upwards, in the direction of increasingJ. Trajectories
are attracted (exponentially in forward time) to a single “stable river”, which starts atθ =−π, J =−∞, and reaches
θ = π at some valueJ∗ < I . As trajectories are exponentially attracted to the stableriver, they reachθ = π (which
means spiking for the theta neuron) at a timeT whenJ ≈ J∗, which implies

I −ge−T/τi ≈ J∗ ,

or

T ≈ τi ln
I −J∗

g
. (28)
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Fig. 2 Trajectories of Eqs. (26) and (27), and the nullcline dθ/dt = 0 (bold line), for I= 0.1 andτi = 10. The flow is upwards, in the
direction of increasing J.

SinceT is independent ofθ(0), this implies synchronization.
We note that trajectories with different initial conditions typically come far closer to each other (and to the

stable river) than to the quasi-steady state. This point, which will play a role later on, is demonstrated by Fig.
3, which showsθ as a function oft for several different initial conditions, together with the quasi-steady state
(indicated in bold), forI = 0.1, g = 0.3, andτi = 10.

0 5 10 15
−1

−0.5

0

t

θ

Fig. 3 Graph ofθ(t) for several different initial valuesθ(0), and the quasi-steady state (bold), for I= 0.1, g = 0.3, andτi = 10. The
dashed line indicates the time at which the quasi-steady state ceases to exist.

3.3 On the parameter range in which a pulse of inhibition synchronizes a population of theta neurons

It is not easy to analyze rigorously for which values ofI , g, andτi tight synchrony will be obtained by a single
pulse of inhibition. However, the following argument does come close to answering this question. At timet∗, the
time constant associated with the approach to the stable quasi-steady state is the reciprocal of

−
d
dθ

(1−cosθ+(I −g)(1+cosθ))
∣∣∣∣
θ=θ−

g

= −(1+(g− I))sinθ−
g =

(1+(g− I))
(
1−cos2 θ−

g

)1/2 = (1+(g− I))

(
1−
(

1− (g− I)
1+(g− I)

)2
)1/2

=

1 Stable rivers correspond to stable Fenichel slow manifolds(Fenichel, 1979). We prefer to use the more intuitive term ‘river’ in this
paper.
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Fig. 4 Graphs of T1 and T2 for various values of I and g withτi = 3τ0.
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Fig. 5 Graphs of T1 and T2 for various values of I and g withτi = τ0.

(
(1+(g− I))2− (1− (g− I))2

)1/2 = 2(g− I)1/2 .

The stable quasi-steady state exists as long as

ge−(t−t∗)/τi > I ,

that is, as long as

t − t∗ < τi ln
g
I

.
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This reasoning suggests (disregarding the fact that the quasi-steady state becomes less strongly attracting as the
inhibition decays) that good synchronization should be expected as long as

τi ln
g
I
≫

1
2(g− I)1/2

.

Numerical experiments indicate, in good agreement with this reasoning, that for a very wide range of values ofI ,
g, andτi , synchronization by a single pulse of inhibition is quite tight if

τi ≥ 3τ0, (29)

and fairly loose if

τi ≤ τ0, (30)

with

τ0 =
1

(g− I)1/2 ln(g/I)
. (31)

This is illustrated by Fig. 4 and 5, which show plots ofT1 andT2 for τi = 3τ0 andτi = τ0, respectively, with widely
varying values ofI andg > I .

The conclusion is that synchronization will be good ifτi is large enough in comparison withτ0. Eq. (31) shows
thatτ0 is small if g is sufficiently large in comparison withI . Note that bothg− I andg/I matter.

3.4 PING in E/I networks of theta neurons

Oscillations are common in networks of synaptically coupled excitatory and inhibitory theta neurons. For illustra-
tion, Fig. 6 shows a spike rastergram representing the results of a simulation of an E/I network of theta neurons.
This simulation is very similar to one presented in Börgersand Kopell (2003); see Methods for the details.

At the start of the simulation, the E-cells spike asynchronously, and as a result the I-cells are gradually driven
away from rest. Eventually, a population spike volley of theI-cells is triggered. Soon after this volley, the activity in
the E-cells halts, resuming in near-synchrony approximately 25 ms later. The time between the spike volley of the
I-cells and the resumption of spiking in the E-cells depends, in general, on the decay time constantτi of inhibition
and, to a lesser extent, on the inhibitory conductances and external drives; see Eq. (28). The second spike volley of
the I-cells, following the second spike volley of the E-cells, makes the synchrony perfect within plotting accuracy.
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Fig. 6 Gamma oscillation in a network of 400 excitatory and 100 inhibitory theta neurons.

As discussed in Börgers and Kopell (2003,2005), similar rhythms, called PING (Pyramidal-Interneuronal Net-
work Gamma) rhythms (Whittington et al., 2000), generally occur in networks of excitatory and inhibitory theta
neurons whenever the E-cells spike spontaneously at a sufficiently high rate, the I-cells spike only in response to
the E-cells but not on their own, and the E→I and I→E synaptic connections are sufficiently strong.
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1 Introduction

A fundamental question in neuroscience concerns the understanding of the neural code.
The standard doctrine is, that information is transmitted by action potentials. Since the
shape and size of action potentials is almost uniform, the common believe is that the infor-
mation is stored in the timing of the sequence of action potentials. In order to determine
how information is represented by the nervous system, we need to understand two steps
of neuronal information processing. First, we have to understand the transformation of
a sensory signal into the sequence of action potentials of a single neuron. This aspect of
neuronal coding has been an object of study for several decades and has resulted in a good
insight into response properties of neurons in sensory pathways (e.g. the visual pathways
from retina to cortex and from retina to superior colliculus, the auditory, the vestibular,
and somatosensory pathways). With regard to motor control, we have to understand how
neuronal activity in the final motor pathways is related to movement-related parameters,
such as movement direction, movement velocity, and force. Second, there is the neuro-
physiological finding, that a single stimulus or movement is encoded in the activity of a
large number of neurons. This has raised the question how neural activity in a popula-
tion of cells can be interpreted in terms of external stimuli and actions, i.e. in terms of
sensory input and motor output. This problem has been recognized since many years,
but it is only in the last decade that considerable theoretical progress has been made to
deal with this problem. The two problems mentioned above are crucial first steps before
more complex issues like information processing and information storage in the brain can
be addressed satisfactorily.

Neural encoding of information can be studied by measuring neural responses to ex-
ternal stimuli and during movements. Our understanding of the neural code can be tested
by solving the inverse problem, inferring sensory input or motor output from a given set
of neuronal activity. Solving this problem involves many other problems. For example,
the evaluation of firing rate of a single cell brings several problems. In order to extract
the continuous probability density of neuronal activity and its variance from the discrete
spike data of a single cell, we must count the number of spikes that occur within some
fixed time interval. Since a rapidly and regularly firing cell might fire some 100 spikes per
second, we would need to count over at least 1 second in order to have an estimated error
less than 1 percent if we had to deal with a single cell only. If the cell’s firing is described
by a Poisson process with an average rate of 100 spikes per second, we will need to count
over a significantly longer interval to make an accurate estimate. This situation becomes
even worse for chaotic firing at low firing rates.

Since the generation of actionpotentials is a stochastic process, the same sensory stim-
ulus will never generate precisely the same neuronal activity pattern. This raises the
question how the activity in a population of neurons should be interpreted. For a long
time, the traditional view held that information is coded in recruitment and firing rate
of neurons. However, firing rate is a continuous signal which can be obtained only by
averaging over time. Obviously, averaging over time reduces the temporal resolution,
which would be detremental for time-critical processes as required for sound localisation.
Another solution might be averaging over many neurons. Instead of averaging over time,
averaging of the activity of an ensemble of responding neurons has been proposed both to
obtain accurate estimates by averaging noise in the population activity, and to combine
information from many cells with different receptive fields and response properties. Ob-
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viously, this approach allows to use the precise timing of each individual action potential,
which has advantages not only from the point of view of temporal resolution as mentioned
above, but also from a theoretical point of view since it avoids the problem of selecting
the appropriate time window to determine firing rate accurately.

Theoretical considerations and an increasing body of experimental findings suggest
that information is encoded not only in the recruitment and firing rate of activated neu-
rons, but also in the temporal relations between their discharges. This becomes evident
as a synchronization of firing of many neurons on a time scale of milliseconds. Therefore,
synchrony of firing is thought to provide a major contribution in addition to recruitment
and firing rate to code sensory and motor events.

Population codes, where information is represented in the activities of whole popula-
tions of neurons, are ubiquitous in the brain. There have been a number of theoretical
analyses of population decoding in a variety of contexts. The theoretical studies often
used methods that are optimal in some statistical sense usually based on probability dis-
tributions of the neuronal firing rates. However, these methods are sometimes highly
implausible from a neurobiological point of view. At the other hand, experimental studies
typically employed simple methods that may not be optimal from a statistical point of
view, but were intuitively more clear in providing insight into the underlying mechanisms
of neuronal coding and information processing.

2 Mathematics of (un)biased estimators and their

variance

Before dealing with the interpretation of neuronal activity, we will first discuss various
mathematical techniques to ”measure” the information content of a neuronal signal. The
problem, that we have to face is, how to interpret the action potentials of a large number
of cells in a neuronal population as a function of time. Since the generation of an action
potential is a stochastic process, we will have to rely on statistical techniques and we
will have to develop probabilistic estimators. Estimators can be distinguished in biased

and unbiased estimators. An unbiased estimator has the property that the output of the
estimator approximates the true value of the parameter for a large number of data. One
could then wonder, why people sometimes rely on unbiased estimators ? The answer is,
that it may take quite some effort to obtain an unbiased estimate of some quantity and
that a biased estimator may be easier to obtain.

2.1 Basic concepts from Information Theory

Figure 1 shows a schematic view of a communication channel. It consists of an Information
Source, which emits a signal, which after corruption by noise, is received by a receiver,
who has to estimate, as good as possible, the original message. A first question is: what
measure should we use to ”measure” the amount of information ? Suppose we have
two independent messages x1 and x2 with information f(x1) and f(x2), respectively. The
probability of two independent messages is the product of the probabilities of each of these
two independent messages. Yet, the information adds linearly. Therefore, we require for
the information function f f(x1x2) = f(x1) + f(x2). The only function, which satisfies
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Figure 1:

this relation is the log-function. Therefore, we define the information in a signal xi as

I(xi) = − log2 p(xi)

The minus sign makes the information positive as probabilities are always between zero
and 1. The units of information are ”bits” and the definition above also defines the
units of a bit. For example, if we have a coin, with equal probabilities ”up”and ”down”,
then p(”up”) = p(”down”)=0.5. If we throw the coin, we will obtain the information
I = −log2(0.5) = 1, irrespective on whether the coin falls face ”up” or ”down”. Therefore,
the coin gives one bit of information.

2.1.1 Entropy

Suppose the coin is corrupted, such that the probabilities for p(”up”) and p(”down”) are
not equal. Then the average amount of information, which we obtain after throwing the
coin once is

S = −
∑

i

pilog2(pi)

This quantity is well known as the Entropy. The entropy is a quantity of the message set
and is not defined for an individual message. The entropy of a message with N possible

signals, all equally likely, is −
N∑

i=1

1
N

log2
1
N

= log2(N) The entropy is hence equivalent

to the logarithm of the number of possible states for equally likely states. Notice, that
for N possible signals, the entropy is maximal when all signals have equal probability !
This is compatible with the physical interpretation of entropy as a measure of disorder:
entropy is maximal for maximal disorder, which obviously is the case when all N signals
are independent and all have equal probability.

For continuous distributions, the discrete summation is replaced by an integration:

S(X) = −
∫
X

p(x) log2 p(x)dx

For example, the entropy of a gaussian-distributed set with mean µ and variance σ2, is
given by

S = −
+∞∫

x=−∞

1√
2πσ

e−
(x−µ)2

2σ2 log2

(
1√
2πσ

e−
(x−µ)2

2σ2

)
=

1

2
log2(2πeσ2) (1)
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Notice that the entropy, for obvious reasons, does not depend on the mean. However, it
does depend on the variance σ. If σ approaches zero, the gaussian distribution approaches
a δ-function and uncertainty decreases. This explains why the entropy decreases as the
variance decreases. When σ is becomes too small (σ <

√
2πe), the entropy becomes

negative, which is due to ”pathologies” in the behavior of the gaussian distribution (p(x) >
1 for x close to the mean µ).

2.1.2 Mutual information

Since information coding and information transmission usually are partially corrupted by
noise (see fig. 1), we have to distinguish between the information in the original signal x
and in the final signal y. In fact, we want signal y to tell us as much as possible about the
original signal x, such that we could reconstruct the original signal as good as possible. So
except for the entropy of the signal y itself, we might wonder what the average information
gain is from what a signal y tells us about the set of events that could happen.

The Entropy of a response y to a given stimulus x is

Hs = −
∑
y

p(y|x)log2p(y|x)

Averaging over all stimuli gives the ”noise-entropy”

Hnoise =
∑
x

p(x)Hs = −
∑
x,y

p(x)p(y|x)log2p(y|x)

This noise-entropy relates to the response variability that is not due to the changes in the
stimulus. The mutual information is obtained by subtracting Hnoise from the response
entropy:

Imutual = Hy − Hnoise = −
∑
y

p(y)log2p(y) +
∑
x,y

p(x)p(y|x)log2p(y|x)

With p(y) =
∑

x p(x)p(y|x), we obtain

Imutual =
∑
x,y

p(x)p(y|x)log2

(
p(y|x)

p(y)

)

and using p(y, x) = p(x)p(y|x) = p(y)p(x|y) gives

Imutual =
∑
x,y

p(x, y)log2

(
p(x, y)

p(y)p(x)

)

For continuous values of stimulus and response we can rewrite the mutual information
as

Imutual =
∫
X

∫
Y

dxdyp(x, y)log2
p(x, y)

p(x)p(y)
(2)

The ”Mutual Information” (sometimes also called ”cross-entropy”) is symmetric in its ar-
guments and describes the average amount of information that can be gained by receiving
a message y when a signal x is sent (or the other way around). Notice that we can rewrite
the mutual information in terms of entropies:

Imutual = S(X) + S(Y ) − S(X, Y )
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If the two messages are completely independent, the mutual information is zero. Mutual
information unequal to zero reflects a correlation between x and y. The mutual infor-
mation in a communication channel describes the average amount of information we can
expect to flow between input and output events.

The mutual information is related to a measure, which is used frequently in statistics
and which is called the Kullback-Leibler (KL) divergence. The KL divergence provides a
measure for the ”distance” between two probability density functions P (x) and Q(x). It
is defined as

DKL(P, Q) =
∫
X

dx P (x) log2

(
P (x)

Q(x)

)
(3)

Notice that DKL(P, Q) ≥ 0, and DKL(P, Q) = 0 only if the two distributions are equal:
P (x) = Q(x) for all x.However, unlike distance, it is not symmetric with respect to the
distributions P and Q. Therefore, the KL-divergence is not a true ”metric”.

2.2 Maximum Likelihood and Maximum A Posteriori Estima-

tors

A prototypical statistical problem is to estimate the value of some parameter θ from a
finite set X = {Xi} of data. In the context of sensory coding, θ is a stimulus in the
stimulus domain Θ, and the information about this stimulus is contained in the activities
{ri, i = 1, ..., N} of a population of a large number of N neurons. Since θ is described as a
parameter, this implies the existence of a family of probability densities p(r; θ) for θ ∈ Θ.
When we make the assumption that the observations ri are independent samples from an
unknown density, then the likelihood is a product of set of conditional probability density
functions of θ defined by

L(θ; r) = p(r|θ) =
∏
i

p(ri|θ)

where p(ri|θ) represents the probability to measure neuronal activity ri given the stimulus
θ. The maximum likelihood estimator (MLE) associates to each set of data a value of θ̂,
which maximizes L(θ; r):

θ̂(r) =
argmax

θ L(θ; r)

Instead of maximizing the likelyhood, it is easier to find the maximum of the logarithm
of the likelyhood since the logarithm maps the product of conditional probabilities into
a sum of logarithms of conditional probabilities. The maximum likelyhood is then found
by solving the equation

∇θ log L(θ; r) = ∇θ

N∑
i=1

log p(ri|θ) = 0

Therefore, the MLE is the value of θ that maximizes the likelyhood p(r|θ).
According to Bayes’ relation the posterior density of θ can be found by

p(θ|r) ∝ p(r|θ)p(θ) = L(θ; r)p(θ)

The maximum a posteriori (MAP) estimator of θ maximizes p(θ|r), or equivalently,
L(θ; r)p(θ). Thus MLE is a MAP estimator for the ”flat” prior over p(θ).
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2.3 Fisher Information

A natural framework to study how neurons communicate, or transmit information, in the
nervous system is information theory. Suppose we are collecting data and we know that
each data sample comes from either of two distributions f1(x) and f2(x). (The number
of 2 can easily be extended to any arbitrary number of distributions.) Define I(1 : 2)
as the average information per observation or sample from distribution f1(x) in favor of
discrimination for the hypothesis that the sample is from f1, against the hypothesis that
the sample is from f2. By this definition, I(1 : 2) is a measure for the average information
which is available to decide in favour of class 1 relative to class 2, given a sample from
class 1. This definition gives

I(1 : 2) =
∫

f1(x)log
f1(x)

f2(x)
dx

It is easy to see, that I(1 : 2) approaches infinity when the two distributions are
disjunct, and that I(1 : 2) is zero, when f1(x) = f2(x). Also note, that I(1 : 2) ≥ 0 at all
times. There are some conditions, which may seem pathological. Take for example the
distributions f1, which is defined as f1(x) = 1/x1 for 0 ≤ x ≤ x1 and zero otherwise, and
f2, which is defined as f2(x) = 1/x2 for 0 ≤ x ≤ x2 and zero otherwise, with x2 > x1. In
that case f1, I(1 : 2) = log x2

x1
, but I(2 : 1) does not exist. This can be remedied easily by

setting some requirements, for example by requiring that a distribution f(x) 6= 0, which
is true for a gaussian distribution.

We now define the Divergence

J(1, 2) = I(1 : 2) + I(2 : 1) =
∫

(f1(x) − f2(x))log
f1(x)

f2(x)
dx

Notice that

• J(1, 2) = J(2, 1) ≥ 0

• J(1, 1) = 0.

• triangle inequality does not hold.

J(1, 2) is a measure for the divergence between the hypotheses H1 and H2 and it is a
measure for the difficulty to discriminate between H1 and H2.

Now suppose that we receive data from a neuron and we have to decide whether the
neural response codes stimulus θ or stimulus θ + ∆θ. Then

J(θ, θ + ∆θ) =
∫

(f(θ) − f(θ + ∆θ))log
f(θ)

f(θ + ∆θ)
dθ (4)

=
∫

(f(θ + ∆θ) − f(θ))log
f(θ + ∆θ)

f(θ)
dθ (5)

≈
∫

∂f

∂θ
∆θlog

f(θ) + ∆θ ∂f
∂θ

f(θ)
dθ (6)

=
∫

∂f

∂θ
∆θlog(1 +

∂f
∂θ

f(θ)
∆θ)dθ (7)

8



≈
∫

f(θ)

( ∂f
∂θ

f(θ)

)2

(∆θ)2dθ (8)

=
∫

f(θ)

(
∂logf(θ)

∂θ

)2

(∆θ)2dθ (9)

= −
∫

f(θ)
∂2logf(θ)

∂θ2
(∆θ)2dθ (10)

The latter step assumes that the function f(θ) is symmetric (see below). This defines

the Fisher Information, which is defined by
∫

f(θ)
(

∂logf(θ)
∂θ

)2
dθ or, which is equivalent,

by −
∫

f(θ)∂2logf(θ)
∂θ2 dθ (see below).

Suppose we have a set of N neurons, whose activity is represented by the vector r.
This vector r then codes a specific signal θ. The Fisher information is a functional of
p(r|θ) and can be interpreted as the amount of information in r about the stimulus θ.
The Fisher information is defined by

J [r](θ) = E[−
∂2

∂θ2
log p(r|θ)] =

∫
drp(r|θ)

(
−

∂2logp(r|θ)
∂θ2

)
(11)

Note that, if the additional assumption is made that the probability function p(r|θ) is
symmmetric, like for a gaussian function, the Fisher Information can also be written as

J [r](θ) =
∫

drp(r|θ)
(

∂logp(r|θ)
∂θ

)2

This follows easily from the following:

∫
p(r|θ)

(
∂logp(r|θ)

∂θ

)2

dθ =
∫

p(r|θ)
1

p(r|θ)2

(
∂p(r|θ)

∂θ

)2

dθ

Starting from the other equation gives

∫
drp(r|θ)

(
−

∂2logp(r|θ)
∂θ2

)
= −

∫
drp(r|θ)

∂

∂θ

(
1

p(r|θ)
∂p(r|θ)

∂θ

)
(12)

= −
∫

drp(r|θ)


− 1

p(r|θ)2

(
∂p(r|θ)

∂θ

)2

+
1

p(r|θ)
∂2p(r|θ)

∂2θ


(13)

=
∫

drp(r|θ)
1

p(r|θ)2

(
∂p(r|θ)

∂θ

)2

+
∫

dr
∂2p(r|θ)

∂2θ
(14)

With the assumption that the probability function p(r|θ) is a symmetric function of θ ,
the second term is zero, which proves that both definitions are identical for symmetric
functions.

The Fisher information is a measure of the expected curvature of the log likelihood
at the stimulus θ. Curvature is important because the likelihood is expected to be at a
maximum near the true stimulus value θ that caused the responses. If the likelihood is
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very curved, and thus the Fisher information is large, responses typical for the stimulus
are much less likely for slightly different stimuli. If the log-likelihood is very flat, and thus
the Fisher information is small, responses common for the stimulus θ are likely to occur
for for different stimuli as well.

It is important to stress, that the Fisher information itself is not an information
quantity. Rather, the Fisher information gives a measure for the accuracy to discriminate
between different values of the stimulus near θ given the signals r. The terminology comes
from an intuitive interpretation of the bound: our knowledge (”information”) about a
stimulus θ is limited according to this bound.

Because the generation of actionpotentials by each neuron is an independent process,

the responses ri can be assumed to be independent. As a result J [r](θ) =
N∑

i=1
J [ri](θ)

so, that J is of the order of N , implying that the typical fluctuations of the ML estimate
scale as N− 1

2 . This is in contrast to the bias of the ML-estimate, which is of the order of
N−1. Hence, the variance is the dominant contribution to the error in the estimate in the
limit for large N .

One of the reasons of the importance of the Fisher Information in neuronal information
processing is found in the Cramer-Rao inequality, which states that the Fisher information
J(θ) provides a lower bound for the mean squared error of any unbiased estimator:

〈
(θ̂ − θ)2

〉
≥

1

J [r](θ)
.

This means that the Fisher information is a measure of how well one can estimate a
parameter from an observation with a given probability distribution. Since the variance
of the MLE approaches the inverse of the Fisher information, the MLE is asymptotically
optimal.

2.4 Mutual information and Fisher Information

Consider an observable r and some stimulus θ. The information about the stimulus θ in
the observable (response) r is given by

∫
dNr p(r|θ)log

p(r|θ)
p(r)

A frequently used measure to express the information contained in two parameters, is
the mutual information, which is the only quantity (up to a multiplicative constant)
satisfying a set of fundamental requirements. For an observable r and a stimulus θ, the
mutual information is defined by

I(θ, r) =
∫

dθdNr p(θ)p(r|θ) log
p(r|θ)
p(r)

(15)

and can also be defined as the average information in r over all stimuli θ.
The mutual information is closely related to the concept of entropy. Entropy is a mea-

sure for the information required to code a variable with a certain probability distribution
by characterizing how many states it can assume and the probability of each. The entropy
H(θ) = −

∫
dθ p(θ) log p(θ) corresponds to the number of bits required to specify all
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stimuli. Similarly, the entropy H(r) = −
∫

dN r p(r) log p(r) corresponds to the number
of bits required to specify all possible neuronal responses. The entropy in the neural re-
sponse r given the stimulus θ is defined by H(r|θ) =

∫
dθdNr p(θ)p(r|θ) log p(r|θ). The

mutual information, which is the information about the stimulus preserved in the neural
response, is given by H(θ) − H(θ|r) = H(r) − H(r|θ), which is equivalent to Eq. 15 .

Suppose there exists an unbiased efficient estimator θ̂ with mean θ and minimal vari-
ance (according to Cramer-Rao !) equal to the inverse of the Fisher matrix J(θ). With the
definitions given above, the mutual information (i.e. the amount of information gained
about θ in the computation of the estimate θ̂) is

I(θ, θ̂) = −
∫

dθ̂p(θ̂) log p(θ̂) +
∫

dθρ(θ)
∫

dθ̂p(θ̂|θ) log p(θ̂|θ).

This is truly an information metric, since the first term represents the entropy of the
estimator θ̂ and I(θ, θ̂) represents the gain of information about θ in the computation of
that estimator. The term −

∫
dθ̂p(θ̂) log p(θ̂) is the entropy given θ̂, which for each θ is

smaller than the entropy of a gaussian distribution with the same variance J−1(θ). Since
processing cannot increase information, the information I(θ, r) conveyed by r about θ is
at least equal or greater than that conveyed by the estimator. This gives

I(θ, r) ≥ I(θ, θ̂) ≥ −
∫

dθp(θ) log p(θ) −
∫

dθρ(θ)
1

2

(
2πe

J(θ)

)
(16)

where the last term at the right hand side follows straightforward for a gaussian distribu-
tion with variance J−1(θ) (see also Eq. 1).

When the distribution of the estimator is sharply peaked around its mean value (which
implies J(θ) ≫ 1) the entropy of the estimator becomes identical to the entropy of the
stimulus. When the estimator has a non-gaussian distribution, the inequality will be
strict.

3 Probabilistic interpretation of population codes.

The starting point for almost all work on neural population codes is the neurophysiological
finding that many neurons respond to a particular variable underlying a stimulus (such
as the sensitivity of neurons in visual cortex to the orientation of a luminous line; see fig
2) according to a unimodal tuning function. For neurons involved in sensory perception,
the set of variables, which affect the response of a neuron, is usually referred to as the
receptive field. However, for neurons involved in movements a better terminology would
be ”movement field”. Cells in motor cortex have as ”preferred movement direction”: they
show the largest firing rates for movements in a particular direction. The firing rate
seems to decrease with the cosine of the angle between movement direction and the cell’s
preferred movement direction (see figure 3). In order to summarize both types of neurons,
and especially neurons in the sensory-motor pathway where neural responses have both
sensory and motor components, we will use the term ”response field”. The value or set of
values of the variables underlying the response field, which produce a peak in the tuning
function, will be called the ”preferred value”.

The response field plays an important role in interpreting neuronal population codes.
For many brain structures, the response fields of neurons are not known. Only for neurons
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Figure 2: Orientation and direction preference of cortical cells. (a) Oriented bars moving
across the receptive fields (black boxes) of neurons evoke response which are stronger when
stimulating with the preferred orientation of the nerve cell (see examples of spike trains
on the right). (b) The rate A of one neuron in dependence of the stimulus orientation Φ
yields the tuning curve of the neuron. The response in (b) is only orientation selective,
while the response in (c) displays direction selectivity.

Figure 3: A. Recordings from cells in motor cortex in an arm reaching task. The hand
of the monkey started from the middle target location and the monkey was instructed to
make movements to each of the 8 surrounding targets, at 45 deg intervals. The rasters
for each movement direction show action potentials fired on five trials. B. Average firing
rate plotted as a function of movement direction.
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in rather peripheral sensory pathways (such as retina, Lateral Geniculate Nucleus, area
V1 in visual cortex) of motor pathways (for example motor cortex), it is possible to
determine the response field. However, for neurons in more central brain structures, the
relevant sensory and motor features, which underly the response field, may be very hard
to discover.

Several authors have used gaussian white noise as stimulus. The reason for using
white noise is that the characteristics of a dynamical system are hard to determine,
because what happens now depends on what happened before. Thus all possible stimuli
and neural responses have to be considered for a full characterization of the system. The
use of Gaussian-White-Noise (GWN) stimuli is attractive, since a GWN-signal has the
largest entropy given a particular variance and as such contains all possible combinations
of stimulus values in space and time.

As a first order (linear) approximation, the response field Ri(t) of neuron i can be
defined by the crosscorrelation of the gaussian white noise stimulus x(t) and the neuronal
response ri(t). This crosscorrelation can be shown to be equal to the averaged stimulus
preceding an action potential or to the averaged response following a spike. We will refer
to this as the averaged peri-spike-event:

RPSE(τ) =
1

2T

T∫
−T

x(t − τ)ri(t)dt (17)

=
1

2T

T∫
−T

x(t − τ)
∑
n

δ(t − tn)dt (18)

=
∑
n

1

2T
x(tn − τ) (19)

where the response ri(t) of neuron i is represented by a sequence of δ-pulses and where tn
is the time of occurrence of action potential n. As we will see later, this crosscorrelation
technique can provide a first step to characterize the conditional probability p(r|θ). How-
ever, for neurons with complex properties, the complexity of the GWN stimulus increases
exponentially with the number of dimensions of the stimulus. Therefore, this approach
to characterize the response field is only useful for neurons with simple, low dimensional
response fields.

The characteristic properties of the response field can provide information to answer
the question ”How is an external event x(t) in the world encoded in the neuronal activity
r(t) of the cells”. A full characterization of the response field of a neuron (both spatial
and temporal properties !) implies that the density function p(r|θ) is known. The re-
sponse fields are also indispensible for answering the question about the sensory or motor
interpretation of neural activity. The response fields allow the mapping from the set of
activities in a neural population r(t), with ri(t) representing the activity of neuron i at

time t, to the events in the external world by Bayes’ relation: p(θ|ri) = p(θ)p(ri|θ)
p(ri)

.
Since the generation of action potentials is a stochastic process, the problems described

above have to be addressed in a probabilistic way. We will define p(r|x) as the probability
for the neuronal activity r given the stimulus x. The simplest models assume that neuronal
responses are independent, which gives p(r|x) =

∏
i

p(ri|x). For the time being, we will
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assume independence of firing. The case of correlated firing between neurons will be
discussed later. A Bayesian decoding model specifies the information in r about x by

p(x|r) ∝ p(r|x)p(x) (20)

where p(x) gives the prior distribution about x. Note that starting with a specific stimulus
x, encoding it in the neural activity r, and decoding it results in a probability distribution
over x. This uncertainty arises from the stochasticity of the spike generating mechanism
of neurons and from the probability distribution p(x).

4 Models for population codes

4.1 Simple version of Population Coding

The most simple and straightforward interpretation of neuronal population activity is
obtained by simple summation of the response fields Ri of all neurons i, weighted by the
firing rate ri of each neuron:

xest =

N∑
i=1

ri(x)Ri

N∑
i=1

ri(x)
(21)

This choice corresponds to the so-called center-of-gravity estimate. Center-of-gravity cod-
ing can be statistically optimal. This is the case for perfectly regular arrays of sensors with
gaussian tuning profiles that have an output described by independent Poisson statistics,
and for arrays of sensors with a sinusoidal tuning profile for the parameter estimated.
However, there are many cases in which center-of-gravity decoding is highly inefficient.
This includes the important case (which is observed at nearly all parts of the brain), where
sensor positions or response fields are not regularly spaced. We will come back on this
topic later. Moreover, the center-of-gravity approach assumes a homogeneous distribu-
tion of response fields in the event space and a homogeneous distribution of stimuli x for
sensory neurons. Given these assumptions, any deviations between the center-of-gravity
result and the true parameter value are small provided that the noise is small and that
the neurons sample the parameter space sufficiently dense. Moreover, the question arises,
whether the estimate of this population coding scheme is optimal in the sense that it
is unbiased and that the variance in its estimate is small. A good estimator should be
unbiased, which is the case when the estimator gives the (expectation value of the) true
stimulus x. The center-of-gravity method is virtually bias-free. However, this simplistic
version of the population vector is inefficient in the sense that the variance of the estimate
is much larger than the smallest possible variance.

One of the first experimental data demonstrating the importance of the concept of
population coding were obtained from motor cortex. Neurons in the arm area of primate
motor cortex in monkey are broadly tuned in the sense that they increase firing rate
for a broad range of arm movement directions (see figure 3). Each neuron appears to
have a preferred movement direction (i.e. the movement direction, which corresponds to
the largest response modulation of the neuron) and preferred movement directions are
approximately homogeneously distributed in 3-D space. In the literature the population
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Figure 4: Gaussian tuning curves representing the firing rate of a neuron as a function of a
stimulus feature. A. Single neuron cannot ambiguously decode the stimulus feature from
the firing rate. B. A second neuron with shifted tuning curve can resolve the ambiguity.

activity has been interpreted as

M(r) =
N∑

i=1

riMi

where Mi is the preferred movement direction of neuron i and where M represents the
estimated movement direction of the arm. Quite remarkably, the estimated movement
direction by the population vector was very close to the actual measured movement di-
rection of the monkey’s arm.

For a simple array of N independent sensors with unit spacing between consecutive

sensors and with a gaussian tuning function fn(θ) = exp
[
−1

2

(
n−θ

σ

)2
]

and with gaussian

noise Wn superimposed on the response of neuron n (Rn = fn(θ) + Wn), the Fisher

Information is given by 1
N2

∑
n

(
∂fn(θ)

∂θ

)2
. According to the Cramer-Rao bound, the minimal

variance is given by N2∑
n

(f ′

n(θ))2
. When the summation is replaced by integration, which is

a good approximation for large N and sufficiently large σ, the minimal variance reduces
to 2σN2√

π
. Note, that the minimum attainable variance increases with the sensor tuning

width σ, a result which is similar to the Maximum Likelihood result (see section 4.2 and
Fig. 1). Also notice, that the Fisher Information for this neuron is proportional to the
derivative of the receptive field. This can be understood from the following: when the
slope is steep, a small change in e.g. stimulus orientation (for visual cortical cells) causes
large changes in firing rate. Therefore, most of the information about the orientation of
the visual stimulus is coded by neurons, which have the optimal tuning just neighboring
to the orientation of the stimulus.

The results above show, that the minimal variance of the center-of-mass model is
proportional to σ, i.e. the minimal variance increases as a function of the tuning width
σ. Hence, it is advantageous to use narrowly tuned sensors. If we compare the variance
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of the center-of-gravity model with that of the Cramer-Rao lower bound, we obtain

V ar(θCR)

V ar(θCG)
≤

6
√

πσ3

N−1
2

N+1
2

N+3
2

This illustrates that the efficiency of the center-of-gravity coding is low when the number
of neurons is large. This is easily explained. When the number of neurons is large relative
to the tuning width, many neurons do not respond to a stimulus, but do contribute to
the population average by their noise, since sensor noise is independent of the response.
Therefore, neurons, which do not respond to the stimulus, do contribute to the noise in
the population average.

The analysis so far was for regular arrays of neurons. It can be shown that when the
receptive fields of neurons are highly irregularly distributed, the largest contribution to
errors in the center-of-gravity method originate from these irregularities, rather than from
neuronal noise. As we will show below, the ML-estimate does not suffer from irregulari-
ties. Some linear estimators have been proposed which do not suffer from irregularities in
the distribution of receptive fields either. However, these models do come at a price. The
regular center-of-gravity estimator only needs to know the optimal stimulus parameter,
whereas the models, that have been proposed to compensate for irregularities in distri-
bution, also require knowledge of the distribution of neuronal tuning or overlap of tuning
functions to invert a covariance matrix of neuronal activities .

4.2 Poisson model

Under the Poisson encoding model, the neuronal activities ri(t) are assumed to be inde-
pendent with

p(ri|x) = e−fi(x) (fi(x))ri

ri!

where fi(x) is the tuning function for neuron i and where ri(t) represents the firing rate
or the number of action potentials in a particular time interval.

With regard to decoding, several studies have used Maximum Likelyhood (ML) for
the Poisson encoding model. The ML estimate gives the stimulus x, which maximizes the
likelyhood p(r|x). It is defined as:

xML =
argmax

x p(r|x)

The ML estimate can be obtained by differentiating the logarithm of the response
probability distribution

∂ log p(r|x)

∂x
=

∑
n

∂ log p(rn|x)

∂x
=

∑
n

[
f ′

n(x)

fn(x)
rn − f ′

n(x)

]
(22)

For neurons with a gaussian tuning profile fn(θ) = exp
[
−1

2

(
θn−θ

σ

)2
]

and with a regular,

homogeneous distribution, the ratio f ′

n(θ)
fn(θ)

equals (θn−θ)/σ2. For sufficiently dense neuron

distributions, Eq. 22 reduces to 1
σ2

∑
n

(θn − θ)rn. The optimal estimate is obtained when

the derivative in Eq. 22 is set to zero, which gives

θ̂ML =

∑
n

θnrn∑
n

rn
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This result is identical to the center-of-gravity estimate for a regular homogeneous array
of neurons. It illustrates that for a regular, homogeneous distribution of neurons with
gaussian tuning functions and independent Poisson noise, the center-of-gravity method is
optimal from a statistical point of view.

The full probability distribution over the quantity x from this Poisson model is

p(x|r) ∝ p(x)
∏
i

e−fi(x) (fi(x))ri

ri!

For independent noise between the neurons finding the ML estimate implies maximiza-
tion of the likelyhood p(r|x). For a large number of neurons, the estimate is unbiased and
the variance is given by E[(xest−x)2] = 1

J [r](x)
, where J [r](x) is the Fisher information as

defined in Eq. 11. With the assumption of independent noise across units, the expression
for the Fisher information becomes

J [r](x) =
N∑

i=1

E[−
∂2

∂x2
log p(ri|x)]

where E[..] refers to the expectation value of the argument.
When the stochastic behaviour of neuronal firing is modeled by normally distributed

noise on the response with variance σ2 (p(ri|x) ∝ exp
(
− (ri−fi(x))2

2σ2

)
) (i.e., when p(ri|x) ∝

exp
(
− (ri−fi(x))2

2σ2

)
, then the Fisher information matrix is given by

J [r](x) =

N∑
i=1

f ′
i(x)2

σ2
(23)

where f ′
i(x) = ∂fi(x)

∂x
. This follows from

E

[
−

∂2

∂x2
logp(ri|x)

]
= E

[
−

∂

∂x

(ri − fi(x))

σ2
f ′

i(x)

]

= E

[
−

ri − fi(x)

σ2
f ′′

i (x) +
(f ′

i)
2(x)

σ2

]

=
(f ′

i)
2(x)

σ2

For Poisson distributed noise the Fisher information matrix for the MLE is given by

J [r](x) =
N∑

i=1

f ′
i(x)2

fi(x)
(24)

This follows from

J [r](x) =
N∑

n=1

E

[
−

∂2

∂x2
logp(rn|x)

]

=
N∑

n=1

E

[
−

∂

∂x

(
f ′

n(x)

fn(x)
rn − f ′

n(x)

)]

=
N∑

n=1

E

[
−

f ′′
n(x)

fn(x)
rn +

(f ′
n)2(x)

f 2
n(x)

rn + f ′′
n(x)

]
=

N∑
n=1

f ′
n(x)2

fn(x)
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Figure 5: Fisher information (J/Nfmax) for the population of neurons with tuning func-
tions according to Eq. 25 for the ML-estimate (solid line and broken line) and for the
population vector (dotted line and dashed-dotted line) for ratio’s of 0.1 (dashed line and
dashed-dotted line) and 0.01 (solid line and dotted line) of fmin and fmin + fmax as a
function of tuning width a in degrees.

The Cramer-Rao inequality states that the average squared error for an unbiased
estimator is greater than or equal to the inverse of the Fisher Information. Hence, the ML
estimator is asymptotically optimal for the Poisson model, since its variance approximates
the lower bound for a large number of neurons.

These ideas are illustrated in Figures 5 and 6, which show the Fisher information (the
inverse of the variance in the ML estimate) for a hypothetical population of neurons in
visual cortex. Each neuron is thought to have an optimal orientation sensitivity θi and
the mean response of neuron i to a stimulus θ is given by

f(θ − θi) =

{
fmin + (fmax − fmin)cos2(π

a
(θ − θi)) if |θ − θi| < a/2

fmin otherwise
(25)

where a is the width of the receptive field of the neuron. When the stimulus θ is close to
the preferred direction of the neuron, the probability of a large response is high. When
the stimulus is outside the receptive field, the response is small with mean firing rate
fmin. For the ML-estimator the Fisher information (Eq. 24) is proportional to Nfmaxa

−1,
which demonstrates that the Fisher information diverges when the width a approaches
zero. The Fisher information for the ML-estimator decreases gradually for larger values
of a, approaching the value zero (infinite variance !) for very large values of a.

For the population vector model with the tuning function according to Eq. 25, the
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Figure 6: Figure 6 shows the variance for the population vector estimate for number of
neurons N= 103 (dashed line) and for N=104 (solid line) as a function of the tuning width
of the same set of neurons as in Fig. 5. Note that variance is related to the inverse of the
Fisher Information.

variance (i.e. the inverse of the Fisher information) is given by f̄o−f̄2

2Nf̄2
1
, where f̄n is the n-th

Fourier component defined by f̄n = 1
2π

2π∫
0

einθf(θ)dθ. Obviously, the Fisher information

for the population vector model mainly depends on the width a of the tuning function
and on the background noise fmin. For small values of a, the Fisher information is zero,
increases with a reaching a maximal value for finite values of a (see Fig. 5) after which the
Fisher information decreases for larger values of a. It can be shown that the optimal width
amax is proportional to the ratio of background activity fmin to peak activity (fmin+fmax)
to the power 1/3.

For the simple population vector (center of gravity vector), the Fisher information is
zero for very small and very large values of a and therefore, the variance is infinity. This
can be understood from the fact, that for small receptive fields a most neurons are below
threshold and contribute noise with variance fmin without contributing to the signal. In
contrast, the Fisher information increases for smaller values of a for ML, because ML
is based on the gradient of the response (see Eq. 24), which approaches infinity for
small a. As the tuning curve becomes more narrow, the increase in signal |f ′| more than
offsets the decrease in the number of neurons above threshold. In addition, the number of
neurons below threshold are completely ignored by the ML estimator. Both for ML and
the population vector, the information decreases (and the variance increases) for large
receptive fields, since for large receptive fields, a single stimulus will excite many neurons
by the same amount, such that an accurate discrimination between responses of different
neurons becomes impossible.

The ML model has several problems. First of all, the ML estimator assumes that
there is one single stimulus x (for example one single visual bar at a given orientation for
neurons in V1) which caused the neuronal activity. If multiple stimuli were present, the
Poisson model will fail. Moreover, sometimes the estimation of the optimal decoding may
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require the whole probability distribution p(x|w) over all values of the variable x, where
w represents all available information. The Poisson model will not be able to provide such
a distribution in many cases. For example, when the tuning function fi(x) is gaussian
with an optimal stimulus xi for neuron i, then

log p(x|r) ∝ log

[
p(x)

∏
i

e−fi(x) (fi(x))ri

ri!

]
(26)

= C1 −
∑

i

fi(x) −
1

2σ2

∑
i

ri(x − xi)
2 (27)

= C2 −
1

2



∑
i

ri

σ2




x −

∑
i

rixi∑
i

ri




2

. (28)

This distribution has a mean µ =

∑
i

rixi∑
i

ri
and a variance σ2∑

i

ri
. Taking the mean

of the distribution would give a single value, which is the same as that of the centre-of-
gravity estimate, even in the case when the neuronal response was elicited by multiple
stimuli. Therefore, the distribution of p(x|r) for the Poisson model for this model with
gaussian tuning curves is unimodal. In addition, the variance will always be smaller
than the variance of the gaussian tuning function, since

∑
i

ri ≥ 1 for reasonably effective

sets of stimuli. Thus the Poisson model is incapable of representing distributions that
are broader than the tuning function, which points to a second problem for the Poisson
model. Obviously, the proper way to find the true (set of) stimuli is to estimate the full
conditional probability p(x|r).

4.3 Optimum Linear Estimator (OLE)

The simplest possible estimator is an estimator that is linear in the activities r of the
neurons, which suggests a solution xest = W T r, where the problem is to find the optimal
matrix W, which minimizes the mean square distance between the estimate xest and the
true stimulus x:

w =
argmin

W E[(xest − x)2]

One can think of the linear estimator as being the response of a two-layer Perceptron-
like neural network with a set of output units, where output unit i has weights wi to the
input r and where W is the matrix with columns wi.

The OLE is known to be unbiased for a large number of units. Its variance given x is
given by

E[(x̂OLE − E{x})2] =
N∑

i=1

w2
i σ

2
i

where σ2
i = σ2

n for normally distibuted noise with variance σ2
n, and σ2

i = fi(x) for
Poisson distributed noise.

Note, that the OLE model suffers from the same problem as the center-of-gravity
estimate in the sense that many neurons contribute their noisy output to the population
estimate, whereas only few neurons may respond to a stimulus. Therefore, a compromise
has to be made between small tuning widths for a high resolution versus broad tuning
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widths to elimate noise by averaging responses, thereby increasing the signal-to-noise ratio
of the estimate.

5 Overlap of receptive fields and correlated noise in

neural responses

In the analysis so far, we have made the assumption of independent noise in neighboring
neurons. Also, we have demonstrated that the optimal tuning of neurons depends on the
type of noise in the neural responses. In this section we will explore this in more detail,
in particular in relation to optimal tuning width of neurons and to optimal information
content of neuronal activity for various types of (correlated) noise.

5.1 Optimal receptive fields: broad or narrow ?

One of the central problems with population coding is how the neuronal code can be made
as efficient and as accurate as possible. It is a common believe that sharper tuning in
sensory or motor pathways improves the quality of the code, although only to a certain
point; sharpening beyond that point is believed to be harmful. This was illustrated
already in Figs. 5, which shows the Fisher information as a function of the receptive
field width of model neurons, which have an orientation specificity, similar to that of
neurons in visual cortex. Fig. 5 shows that sharp tuning (small receptive fields) is
not efficient for the population coding model, since for very small receptive fields, the
number of neurons, that respond to a narrow bar of light, is too small to reduce the
noise in the neuronal responses. For broader tuning, more neurons will respond to the
narrow bar, which allows noise reduction and improvement of the signal-to-noise ratio.
Obviously, the optimal receptive field size depends on several parameters, such as the
noise in the neuronal responses, the number of neurons, the distribution of receptive
fields (homogeneous versus nonhomogeneous).

The best way to proceed is to start with the Fisher Information J = E[− ∂2

∂θ2 log p(r|θ)]
where p(r|θ) is the distribution of the activity conditioned on the encoded variable θ and
E[..] is the expected value over the distribution p(r|θ). Instead of the Fisher information,
one could also have chosen the Shannon information, which is simply and monotonically
related to the Fisher information in the case of population coding with a large number of
units.

Let us consider first the case, in which the noise distribution is fixed. For instance, for
the population of neurons from the example in section 4.2, where we had a population
with N neurons with bell-shaped tuning curves and independent gaussian white noise with
variance σ2, the Fisher information reduces to

J =
N∑

i=1

f ′
i(θ)

2

σ2
(29)

where fi(θ) is the mean activity of unit i in response to the stimulus with orientation
θ, and f ′

i(θ) is the derivative with respect to θ. Equation 29 illustrates, that as the
width of the tuning curve decreases, the derivative f ′

i(θ) will become steeper and thus
the information increases up to infinity for infinitely small receptive fields. Clearly, this
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Figure 7: Two-layer neural network with feedforward excitatory connections between
input layer and output layer and with lateral connections in the output layer. For visibility,
only one representative set of connections is shown in each layer. The tuning of the input
units was chosen broad, whereas lateral ”mexican-hat”-like connections in the output layer
create narrowly tuned neurons in the output layer. Since information cannot increase, this
provides an example, where broad tuning in the input layer provides more information
(or at least as much) as narrow tuning in the output layer.

corresponds to the ML estimate, discussed in section 4.2, where narrow tuning is better
than broad tuning. Note, that for the same noise the minimal detectable change, which
is inversely proportional to the square root of the Fisher information, reveals that narrow
tuning may not be optimal for the population coding model (see Fig. 5).

When the noise distribution is not fixed, the results become different. Let us consider
a two-layer network with an input layer and an output layer, with feedforward connec-
tions from input to output neurons and with lateral inhibitory connections in the output
layer to sharpen the tuning curves (see Fig. 7). This case is particularly relevant for
neurophysiologists. Since the output neurons can never contain more information than
the input neurons, this model shows an example where broad tuning contains more infor-
mation than narrow tuning. However, sharpening is done by lateral interactions, which
induces correlated noise between neurons. The loss of information has to be attributed
to this correlated noise.

The results above demonstrate that the answer to the question whether broad or
narrow tuning is best, depends on the noise. In most neurophysiological experiments
measuring single-unit activity it is impossible to detect correlated noise and in most cases
it is not even possible at all to make a good estimate of the type of noise in the neuronal
response. Therefore, usually independent noise is assumed. In the example above, this
would lead to the erroneous conclusion that the output layer contains more information
than the input layer. This simple example demonstrates that a proper characterization
of the noise distribution is essential for a proper estimation and interpretation of the
neuronal activity in a population. Multi-unit recording techniques may be an excellent
tool for this purpose.

22



Many studies have convincingly demonstrated, that noise in a population of neurons
is correlated. When the fluctuations of individual neurons about their mean firing rates
would be uncorrelated, the variance of their average would decrease like 1/N for large N.
In contrast, correlated fluctuations cause the variance of the average to approach a fixed
limit as the number of neurons increases. The inverse of the Fisher information is the
minimum averaged squared error for any unbiased estimator of an encoded variable. It
thus sets a limit on the accuracy with which a population code can be read out by an
unbiased decoding method.

5.2 The effect of correlated noise on the information content of
neuronal activity

Let us consider a simple example of N neurons with firing rates ri with mean values fi,
identical variances σ2 and correlated variabilities so that

〈(ri − fi)(rj − fj)〉 = σ2[δij + c(1 − δij)] (30)

with the correlation coefficient c satisfying 0 ≤ c < 1. In this case, the variance of the
average of the rates

R̄ =
1

N

N∑
i=1

ri

is

σ2
R̄ =

σ2

N
[1 + c(N − 1)].

This illustrates that the variance increases as a function of the correlation c for fixed
N, and that for large N the variance approaches a fixed limit cσ2. A typical correlation
among activities of neurons in area MT (an area in the visual cortex, which is involved
in the processing of moving visual scenes) has been estimated at about 0.1 to 0.2. This
leads to the conclusion, that coding accuracy will not improve for populations of more
than about 100 neurons.

In order to obtain a more basic insight in the effect of correlated noise, let us assume
a population of N neurons, which respond to a stimulus with firing rates that depend on
a variable x that parameterizes some stimulus attribute. When the average activity of
neuron i to stimulus x is fi(x), its activity to a given trial is

ri = fi(x) + ηi

with ηi representing gaussian noise with zero mean and covariance matrix Q(x). We
will consider three different types of variability: additive noise, multiplicative noise and
correlation of noise for neurons within a limited range of each other. For additive noise,
the covariance matrix is given by Eq. 30. For the limited-correlation model with an
equidistant distribution of neurons the correlation matrix is given by

Qij = σ2ρ|i−j|

where parameter ρ (0 < ρ < 1) determines the range of correlations between neurones in
the population. The parameter ρ can be expressed in terms of a correlation length L by
writing

ρ = exp(−∆/L)
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where ∆ is the distance between peaks of adjacent tuning curves. For multiplicative noise,
the covariance matrix is scaled by the average firing rates:

Qij = σ2[δij + c(1 − δij)]fi(x)fj(x).

The Fisher information J(x) is the best measure to estimate the effect of correlated
noise on the population coding of stimulus x, since the discriminability d, which quantifies
how accurately discriminations can be made between two slightly different values x and
x + ∆x based on the response r, is related to the Fisher information by

d = ∆x
√

J(x)

The larger the Fisher information, the better the discriminability and the smaller the
minimum unbiased decoding error.

When the random noise η is drawn from a gaussian probability distribution, the prob-
ability distribution P [r|x], which determines the probability that a given response r is
evoked by the stimulus x, is given by

P [r|x] =
1

(2π)NdetQ(x)
exp

[
−

1

2
[r − f(x)]T Q−1(x)[r − f(x)]

]

which results in the Fisher information

J(x) = f ′(x)T Q−1(x)f ′(x) +
1

2
Tr

[
Q′(x)Q−1(x)Q′(x)Q−1(x)

]
(31)

where Q′(x) = dQ(x)
dx

and where f ′(x) = df(x)
dx

. When Q is independent of x, as it is for
additive noise and limited range correlations, then only the first term in Eq. 31 survives.

This equation also illustrates that when the covariance matrix Q is independent of the
stimulus (which includes that neural noise is the same for all neurons), the second term in
Eq. 31 vanishes and the remaining variance is identical to that for Maximum Likelyhood
(ML).

Additive noise
For the additive noise case and for large N , the Fisher information reduces to

J(x) =
N [F1(x) − F2(x)]

σ2(1 − c)

where F1(x) = 1
N

N∑
i=1

(f ′
i(x))2 and F2(x) =

(
1
N

N∑
i=1

f ′
i(x)

)2

. This explains that the

variance of the estimate (i.e. the inverse of the Fisher information) decreases with 1/N
for large N, and also decreases as a function of the correlation c. The minimal error goes
to zero as the correlation approaches one: any slight difference in the tuning curves can
be exploited to calculate the noise exactly and to remove it.

The Fisher information will grow to infinity for correlations approaching one, only as
long as F1(x) − F2(x) is not zero or does not approach zero for large N. When F1(x)
differs from zero for any x, this implies that always a fraction of the neurons will respond
to any x. This eliminates the case that F1(x) − F2(x) goes to zero for large N. The other
case that F1(x) − F2(x) = 0 requires that f ′

i(x) is independent of i. f ′
i(x) independent
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on i implies that all cells have the same tuning apart from a constant bias on the firing
rate, which would be a pathological situation.

Multiplicative noise
For the multiplicative noise model, the Fisher information for large N is given by

J(x) =
N [G1(x) − G2(x)]

σ2(1 − c)
+

N [(2 − c)G1(x) − cG2(x)]

(1 − c)
(32)

where

G1(x) =
1

N

N∑
i=1

(
d log fi(x)

dx

)2

and

G2(x) =

(
1

N

N∑
i=1

d log fi(x)

dx

)2

The second term in the Fisher Information, which does not depend on the noise variance
σ2, arises because with multiplicative noise the encoded variable can be estimated from
second order quantitaties, not merely from measurements of the firing rates themselves.

The Fisher information in Equation 32 is proportional to N (just as with the additive
noise model) and is an increasing function of the correlation c, provided that G1(x) >
G2(x). Since G1(x) ≥ G2(x) by the Cauchy-Schwartz inequality, the only way that the

Fisher information can become zero, is when G1(x) = G2(x), i.e. when d log fi(x)
dx

is
independent of i. In other words, except for contrived artificial neuronal networks the
Fisher information increases with correlation c and with the number of neurons N .

Limited range correlations
For limited-range correlations, the Fisher information is given by

J(x) =
N(1 − ρ)F1(x)

σ2(1 + ρ)
+

N1−2/DρF3(x)

σ2(1 − ρ2)
(33)

where F1(x) = 1
N

N∑
i=1

(f ′
i(x))2, D the number of encoded variables and where

F3(x) = N2/D − 1
N∑

i=1

(f ′
i+1(x) − f ′

i(x))2

(provided that the stimulus x is sufficiently far away from the boundaries of the stimulus
domain). For fixed N the Fisher information is a non-monotonic function of the parameter
ρ that determines the range and degree of the correlations. The first term in Eq. 33 is a
decreasing function of ρ and hence of L, the correlation length. The second term has the
opposite dependence. For fixed N, the first term dominates for small L, and the second
term dominates for large L.

In the limit for large N, eq. 33 approaches

J(x) =
N(1 − ρ)F1(x)

σ2(1 + ρ)

which illustrates that, unlike the additive and multiplicative cases, increasing correlation
decreases the Fisher information. However, the Fisher information still increases linearly
with N for any ρ < 1.
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Figure 8: Example of a two-layer feedforward neural network with feedforward connections
Wfor from input layer to output layer and with lateral interactions Wlat in the output
layer. For visibility, only one representative set of connections is shown in each layer.

This clearly illustrates that correlated noise can either lead to a decrease or an increase
of the Fisher information, depending of the underlying model. The reader should be aware,
that the models, discussed in this chapter are rather simple and all assume gaussian noise.
For more complex models (as will be the case in biology) and for other types of noise, the
results may not be valid.

6 Transformation of neural activity by the brain.

Most procedures discussed so far to estimate the neuronal activity are algorithmic ap-
proaches, suitable for off-line analysis by theoreticians. Some of the methods discussed
require the complete sequence of stimuli and neural responses; others require complex
analyses which do not seem to be biologically plausible. One might also wonder, how
the brain is able to transform neuronal activity so as to make it easier to interpret. It
might do so by mapping neuronal information in another format or to another frame of
reference. Therefore, we will discuss possible neural architectures for this purpose.

Consider a two-layered feed-forward network, which is fully connected from the input
to the output layer and with lateral connections in the output layer (Fig. 8). First we
will assume a linear activation function in the output layer with dynamics governed by
the following difference equation:

zt = ((1 − λ)I + λWlat)zt−1

where zt represents the output of the network at time t, with λ a real-valued positive
number in the interval [0,1], I the identity matrix, and Wlat a matrix for the lateral
connections between the output units. At t = 0 the output z0 is initialized to Wforr,
where r is an input pattern and Wfor is the feedforward matrix.
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The dynamics of this network can be solved analytically. When the feedforward con-
nections are equal to the lateral connections (i.e. Wfor = Wlat), it converges to a state,
corresponding to the eigenvector of the matrix (1−λ)I+λWlat with the largest eigenvalue.

A slightly more complicated situation arises, when the output neurons have nonlinear
activation functions. The weights Wlat can be set in such a way that a hill of activity
arises centered around the optimal state xest. Sufficient conditions for this to occur
are excitatory connections to neighbouring neurons and inhibitory connections to more
distant units, such as in the well known ”Mexican hat” profile of lateral connections (see
the ”winner-take-all” mechanism in the next chapter).

It can be shown that this recurrent network is able to provide a coarse code estimate
of a stimulus x, which is almost as efficient as the ML estimate for a large number
of neurons. However, the method is in general suboptimal when the activity of input
neurons is correlated.

These results show that it is possible to perform an efficient, unbiased estimation
with coarse coding using a biologically plausible neural architecture like the two-layered
recurrent neural network. The coarse coding and the lateral interactions serve to eliminate
uncorrelated noise within a neural population and to obtain a more accurate estimate.
In general, this recurrent network does not only preserve Fisher information. It can also
change the format of information to make it more easily decodable. Whereas ML is a way
to decode the input pattern efficiently, a complex estimator, or even a linear estimator,
is sufficient to decode the stable hill while reaching the Cramer-Rao lower bound for the
variance. One can therefore think of the relaxation of activity in the nonlinear recurrent
network in two ways: as a clean-up mechanism of uncorrelated noise, or as a processing
mechanism that makes information easier to decode.

7 Neurobiological data on neuronal population cod-

ing

Considering the many theoretical papers on efficiency of neuronal coding and about the
interpretation of neuronal activity, the number of studies dealing with real experimental
data is rather limited. This is certainly related to the fact, that application of the theo-
retical ideas on experimental data requires the simultaneous recording of many neurons in
the same experimental conditions (i.e. to the same stimulus or during the same behavioral
response). Simultaneous recording of actionpotentials from more than 10 neurons seems
prohibitively difficult. An approximative solution to this problem is to make the best
possible choice from various bad solutions: recording sequentially from single neurons in
(as much as possible) the same experimental conditions. The assumption then is, that the
neuronal system is time-invariant and that the response of a population of neurons can be
obtained by sustituting the responses of all individual neurons in the individual recording
conditions. Evidently, correlations in activity due to direct neuronal interactions in the
population are lost.

7.1 Neuronal population coding in the auditory nerve

A theoretical framework for a probabilistic interpretation of neuronal activity should make
a distinction between the most probable response given a stimulus (which is simply related
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Figure 9: A frequency sweep starting at 100 Hz and rising to 1500 Hz within a time interval
of 30 ms (upper panel) was presented to 64 model neurons. The tuning curve of each
model neuron had a band-pass characteristic with slopes of 48 dB/octave. The central
frequency (”characteristic frequency”) of the neurons were distributed equidistantly on a
logarithmic scale in the range between 200 and 2000 Hz. The output of the band-pass filter
was supplemented by random gaussian white noise, one-sided rectified, and subsequently
low-pass filtered by a low-pass filter with a 3-dB cut-off frequency at 1000 Hz and with a
slope of 6 dB/octave. This signal was fed into a leaky-neural integrator (time-constant 10
ms) and a spike-generating mechanism, which generated an impulse whenever a threshold
was exceeded in positive direction. The spike generating mechanism had an absolute
refractory period of 1 ms. The reconstruction (lower panel) of the neuronal activity was
obtained by substituting for each action potential the first order crosscorrelation between
a gaussian-white-noise auditory signal and the neuronal response of each model neuron
to this stimulus.

to the mean response fi(x) to stimulus x), and the most plausible stimulus x given the

neuronal response r, which follows from Bayes relation p(x|r) = p(x)
p(r)

p(r|x) ≈ p(x)
p(r)

fr(x).

As explained in sections 2.2 and 3, the simple population vector (Equation 21) is the maxi-
mum aposteriori estimator, given the measured neuronal activity r under the assumptions
of a homogeneous distribution of independently firing neurons with independent noise and
for a flat prior on the stimulus density space. Based on this result, the first order approxi-
mation implies the so-called population vector, which in this case implies that each action
potential might be ”substituted” by the most probable stimulus, which generated this ac-
tion potential, and that the complete stimulus could be approximated by the summation
of all most probable stimuli at the time of the action potentials of the individual neurons.
Note that this substitution is fully equivalent to the construction of the population vector.

This theoretical framework was applied to provide a sensory interpretation of the
activity in the auditory nerve. Neuronal activity in this study was obtained from a
simulation of a set of 64 neurons with stochastic firing in the auditory nerve with the
frequency selectivity equidistantly distributed on a logarithmic frequency scale in the
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range between 200 Hz and 2000 Hz. For more details about the model neurons, see
legend of Fig. 9).Figure 9 shows the stimulus in the upper panel (a frequency sweep from
100 Hz to 1500 Hz within 30 ms). The lower panel shows the reconstructed stimulus based
on the neuronal population activity recorded in the 64 model-neurons. The reconstructed
activity is noisy and small at the beginning of the sweep because of the low density of
neurons with a characteristic frequency at low frequencies. Moreover, the sweep starts at
100 Hz, whereas the lower characteristic frequency of the neurons is at 200 Hz.

7.2 Neuronal population coding of movement direction.

The most influential study, which triggered experimental and theoretical research on pop-
ulation coding, was from neurons in primary motor cortex in monkey (and later also
in parietal cortex and premotor cortex) for arm movements in various directions in 3-D
space. Each neuron appeared to reveal the largest activity for movements in a neuron-
specific particular direction, called the ”preferred movement direction” (see figure 3). The
preferred movement directions of all neurons appeared to be uniformly distributed in 3-D
space. The directional tuning of the neurons was broad and bell-shaped. The kindness
of nature, which led to uniformly distributed, unimodal, bell-shaped tuning curves, and
the assumption of independent firing led to the use of the population vector, defined by
Eq. 21: the summation of preferred direction vectors of cortical neurons, each weighted
by the firing rate of that particular neuron. The estimated movement direction predicted
by the population vector appeared to be similar to the actual movement direction within
the confidence intervals.

Although the correlation with actual movement direction and predicted movement
direction, based on the population vector, was quite high (typically above 0.95), this
does not necessarily imply that motor cortex is explicitly and exclusively involved in the
coding of movement direction. Later studies have reported that motor cortical cells also
have a ”preferred direction” for isometric force production in 3-D space. In these studies,
monkeys were tested in a force task with an external load, such that three force variables
could be dissociated: the force exerted by the subject, the net force exerted and the
change in force. The directional tuning was invariant across different directions of a bias
force. Cell activity appeared to be not related to the direction of force exerted by the
subject, which changed drastically as the bias force changed. In contrast, the direction of
net force, the direction of force change, and the visually instructed direction could all be
the directional variables, alone or in combination, to which cell activity might be related.
Obviously, this illustrates that the interpretation of population activity depends critically
on the proper characterization of neuronal response characteristics. These observations do
not violate the concept of a population vector, but indicate that an accurate and reliable
interpretation of the population vector is possible, only when the response properties of
single neurons are known in great detail for many experimental conditions (see Eq. 20).
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8 Discussion

The aim of this chapter was to present an overview of theories about coding of sensory or
motor events by neuronal activity and about the interpretation of neuronal activity in a
population of neurons. For a broad range of neuronal properties, quantitative predictions
can be made. The main hurdle for further progress is the experimental ability to make
simultaneous recordings from many neurons. This will provide more information about
important aspects related to correlation and/or independent neuronal activity due to
common input, neuronal interactions and intrinsic noise in the membrane and spiking
mechanism of cells.

In this context it is relevant to discuss recent observations about synchrony of firing.
Synchrony of firing has been hypothesized as a way to solve the binding problem. What-
ever the functional role of synchronous firing between neurons, synchronicity indicates a
violation of independent firing, which poses some challenges for theoretical analyses to
interpret neuronal activity.

The majority of studies on neuronal activity in sensory and motor pathways dealt
with the problem how the activity of a neuron is related to a sensory stimulus or a
motor response. This deals with the problem of encoding sensory and motor events into
neuronal activity. Various studies, both theoretical and experimental studies, have shown
that the variability of firing rate increases as a function of the number of excitatory and
inhibitory inputs. A reasonable estimate is that the response variance is about 1.5 times
the mean response and is fairly homogeneous throughout the cerebral cortex]. Because of
this variability, an accurate estimate of firing rate of a single cell can only be obtained by
averaging over time, which would eliminate fast temporal information transfer. Instead,
it is thought that averaging takes place over an ensemble or population of cells, which
suggests another role for synchronous firing and an alternative for the binding-hypothesis.
Based on the studies mentioned above, it has been concluded that an ensemble of about
100 neurons might provide a reliable estimate of rate in just one spike interval (10-50
ms). Due to the fact that neurons share common input, resulting in a certain amount
of common noise that ultimately limits the fidelity of signal transmission, little or no
improvement is gained with larger pools.
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10 Excercises

Problem 1.
In the visual system, many neurons have overlapping receptive fields, such that a sin-
gle stimulus s can elicit neural responses in two neurons x and y. Demonstrate that
H(Y, Z|S) = H(Y |S) + H(Z|S) when the two neurons have no interactions, i.e. when
p(yi, zj |sk) = p(yi|sk)p(zj |sk) for all i, j, k. (Note that H(X) = −∑

i
p(xi)logp(xi)).

Problem 2.
One of the major problems in brain research is to interpret neuronal activity: if an ensem-
ble of cells generates a series of action potentials, what sensory or motor signal is coded
in the action potentials. Information theory is a major tool for dealing with this problem.
Suppose a signal from a sensor x is corrupted by noise n, such that the signal, which a
neuron receives is given by y = x + n. Suppose that x is drawn from a gaussian distribu-
tion with mean µ and standard deviation σs. Suppose that the noise has mean zero and
standard deviation σn. Calculate the following quantities:
a) Information in signal x
b) Information in signal y.
c) Note that the information in y is larger than the information in x. Is it correct to
conclude that information has been added ?
d) Caluclate the mutual information between signal y and x. How does the noise effect
the mutual information ?

Problem 3.
Suppose a neuron, which generates action potentials according to a Poisson process with
mean firing rate < r >, such that the probability for an action potential at time τ after
a previous actionpotential is given by

p(τ) = < r > exp{− < r > τ}

Also suppose that subsequent actionpotential intervalls are independent.

Calculate the mean information per actionpotential, which is obtained by observing the
neural activity in the time interval between τ and τ + δτ .
NB: log2 b = ln b

ln 2

Problem 4

Assume 2 possible stimuli s+ and s− with p(s+) = p(s−) = 1
2

and assume that a neuron
can produce two responses: r+ and r−. However, encoding is not perfect. Assume that
the probability of an incorrect response is px, such that p(r+|s+) = p(r−|s−) = 1 − px

and p(r+|s−) = p(r−|s+) = px.

a. Calculate the mutual information.
b. If the response is r+, what is the probability that stimulus s+ caused this response ?

Problem 5
Assume that a neuron can generate various firing rates between zero and rmax and that
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the probability to generate a firing rate r is given by p(r). Show that the optimal choice
for the probability density function p(r) (in terms of maximum information coding) is
given by p(r) = 1

rmax
.

Hint: use log q(r)
p(r)

≤ q(r)
p(r)

− 1 with the equal sign only when p(r) = q(r) and assume that

q(r) = 1
rmax

. Show that −
∫

p(r)logp(r) ≤ logrmax with equal sign when p(r) = 1
rmax

.

Problem 6 What is the entropy of a Poisson spike train with duration T and mean
firing rate r ?

Problem 7 Demonstrate, that the definition

Imutual =
∫

X

∫
Y

p(x, y)log2
p(x, y)

p(x)p(y)
dx dy

implies that
Imutual = S(X) + S(Y ) − S(X, Y )

Problem 8 Assume two distributions

f1(x) =
1√
2πσ

exp(−x2/2σ2)

and

f2(x) =
1√
2πσ

exp(−(x − µ)2/2σ2)

Define the average information per observation from distribution 1 in favor of discrimina-
tion for the hypothesis that the sample is from population 1, against the hypothesis that
the sample is from population 2 by

I(1 : 2) =
∫

f1(x)log
f1(x)

f2(x)
dx

Show that I(1 : 2) is a monotonically increasing function of µ, which is zero when µ = 0
and which increasesto infinity when µ approaches infinity.

Problem 9 Calculate the Fisher Information J(Θ, Θ̂) for the gaussian function fi(θ) =

1√
2πσ2 e

− (θ−θi)
2

2σ2 .

Problem 10 Assume that the response of a neuron j in visual cortex to a light bar
in the receptive field is given by p(r|θ) = 1

Z
exp{cos(θ − θj)}, where θ is the orientation

of a light bar in the receptive field. Z is a normalization factor.
a. What is the optimal stimulus for this neuron ?
b. Assume that all orientations are equally likely, what is the most plausible stimulus for
the neuron j given an action potential of the neuron j ?

c. Assume an array of N neurons which respond with firing rate fj(θ) = Aexp
(
− (θ−θj)

2

2σ2

)
to a stimulus orientation θ. The neurons are distributed equidistantly: θj = 2πj/N .
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Assume that the neuron fires with a poisson statistics: the probability for firing rate rj to

stimulus θ is p(rj|θ) = e−fj(θ) (fj(θ))rj

rj !
. Assume that all stimulus orientations are equally

likely (p(θ) = 1
2π

). Show that the most plausible stimulus, which generated the firing
rates rj is proportional to

∑
j

rj2πj/N .

Problem 11
Assume a set of N neurons with independent firing rates for a stimulus s, i.e. p(r|s) =

∏
i

p(ri|s).

Assume that p(ri|s) = 1√
2πσi

e−(ri−fi(s))
2/2σ2

i . Show that the maximum likelihood estima-

tor for the stimulus s given a response r is given by the stimulus s, which meets the
requirement that ∑

i

ri − f(s)

σ2
i

∂fi(s)

∂s
= 0

Problem 12
Assume a set of N neurons in visual cortex, each of them having a preferred orientation
tuning at orientation θn, and assume that the preferred orientations are equidistantly dis-
tributed between 0 and 2π: θn = 2πn/N and that the expected response to a stimulus

θ is given by fn(θ) = exp
[
−
(

(θn−θ)2

2σ2

)]
. Also assume that each of the neurons generates

actionpotentials according to a Poisson process.
a. Give an expression for the Fisher information for the Maximum Likelihood Estimator
as a function of the ”width” σ of the tuning.
b. Show that the largest contribution to the Fisher Information does not come from the
neuron with the largest firing rate, but from neighbouring neurons !
c. Show that the Fisher Information approaches zero when σ approaches the value zero.
d. Show that there is an optimal value for σ, which gives the maximum Fisher Information.

Problem 13
We will address the question: what is the information entropy of a spike train with

temporal coding. For this purpose, assume a neuron with firing rate r. If we discretise
time in small bins ∆t, such that the probability that the neuron generates mor than one
action potential in a single time bin ∆t is negligibly small. If there is an action potential
in a time bin, we fix the value of the bin to the value ’1’ and it is ’0’ if there is no spike
in the time bin.
a. What is the entropy of a spike train in a time interval T.
b. Show that the entropy can be approximated to

S = Tr log
(

e

r∆t

)

for r∆t ≪ 1.
c. Show that the entropy increases linearly with the recording time T and more than
linearly with firing rate r.
d. Calculate the average entropy of an action potential when the neuron is firing at firing
rate r.
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Problem 14
Consider a one-sided rectifier with input x(t) and output y(t), such that y(t) = 0 if

x(t) < 0 and y(t) = x(t) if x(t) ≥ 0. Assume that x(t) has a gaussian distribution with

p(x) = 1√
2πσ2

exp −
(

x2

2σ2

)
and x ∈ IR.

a. Calculate the entropy of the input signal x.
b. Calculate the entropy of the output signal y.
c. Calculate the mutual information in x and y.

Problem 15
Show, that the Fisher information for neurons with additive noise and with a response

ri = fi(x) + ηi

with ηi gaussian noise with mean zero and covariance matrix Q(x), is given by

J(x) =
N [F1(x) − F2(x)]

σ2(1 − c)

with F1(x) = 1
N

N∑
i=1

(f ′
i(x))2 and F2(x) =

(
1
N

N∑
i=1

f ′
i(x)

)2

.
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1 The Brain and Topologically Ordered Maps

It has long been known that the brain is ordered into many functionally specific areas.
This is especially true for the cerebral cortex. Many cortical regions, such as the visual
cortex and somatosensory areas of the cortex, are further divided into areas specific to
different regions of the retina or the body. This ordering is not just a mapping all the
sensory signals from one sensory organ into the same region of the cortex, but rather
the topology of the sensory cells in the sensory organ is mapped onto the same topology
of receiving neurons in the brain. For example in the visual cortex, the two dimensional
retinal image is mapped to the visual cortex in such a way that spatial relationships present
in the input stimulus are preserved when the image is transmitted to the visual cortex.
Such a connection is commonly referred to as topology preserving. This topological
mapping is the means by which information on the spatial relations between sensory cells
is transmitted to, and decoded by the brain. How these topology preserving mappings
can be formed in an unsupervised manner, and how they can be applied to processing
information, form the basis of this chapter.

The first question is, how does the brain achieve such a high level of unsupervised
ordering of all its various structures. Several theories have been put forward as to how
the topographical order is maintained during growth and development. One hypothesis is
that chemical markers play a role, which guide nerve fibers to specific areas in the brain
during ontogenetic development. Although this may be partly true, it cannot provide a
full explanation. The main argument is that the organization of neuronal areas depends on
the input to these areas. For example, neuroimaging studies have shown, that a first piano
lesson of about an hour, cause major changes in neuronal connectivity in somatosensory
cortex (the area which receives sensory information from the fingers and from muscles
controlling finger muscles) and in the finger region of motor cortex. Moreover, destruction
of sensory organs, brain tissue or the deprivation of sensory stimulation at a young age,
results in new neural connections which did not exist before and in the corresponding area
being occupied by other projections. A good example is found in people, who were blind
since birth. In these people, neurons, which would have participated in visual information
processing in visual cortex, now participate in the processing of auditory or somatosensory
information.

The most likely scenario seems to be that genetic coding defines coarse topological
mappings of neurons in the brain, which is then fine tuned by neural plasticity in combi-
nation with neural activity. This idea leads to the idea of self-organization of topographic
maps. In general, the notion of self-organization means that order can be created out of
disorder without the use of a teacher or supervisor. The notion of emergent behavior is
used when talking about the non random, non chaotic, complex behavior of very large
spatio-temporal systems, comprised of many interconnected simple units. The formation
of topographic maps can thus be considered as an emergent behavior in the brain.
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2 Modeling the Self-Organizing Process

We will start with a very simple model of the neuron, where the neuron receives n inputs
ξj , j = 1, . . . , n, which are then weighted and summed to give the input activation Ii as,

Ii =
n∑

j=1

µij ξj, (1)

where the µij describe the synaptic efficiency or weights between neurons i and j. The
most simple model for the output activity ηi is given by a static nonlinear function of the
activity as,

ηi = const. f(Ii − θi), (2)

where f(•) could be the Heaviside function (i.e. f(x) = 1, x > 0, f(x) = 0, otherwise),
and θi is a threshold. This computationally simple model of the neuron is used in many
different Artificial Neural Network (ANN) algorithms (e.g. the perceptron). This model
represents the very basic function of the neuron, and ignores its dynamical behavior.
Usually, dynamical models of the neuron have been developed, many based on the so
called additive model, where the change in neural activity in its most basic form is given
by,

dηi

dt
= −ηi +

∑
[excitatory inputs] −

∑
[inhibitory inputs] (3)

Note that the input may come from neurons or sensors in other parts of the brain, but
can equally come by lateral interactions from neurons in the same brain area. A variation
on this simple model treats the neuron dynamics as a form of integration of the neuron
inputs, with nonlinear losses,

dηi

dt
= Ii − γ(ηi), (4)

where γ(•) describes the sum of all nonlinear loss or leakage effects, and for large values of
ηi it should be convex. It should be kept in mind that the activity ηi is in fact a frequency
(firing rate) and as such cannot be negative. One interesting point to note about the
formulation of equation (4) is in the stationary state (i.e. dηi/dt = 0), that,

ηi = γ−1(Ii). (5)

Given the assumptions on the shape of γ, it is seen that γ−1 is compatible with the
definition of the form of the thresholding function f(•) mentioned earlier. This last model
will be used later on in discussing the physiological interpretation of the self-organizing
map (SOM).

For the dynamics of neuronal maps, the learning rule is crucial. Most learning rules are
based on the hypothesis of Hebb, which expresses how the neural synapses are modified,

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.”

This hypothesis is written down in analytical form as,

dµij

dt
= α ηi ξj, (6)
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Pre Synaptic

Post Synaptic
     Layer

    Layer

Figure 1: Illustration of Willshaw-von der Malsburg Model, showing two lattices of neu-
rons, represented by circles, and the synaptic connections between one neuron in the
presynaptic layer and all neurons in the postsynaptic layer are represented by the lines.

where µij is the synaptic strength or neural weight between neuron j, which transmits a
signal to neuron i, and α is a scalar parameter called the learning rate, ηi is the postsy-
naptic activity and ξj is the presynaptic activity. Since it was originally described, the
Hebbian learning principle has been modified in many ways. One of the characteristics
of Hebb’s law as expressed in equation (6) is that the synaptic weight might increase
to extreme values, and naturally there must be some saturation level. To overcome this
problem a passive decay term was hypothesized:

dµij

dt
= α ηi ξj − µij. (7)

We will illustrate these ideas with a simple model for self-organization in the visual
system by assuming two layers of neurons, a presynaptic layer and a post synaptic layer,
with each neuron in the presynaptic layer connected to each neuron in the post synaptic
layer by a synaptic weight. Figure 1 shows the two layers, the presynaptic and postsy-
naptic layer. Each neuron is represented by a circle and the lines from one neuron in
the presynaptic layer to the postsynaptic layer represent the synaptic connections. In the
model every neuron in the presynaptic layer has a connection with every neuron in the
postsynaptic layer. When subjected to an input signal the neuron weights are adapted
using a Hebbian learning law, followed by renormalization. The activity of a neuron is
described by equation (3). The exact form of the excitatory and inhibition interactions
on the learning rate between neurons in the postsynaptic layer is such, that all neurons in
the adjacent neighborhood of a neuron were excitatory (positive weight connection) while
those further away were inhibitory (negative weight connection). Figure 2 illustrates a
single function, which defines such an interaction, normally referred to as the Mexican hat
function. The effect of this local excitation and global inhibition is to create competition
between neurons for activity. The neurons, that respond best to an input, strengthen all
their neighbor’s responses while decreasing that of neurons further away. After repeatedly
stimulating the neurons, clusters begin to form, and the neuron weights become organized.
Organization occurs even when all the initial synaptic weight values have been set to ap-
proximately the same value. This organization is shown in figure 3, where the stimulation
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Figure 2: One dimensional Mexican hat function used to implement excitatory and in-
hibitory connections.

is two dimensional and is randomly chosen from the area bounded by the outer square.
The synaptic weights, also two dimensional, are plotted as points in input space, and lines
connect synaptic weights of immediately neighboring neurons in the postsynaptic layer.
The fact that these lines do not cross except at the points of the synaptic weight vectors,
is interpreted as the weights being organized. The lettered neurons were used as polarity
markers, which break the symmetry of the map and ensure that the weights converge to
the correct one of the eight possible orientations. This model explains clearly what is
meant by self-organization and topology preserving mappings between neuron layers.

This simple model is limited in some sense. Apart from being computationally quite
expensive during simulation, they are not very robust and self-organization is usually
local. However, what these models do suggest is the mechanism which performs self-
organization. The first requirement is some form of competition between the neurons. The
winning neurons or the neurons, that respond maximally to an input, increase in a positive
way the activity of their neighboring neurons in such a way, that their responsiveness to
this type of input is increased, while at the same time decreasing the response of neurons
further away. This competition and changing of the synaptic weights in the models
discussed so far take place simultaneously. In the next section, we will provide a more
detailed analysis of the concepts outlined in this introduction.

3 The Self-Organizing Map (SOM)

The SOM algorithm describes a mechanism, which allows for the formation of globally or-
ganized topology preserving maps. Originally presented as a simple numerical algorithm,
it soon became clear that the algorithm could be stated in a much more general or abstract
form and could be applied in many different settings. First consider a K-dimensional lat-
tice of N neurons where the position of each neuron j in the lattice is given by a coordinate
vector ij = (ij1, ij2, . . . , ijK). Define a metric space (I, da) and assume that ij ∈ I, ∀ j.
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4

Figure 3: Typical result of Willshaw-von der Malsburg model for a 6 × 6 lattice. The
outer box indicated the square which is the support from which the input samples were
drawn. Each synaptic weight is plotted as a point and the synaptic weight for each neuron
is connected to the synaptic weight of each of its immediate neighbors in the postsynaptic
layer.

Associated with each neuron j is a D-dimensional weight vector mj = (µj1, µj2, . . . , µjD)T

where D ≥ K. There is a D-dimensional input x = (ξ1, ξ2, . . . , ξD) which is “presented”
to each neuron. Figure 4 shows an illustration of this structure for K = 2, and the
neurons are represented by the circles. Define a metric space (X, d) where x ∈ X and
mi ∈ X, 1 ≤ i ≤ N , and d is a measure which satisfies the usual requirements of a
distance metric. The SOM algorithm is carried out in a series of discrete time steps t,
and at each time an input signal x(t) is taken and d(x,mi) is evaluated for each i. This
step can be interpreted as a measure of the activity of a neuron in response to the input,
the smaller the measure for the neuron the greater its activity. In the SOM algorithm the
neuron with the greatest level of activity is called the winner v(t), formally given by,

v(t) = arg min1≤i≤N d(x(t),mi(t)). (8)

This principle of one winning neuron is commonly referred to as the Winner Take All
(WTA). The winner neuron is then used to define the change in the values of the neuron
weights. The general principle is to change the weight values such that d(x(t),mi(t+1)) <
d(x(t),mi(t)). If self-organization is to occur, then some weighting of these updates,
dependent on the distance da(iv(t), ij) on the neuron lattice, between the winning neuron
and the other neurons j must be used. Referring back to the excitation/inhibition Mexican
hat function used in the models of the previous section, a similar type function h is used
in the SOM. However, in this case h acts as a weighting function in the control of the
synaptic plasticity during learning. Unlike the Mexican hat function, it does not describe
the feedback activity of the signals. The function h is commonly referred to as the
neighborhood function. A typical function h is shown in figure 5, where the strongest
weighting is given to the update of the weights, whose neurons are closest to the winning
neuron on the lattice. Note that unlike the Mexican hat function of figure 2, the function
h is never negative. The update of the neuron weights is formally given as,

mi(t + 1) = mi(t) + α(t) h
(
da(v(t), i)

)
x(t), (9)
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Figure 4: Illustration of the structure for the SOM, with a 2 dimensional lattice of neurons
represented by circles. The input x is shown connected to each neuron by lines which
represent the neural weights mi.
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Figure 5: Plot of a typical neighborhood function h(da(v, i)).
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where α(t) → 0 when t → ∞ is a gain factor and,

δmi(t) = ǫ ∇mi
d(x,mi), (10)

where ǫ is a constant, sufficiently small to ensure that d(δmi(t), 0) ≤ d(x(t),mi(t)) ∀ t
and where ∇mi

represents the gradient relative to mi. Intuitively, it can be seen that the
effect of the algorithm is to cluster the weights of neighboring neurons together, which
eventually leads to a global self-organization of the weights.

To understand what is meant by the self-organized state of the neuron weights, consider
a SOM with K = D = 2 and x uniformly distributed on the unit square. The metrics
d, da in this case are taken to be the Euclidean distances. Figure 6 shows a series of plots
of the neuron weight vectors, plotted on the unit square, the support of the input signal.
The lines in the plot join the weight vectors of adjacent neurons on the neuron lattice.
Figure 6 (a) shows a random initialization of the neuron weights, after 10 iterations figure
6 (b) shows the weights converging to the center of the support. In figure 6 (c) after 100
iterations the weights are already approaching an organized state. Finally after 100,000
iterations, figure 6 (d) shows the weights in an organized configuration spreading out
over the support of the input. In figure 6 (d) the meaning of topographic order is quite
clear with none of the lines joining the weight values intersecting. This means that the
neuron weights are organized in a similar fashion to the way the neurons are ordered
on the lattice. This example represents a very simple case of the SOM. Figure 7(a)
shows a plot of the neuron weights after 50,000 training iterations for a SOM with a two
dimensional input and a one dimensional neuron lattice. The curve shown shows the
dimension reducing ability of the SOM, by mapping a two dimensional space onto a one
dimensional lattice of neurons. Once again in this example the weights have reached an
organized configuration, although in this case the definition of organized is more difficult
to describe in general terms than it is to understand it intuitively. Figure 7 (b) shows
an example of a topological defect for a two dimensional SOM, where the weights can be
considered to be locally organized, but not globally organized, since there is a twist in the
distribution of the weights.

These examples show a second characteristic of the SOM algorithm. Not only does it
form an organized mapping but it tends to “spread” itself out or regresses onto the prob-
ability distribution of the input signal. The organization of the SOM require somewhat
contradictory conditions. To arrive at a stage, where the SOM is globally organized and
forms a good approximation of the input probability distribution, requires knowing a few
“rules of thumb”, gained from experience. These rules are quite robust but not perfect.
The most important factor influencing the ability of the SOM to form globally orga-
nized mappings is the neighborhood function. A typically used form of the neighborhood
function is Gaussian in nature,

h(da(v, i)) =

{
exp

(
− d2

a(v,i)
σ2

)
if da(v, i) < W

0 otherwise.
(11)

Some known effects of the neighborhood function will be discussed later on, but for now
it is enough to say that if the width W of the neighborhood is too small, then the chances
of global ordering happening are decreased. Another important factor in achieving an
organized state is that the gain function α(t) does not decrease too rapidly. If its value
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(a) Initial state. (b) After 10 iterations.

(c) After 100 iterations. (d) After 100k iterations.

Figure 6: Plot of the neuron weights on the square support of the input signal, for a two
dimensional SOM.

(a) (b)

Figure 7: (a) Plot of the neuron weights on the square support of the input signal, for
an SOM with a two dimensional input and one dimensional neuron lattice. (b) Two
dimensional SOM with a topological fault.
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becomes too small too quickly, then the SOM risks converging to a non-organized state.
On the other hand, the wider the neighborhood function, the stronger its clustering effect,
which tends to pull the neuron weights together. If the neuron weights are to spread out
to form a true representation of the input space, then the influence of the neighborhood
function must be decreased, that is W → 0, t → ∞. Similarly the gain function α(t)
must reach small values to reduce the statistical variations in the value of the neuron
weights, allowing them to converge to a state of optimal representation of the input
distribution. Thus the two objectives, formation of a topologically ordered map and the
representation of the probability distribution of the input require opposing conditions.
Normally a compromise is reached, where the training of the SOM is divided into two
phases : a) The ordering phase, where large W and α are used to allow for topological
ordering of the weights. b) The convergence phase, where W is decreased towards 0, and
α is small and decreases slowly to 0. This scheme works well in general, because once the
neuron weights reach an organized state there is a strong tendency for them to remain
in this organized state, even during phase b) of training. A semi-empirical rule for the
average optimum gain α(t) is

α(t) =
A

t + B
, (12)

with A, B suitably chosen constants. The idea is that earlier and later input values are
taken into account with approximately similar average weighting.

The SOM presented here was for a very general case, where the activity of a neuron in
response to an input was calculated in terms of a distance between the input vector and
the neuron weight vector. Another method of determining the neuron, which responds
maximally to the input vector by measuring instead the correlation between the neuron
weight vector and the input vector, is defined by,

v(t) = arg max1≤i≤N xT (t) .mi(t), (13)

and the dot-product is used as a measure of the correlation. Using the dot-product
however means that the input needs to be normalized before being used. Using the dot-
product as a measure of activity also means, that to be compatible, the update rule for
the neuron weights must be modified to,

mi(t + 1) =




mi(t) + α∗(t)x(t)
‖mi(t) + α∗(t)x(t)‖ if |i − v(t)| < W

mi(t) otherwise,

(14)

where now the gain function 0 < α∗(t) < ∞.

4 Physiological Interpretation of the SOM

Given that the SOM achieves its goal of global self-organization, the next logical question
is ; given the SOM, what can this tell us about the physiology of the biological self-
organizing mechanism ? It has already been stated that the reason for the global self-
organizing ability of the SOM is the fact, that compared to other models, there is a single
neuron chosen which has maximum response to an input and that the change of synaptic
weights for each neuron depends only on this input and on the physical position of the
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neurons with respect to this winner. Can this mechanism help in the understanding of
the biological self-organizing mechanism, and can it suggest mechanisms of learning in
the brain hitherto unknown ?

To model the WTA function the neurons must be allowed to interact with each other
when an input signal is present. As before, there are two kinds of input to each neuron,
an external input and lateral feedback between neurons. The activity due to inputs is
written as,

Ii = Ie
i + I l

i , (15)

where Ie
i is due to the external inputs and can be simply described by,

Ie
i = xT .mi =

n∑
j=1

µij ξj , (16)

and I l
i is due to the laterally connected neurons and given by,

I l
i =

n∑
j=1

gij ηj. (17)

The coefficients gij ∈ R are the effective lateral connection strengths of the cells. These
were constrained such that gii > 0 and they have the same value ∀ i. Also for all i, j with
i 6= j then gij < 0, |gij| > |gii| and the gij are mutually equal. It is possible to implement
these lateral interactions with interneurons whose dynamics are also described by equation
(4). Starting from arbitrary initial positive values of the synaptic weight vector mi(0)
and zero initial activity of all the neurons, the output activity ηv of the neuron for which
xT .mi is maximum (i.e. the winner neuron), converges to an asymptotically high value,
whereas the activity ηi, i 6= v of all the other neurons converges to zero. This happens
in a robust manner for a persistent input. Hence, a unique winning neuron is obtained
and this model performs a WTA operation. In the case of a biological neural network
however, the neurons must be able to respond to different inputs and there must be a
reset of the neuron activities before the presentation of a new input. This reset is carried
out by local, slow inhibitory interneurons with output variable φi. The dynamic model
of equation (4) can be used for these interneurons but for simplification purposes it is
written as,

dφi

dt
= aηi − θ, (18)

where a, θ are scalar constants. This leads to a modification of the dynamic equation of
the principal neurons in equation (4). Including the decay term φi it reads as,

dηi

dt
= Ii − aφi − γ(ηi). (19)

The result of this system of two coupled differential equations, which describes the dy-
namics of the neuron activity, is a WTA circuit with an automatic reset function.

Using a Taylor series expansion equation (14) can be shown to reduce to,

mi(t + 1) ≈ mi(t) + h(da(i, v(t)))[x(t) − mi(t)m
T
i (t)x(t)]. (20)

It should be noted that this equation has a tendency to normalize the weight values mi.
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5 Dynamic neural fields

Dynamic neural fields have been proposed as models for the average of large ensembles
of cortical neurons. The approach aims to give a macroscopic description of the neural
system dynamics in terms of space- and time-continuous distribution of neural activity
u(x, t). The values of this function signify the average activity within a neural ensemble
at location x of the neural tissue at time t.

In a simple form, the dynamics of the variable u(x, t) is given by the nonlinear integro-
differential equation

τ u̇(x, t) = − u(x, t) + h +
∫

w(x, x′)θ(u(x′, t))dx′ + s(x, t) (21)

This equation describes the neuron as a leaky integrator with time constant τ , where the
neural activity approaches the value h without any external input s(x, t). The connectiv-
ity between neurons in the layer is represented by w(x, x′). For a homogeneous field, the
interaction kernel can be written as w(x, x′) = w(x − x′), in which case the integration
term becomes a convolution of the thresholded output signal θ(u(x, t)) with the interac-
tion kernel.

When the θ-function is a simple linear function, a solution for the integro-differential
equation above can be find easily for most external inputs s(x, t). If the threshold function
θ is a step-function, an analytical solution is sometimes hard to find, but numerical solu-
tions can be found easily. We will deal with these issues in more detail in the next section.

The analysis of equations, like (21), can be done for specific values of the various
parameters. However, it is more elegant and it provides more insight, when equations
like (21) can be solbed analytically as a function of the various parameters. A way to do
so is to find a so-called Lyapunov function. A Lyapunov function can be interpreted as
a generalized Energy function, which are particularly useful for solving high-dimensional
nonlinear dynamical systems. Like the energy for physical systems, the Lyapunov func-
tion is minimal for stable states of the dynamical system.

To give an intuitive idea about the role of a Lyapunov function, consider the system

τ u̇(t) = − u(t) + s − h (22)

This can be rewritten in the simple form

u̇(t) = −
dE(u)

du
(23)

with E(u) = (−u + s− h)2/(2τ). The last equation means that, over time, the activation
u changes always in the direction that leads to a reduction of the function E(u). The acti-
vation reaches a stable state for the minimum of E(u), which is obtained when u∗ = s−h.

Obviously, for a set of n uncoupled differential equations

τ u̇n(t) = − un(t) + sn − hn (24)
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the corresponding Lyapunov function is

E(u1, u2, ..., un) =
1

2τ

∑
n

(−un + sn − h)2 (25)

For the nonlinear discrete neuron dynamics with the interactions

τ u̇n(t) = − un(t) +
N∑

m=1

Wmnθ(um(t)) + sn − h (26)

it is not possible to write an energy function, such that the changes of the activities of the
n neurons are proprtional to the negative gradient. However, it is possible to construct a
function E, such that equation 26 can be written in the form

u̇n(t) = − α(un)
∂E(u1, u2, .., un)

∂un

where the function α(u) > 0 is always positive. When the threshold function θ is differ-
entiable (for example θ(u) = tanh(βu)) and for symmetric weights (Wmn = Wnm), the
scalingfactor α(u) = θ′(u) and the Lyapunov function has the form

E(u1, u2, ..un) =
1

2

∑
n

∑
m

Wmnθ(un)θ(um) +
∑
n

θ(un)∫
θ(0)

θ−1(η)dη − (sn − h)θ(un) (27)

For the continuous case

τ u̇(x, t) = − u(x, t) +
∫

w(x − x′)θ(u(x′, t))dx′ + s(x, t) − h (28)

the corresponding Lyapunov function is given by

E(u) =
1

2

∫ ∫
w(x−x′)θ(u(x, t))θ(u(x′, t))dxdx′ +

∫ 


u(x,t)∫
0

ηθ′(η)dη − (s(x) − h)θ(u(x, t))


 dx

(29)
It can be shown that this Lyapunov function is

• bounded from below for all continuous functions u(x)

• dE(u(x,t))
dt

≤ 0 for all trajectories u(x, t)

• dE(u(x,t))
dt

= 0 when the trajectories u(x, t) is a stationary solution of the neural
field dynamics (which means u̇(x, t) = 0)

Notice, that not all minima of the Lyapunov function have to correspond to global
minima: It may well be that the Lyapunov function has local minima or spurious attrac-
tors. Therefore, just finding the minima may not give the proper result for the stationary
trajectories. Advanced techniques (e.g. simulated annealing) are required to find the
global minima.
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