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Abstract

Brain—computer interfaces (BClIs) have attracted much attention recently, triggered by new
scientific progress in understanding brain function and by impressive applications. The aim of
this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the
measurement of brain activity, classification of data, feedback to the subject and the effect of
feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the
present issues and state-of-the-art results. Moreover, we will develop a vision on how recently

obtained results may contribute to new insights in neurocognition and, in particular, in the
neural representation of perceived stimuli, intended actions and emotions. Now is the right
time to explore what can be gained by embracing real-time, online BCI and by adding it to the
set of experimental tools already available to the cognitive neuroscientist. We close by
pointing out some unresolved issues and present our view on how BCI could become an

important new tool for probing human cognition.

1. Introduction

Continuing global research in cognitive neuroscience has
led to substantial progress in understanding the brain and
deciphering important aspects of the neural code. In a general
sense, the neural code has not been cracked yet, but important
components have been identified and can be exploited to infer
the state of cognitive processes directly from measurements of
brain activity. This has resulted in a wide range of applications,
such as the brain—computer interface (BCI), which forges
a direct online connection between brain and machine
[1, 2]. In BCI technology, covert mental activity is measured
and used directly to control devices such as a wheelchair or
computer, or to modify one’s own patterns of brain activation.
Spectacular breakthroughs have been reported in the literature
(e.g., [3-5]), achieving large press coverage, even though
progress in exploiting the new discoveries in products and
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effective therapies is still slow. This makes it particularly
important to maintain a critical mind set in which facts, such
as advanced but not completely locked-in amyotrophic lateral
sclerosis (ALS) patients learning to communicate without any
overt behaviour [6], can be separated from fiction.

In order to be able to discuss different BCI approaches,
we use the framework shown in figure 1, presenting the data
flow through the various components of a BCI, referred to as
the BCI cycle. The aim of this review is to give a concise
overview of the components of the BCI cycle, to discuss some
of the issues arising in each of the components, and to describe
some of the (potential) applications of the BCI technology. For
more in-depth treatment, we refer to other reviews addressing
particular aspects of the BCI cycle such as signal processing
[7], machine learning [8, 9] or neurofeedback [10]. Our
main focus will be on non-invasive, inexpensive and portable
electrophysiological BCI in humans, although we also briefly
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Figure 1. The BCI cycle starts with the user engaging in a cognitive
task while receiving possible stimuli. Traces of brain activity are
picked up by sensors. These signals are preprocessed, relevant
features are extracted, and an outcome is predicted that is supposed
to reflect the user’s intention, either on a continuous scale or as
discrete symbols. The outcome acts as an output signal for
controlling an external device. The cycle is closed by the user
perceiving the output, which allows a judgement about the
appropriateness of the device’s behaviour and an adaptation of the
mental activity. The output can be presented in multiple forms and
modalities, depending on the user’s abilities. While iterating through
the cycle, both the user and the computer may learn to adapt,
thereby increasing the performance of this man—machine system.

discuss issues arising from BCIs based on invasive [11] or
haemodynamic measurements [12]. We end this review with
an appraisal of the future of BCI and its impact on society as
a whole.

2. Tasks and stimuli

The ideal BCI task should be easy to perform with little effort
to prevent fatigue, generating large brain signals to guarantee
reliable and fast interpretation of the signals in a paradigm
which uses patterns of brain activity that are easy to control and
fast to switch, and produce output that provides user-friendly
and effective feedback. Unfortunately, there is no BCI task
that meets all these criteria. Often, significant mental effort is
required to produce sufficiently large signals such that subjects
may easily become fatigued [13]. Furthermore, even though
some studies suggest that subjects can learn to perform a task
without their full attention (e.g., [14]) they return to using
effortful cognitive tasks on occasions when the automatic skill
fails them [13].

For communication of symbols between a user and the
environment, the user’s intention needs to be extracted from
brain signals. The first systems that were developed used
voluntarily generated or modulated brain activity. A good
example is the spelling device which, after extensive training,
allowed paralysed subjects to control a cursor by modulating
slow cortical potentials [15]. An alternative approach is
neurofeedback training, where particular features from brain

activity are fed back to the subjects, allowing them to control
their activity (and thus the system) in a conditioning paradigm.
Section 8 presents a more elaborate overview of applications
for the disabled and healthy user.

Since the described paradigms need a long training period
and are not successful for everyone, as discussed in [16], more
recent approaches have focused on instructed cognitive tasks.
These tasks range from perceptual tasks, such as selective
attention, via imagery of perception or movement, to higher
level mental tasks such as associating concepts, reasoning
and mental arithmetic. The selective attention paradigms
require attention to one of a set of stimuli that are presented
simultaneously or sequentially (as in an oddball paradigm).
The stimuli may be abstract, such as attending to a part of space
asin [17], or ‘watermarked’ by some tag which is reflected in
the neuronal signature. An example of such a tag in the visual
domain is the detection of a symbol in a matrix of symbols
with rows and columns flashing in a pseudo-random order
[18]. Among imagery tasks, motor imagery is currently the
most popular [13]. Other imagery tasks include visual imagery
[19], mental navigation [20] and music imagery [20-23].
Higher level cognitive tasks such as word association and
mental arithmetic are often used in cross-modal BCIs, where
the classes to be distinguished do not all fall within the same
modality [19, 24]. The paradigms that make use of a stimulus
to the user are typically synchronous (or cue-based), meaning
that the response is time locked to the stimulus. Asynchronous
(self-paced) BCI systems, where the system also has to figure
out when a response happens, are more natural for control but
also much harder to realize.

The spectrum of cognitive BCI tasks may extend much
beyond what is currently used. Internal speech would be
the most direct type of communication interface and may be
the modality that comes closest to detecting thoughts. One
of the challenging questions is at which level of abstraction
this could be detected (e.g., meaning, lexical units or speaker
timbre). In recent functional magnetic resonance imaging
(fMRI) classification work, there are indications that this may
become possible in the future [25].

3. Measurement technology

BCI measurement technology encompasses non-invasive and
invasive methods (see figure 2 for an overview). Non-invasive
electroencephalography (EEG) and magnetoencephalography
(MEGQG) reflect the average activity of dendritic currents in a
large population of cells. The temporal resolution of EEG and
MEG to measure changes in neuronal activity is very good
but the spatial resolution to determine the precise position
of active sources in the brain is poor. The poor spatial
resolution, particularly for sources deeper in the brain, is due
to spatial mixing of electrical activity generated by different
cortical areas and passive conductance of these signals through
brain tissue, bone and skin. Furthermore, these kinds of
measurements are very susceptible to artefacts arising from
muscle and eye movements.

Some studies have used fMRI for BCI applications
(e.g., [26-28]). fMRI measures changes in blood
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haemoglobin concentrations associated with neural activity,
based on differential magnetic properties of oxygenated and
deoxygenated haemoglobin. It has a much better spatial
resolution than EEG and MEG, but the temporal resolution
is poor, which puts an upper bound on the bit rate for
fMRI in BCI applications.  Near-infrared spectroscopy
(NIRS) is a non-invasive optical imaging technique based
on the different resonance properties of oxygenated and
deoxygenated haemoglobin in the near-infrared spectrum.
It offers an inexpensive and portable alternative to fMRI,
enabling investigations in freely moving subjects. The study
in [29] was one of the first to demonstrate BCI control based
on NIRS. However, NIRS can only be used to scan cortical
tissue, whereas fMRI can be used to measure neural activity
throughout the brain. Spatial resolution of NIRS is generally
poor and temporal resolution is similar to that of fMRI.

A much better performance could be obtained using
invasive methods (but see [30] for some concerns), which
involves implantation of electrodes on or in the neocortex
[11, 31, 32]. As early as 1969, the notion that electrical
recordings of neurons could be applied for BCI arose from
non-human primate research [33]. Invasive methods, such
as the electro-corticogram (ECoG), have a superior signal-
to-noise ratio and allow a much better detection of high-
frequency oscillatory activity [34-37]. ECoG is often used
in epileptic patients with presurgically implanted subdural
electrodes to determine the precise location of the epileptic
source in the brain. An alternative to ECoG is to use
a single micro-electrode (ME) or a micro-electrode array
(MEA), which consists of many micro-electrodes (up to
several hundreds) implanted in the brain. These electrodes are
capable of recording multiple forms of electrical potentials,
including single or multi-neuron spiking, as well as local
field potentials (LFPs), which reflect the synaptic currents
and spiking activity in a local ensemble of neurons. This
technique started with monkeys [5, 38], but has recently been
used successfully in human subjects [39]. Although initially
successful, current invasive BCI systems are far from ready
for clinical application. Next to the risks of operation and
problems with the sustainability of electrode contacts, it takes
a dedicated team of experts and complicated hardware to keep
the system working on a daily basis.

Advances in brain imaging have made BCI possible, and
further developments in measurement technology can greatly
enhance its potential. Issues concerning biocompatibility and
tissue scarring, and making electronics fully implantable and
wireless are currently at the forefront of invasive BCI research
[40]. Less bulky scanners, lower noise levels, better spatial and
temporal resolution and novel combinations of measurement
techniques are also on the wish list of many neuroscientists.

4. Signatures

Any design of brain—computer interfaces should aim at the
crucial task of extracting the characteristics of the brain signal
which are uniquely caused by a mental process or state. We
call such characteristics a signature. An example of a well-
known reliable signature is the sleep spindle, which is a specific

waveform that occurs when the subject is asleep. For most
mental processes however, the search for robust signatures is
still ongoing. The signatures that have shown to be useful
for BCI can be broadly categorized into evoked and induced
responses. Evoked responses are time- and phase-locked to an
event. This means that averaging repeated signals will increase
the signal-to-noise ratio. Induced responses are not phase
locked but the power, rather than the phase, is time locked to
the stimulus. That is, the power in specific frequency bands
has to be calculated before averaging across trials [41]. The
measured response is usually referred to as an event-related
potential (ERP) or event-related field (ERF) [42].

Slow cortical potentials (SCPs) [43] were among the first
signals to be used to drive a BCI system [15] and can be
interpreted as an evoked response. They can be operant
conditioned with direct positive feedback but, as previously
mentioned, require extensive training periods. Furthermore,
modulation of SCPs is relatively slow, which limits the bit rate
(the amount of information transmitted per unit time). The
evoked response that is used most often for BCI is the P300
[18, 44]. It appears as a positive deflection roughly 300 ms
after stimulus presentation and is related to the amount of
attention by the subject to the stimulus. The visually evoked
P300 has been used repeatedly for speller applications in
which a letter matrix with flashing rows and columns is
presented [18]. Another family of evoked responses is the
steady-state-evoked potential (SSEP) [45]. When perceiving a
stimulus (visual, somatosensory, or auditory) that is modulated
with a known periodic pattern, this pattern can be traced
in measurements of brain activity. This watermark can be
pseudo-random, periodic, or spread spectrum (e.g., [46]). The
power and phase of the signal can be influenced by selective
attention by the subject thus providing a suitable task for a
BCI [47, 48]. Other well-known evoked responses that have
been used in a BCI context are the error potential (EP) for
automatic detection of misclassifications made by the system
[49], and the readiness potential (RP), which has been studied
to improve the reliability of BCI systems [50].

Event-related desynchronization (ERD) and synchroniza-
tion (ERS) are examples of induced responses, occurring as
a result of changes in the oscillatory behaviour of a group of
neurons. Specific mental activity is reflected in desynchroniza-
tion of on-going rhythms in certain parts of the brain, which
appears as an attenuation of the power in specific frequency
bands. Similarly, deactivation is reflected in a synchroniza-
tion rebound [51]; an increase in power at specific frequency
bands. ERD and ERS of the mu and beta rhythms have been
studied extensively for motor imagery tasks [41, 51, 52], as
they can be measured over areas of the sensorimotor cortex.
ERD was also found during other mental tasks, such as covert
attention [17], mental arithmetic [53], mental rotation [54] and
language related tasks [55].

In order to apply BCI to new tasks, more knowledge
is necessary on the level of neural coding. Which parts
of the brain are active in various tasks? What is the
functional role of rhythmic neuronal synchronization? How do
different brain areas communicate? The better we understand
these issues, the better we can extract relevant features and
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Figure 2. Schematic overview of the scale of spatial and
temporal resolution of measurement methods used for BCI.
Measurement methods are electroencephalography (EEG),
magnetoencephalography (MEG), near-infrared spectroscopy
(NIRS), functional magnetic resonance imaging (fMRI),
electrocorticography (ECOG), local field potential (LFP)
recordings, micro-electrode array (MEA) recordings and
microelectrode (ME) recordings. Non-invasive methods are
shown in blue and invasive methods are shown in red.

markers. Encoding also has to be understood for hierarchical
combinations of representations into large units. For example,

the representation of a two-finger movement in brain signals
may be an additive combination of the representations of
each of the movements of the individual fingers, or may
give rise to nonlinear interactions and generate a new overall
signature. For internal speech, the representation of a word
may be different from the sum of the representations of its
constituting phonemes. Breakthroughs in BCI can be expected
if our understanding of the nature and hierarchy of neural
representations increases.

5. Preprocessing and feature extraction

The purpose of preprocessing and feature extraction in a
BCI system is to transform measured brain signals such that
the signal-to-noise ratio is maximized—hence maximizing
the probability of correct brain state identification. Clearly, the
optimal transformations depend not only on knowledge of the
signal characteristics but also on the measurement technology
employed. Here, we restrict ourselves to preprocessing and
feature extraction for electrophysiological signals. We refer
to [56] for a discussion of signal processing in the context of
fMRI-based BCls.

The most common types of preprocessing are artefact
detection, spectral filtering and spatial filtering.  Artefact
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Figure 3. Interactions between features which may occur when training a classifier on data for two conditions (indicated by blue squares
and red circles). Panel (a) depicts a situation where either feature 1 or 2 is sufficient to distinguish both conditions. Panel (b) demonstrates
the situation where feature 1 is redundant since it does not distinguish both conditions whereas feature 2 does, as shown by the projections
on individual features. Typically, we wish to eliminate as many redundant features as possible, thereby improving generalization
performance and interpretability of the results. Panel (c) depicts the case where both features are necessary to disentangle the conditions.
Here, a linear classifier is used to discriminate the classes (indicated by the green decision boundary which separates the classes). Contrast
this with panel (d), where a nonlinear classifier is required to discriminate the classes. Trials at the wrong side of the decision boundary will
be misclassified. Often, in practice, linear classifiers are sufficient for classifying neuroimaging data.
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detection attempts to find confounding signals from sources
outside the brain, such as eye and muscle artefacts, and then
attempts to remove them from the trial data or reject the
trial altogether. Spectral filtering is used to remove noise
signals, such as slow drifts and line noise. Spatial filtering
linearly combines signals from multiple electrodes to focus on
activity at a particular location in the brain. It is used either
to focus on or reject sources based upon their position. An
example of spatial filtering is independent component analysis
(ICA) [57], which identifies statistically independent sources
of activity. Alternative spatial filtering approaches are channel
re-referencing such as the common average reference or the
Laplace filter [58], source imaging methods that make explicit
use of a forward model (see [59]) or spatial filters that make
use of class information, such as the common spatial patterns
method [60] that is popular in BCI research [61, 62].

Feature extraction attempts to robustly characterise
the preprocessed signals of interest, mainly by employing
temporal or spectral features. Temporal features are derived
directly from the signal and include the (averaged) time-
course. Spectral features characterise the power of the
brain signal in various frequency bands. Time-frequency
representations (TFRs) combine both temporal and spectral
features by describing how spectral power varies over time.
There have also been attempts to use not only power but
also phase information as features [63]. Other, as yet more
speculative features, are measures derived from nonlinear
dynamical systems theory [64, 65].

Summarizing, both preprocessing and feature extraction
are important components of the BCI cycle, as they make the
raw signals suitable for predicting outcomes.

6. Prediction

A critical element in any BCl is to predict the outcome intended
by the subject from extracted features (e.g., band power at
multiple EEG sensors). This prediction is covered by the field
of machine learning. Sometimes, the output is continuous,
in which case we are dealing with a regression problem (e.g.,
[66]), but in most designs it is discrete, in which case we
are dealing with a classification problem. Many different
classification algorithms have been employed in the literature
[7, 9]; popular choices being linear discriminant analysis and
(linear) support vector machines [67]. However, classification
performance depends not only on the classifier, but also on
factors such as the number of extracted features, the amount
of training data available and the experimental paradigm.
Generally, neuroimaging data are characterized by many
features (e.g., thousands of voxel activations or power
estimates) and a small number of trials. In that case,
classifiers are prone to overfit on the training data which
leads to poor performance on new trials. There are various
ways of tackling this problem, such as using simple linear
classifiers, regularization in order to reduce the effect of
outliers, and/or employing feature selection methods to reduce
the number of used features [8]. Note that these methods
not only improve generalization performance, but also help
to interpret the parameters of the resulting classifiers (cf

figure 3). An interesting related issue is how well trained
classifiers generalize to new sessions or subjects [68]. This
topic, known in the machine learning literature as transfer
learning [69] or multi-task learning [70], receives increased
attention in the BCI community [71].

Addressing the dynamic nature of the closed BCI cycle is
a big challenge. The human brain is a flexible and powerful
learning machine. The ability to learn the coordination of
muscles for complex movements, even after a lesion [72],
clearly demonstrates this power. In order for BCI systems
to utilize this ability requires a continuous tracking of and
adapting to the changing user state. Consequently, there is a
growing interest in dynamic classifiers, such as hidden Markov
models and dynamic Bayesian networks [73, 74], that allow
for continuous tracking, enabling so-called asynchronous
BCIs. Bayesian methods are also used as the basis for
adaptive BCIs that modify their behaviour based on changes
in signal characteristics; e.g., due to habituation or sensor drift
[67, 75, 76].

In short, the main problem of classification is not so much
the choice of a proper classification algorithm, since simple
linear classifiers often perform satisfactorily, but mainly
concerns optimal feature selection, the ability to perform on-
line state estimation, and the capability to adapt to changes
while iterating through the BCI cycle.

7. Output

The BCI output component generates information for
controlling an output device, thus closing the BCI cycle
by providing the user with observable feedback about the
predicted intention. Output devices can be distinguished into
computer applications and physical devices such as neural
prosthetics or a wheelchair. Output can take a wide range
of output modalities, such as text [15], auditory output [77],
motor commands [67, 78], or graphical [79] and vibrotactile
[80] representations of brain activity for neurofeedback.
Often, signal feedback is used in combination with the actual
control of an output device [81], to allow the user to adapt
and learn. Output generation of discrete commands is most
common [7, 82], through direct control, driven by a continuous
EEG feature, is used as well (e.g., a linear combination of
power in EEG frequency bands for 2D cursor control [83]).

Exciting results have been obtained with invasive
recording techniques via which monkeys control robot arms
[78, 841, up to the extent that they can learn to feed themselves
[5]. However, as underlined in section 3 we are far away from
using non-invasive BCI to control applications with similar
accuracy and speed. There remains a major need to increase
the dimensionality of current BCIs. It is rather ironic that
we cannot control a simple machine with more than a few
degrees of freedom using signals from one of the most high-
dimensional systems we know.

Typically, BCI systems achieve bit rates up to 25 bits
per minute [1]. The bit rate depends on the classification
accuracy and speed of a BCI. It is expressed as I(C; Y)/T,
where I(C; Y) stands for the mutual information between the
actual class C and the predicted class Y and where T represents
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the trial duration in minutes [67]. If not every outcome has the
same utility then one should take this into account within the
evaluation criterion. For instance, turning on a wheelchair
while the user did not intend this should be more heavily
penalized than the converse error. One evaluation criterion
which takes differences in utility into account is the area under
the receiver operating characteristic (ROC) curve [85]. One
should always be careful when using an evaluation metric
to evaluate a particular BCI application. For example, area
under the ROC curve is only applicable in the case of binary
classification problems whereas the bit rate can be misleading
due to the exclusion of intertrial intervals or due to the fact
that systematic misclassification may even increase the bit
rate [44].

To the increase bit rate, knowledge from the application
domain and smart user-interface design can be employed. For
example, mental typing can benefit from particular layouts
of target characters, probabilistic text entry techniques, or
language models [86—88]. Cursor control can be reinforced
using the amplitude of the extracted features and momentum
of previous control commands [89]. Taking care of stimulus-
response compatibility (such as mapping left-right imagined
movement to left-right position of the bat in a Pong game)
further facilitates ease of use. A successful example of this
concept is reported in [90], where foot imagery is used for
walking in virtual environments. Contextual information can
also constrain the control, such as the position of a wheelchair
with respect to obstacles and walls, or mouse positions relative
to objects on a graphical canvas [91].

The design of guidelines for interactive systems which
process ambiguous input is a well-known topic in multimodal
human—computer interaction [92] and could therefore provide
formalizations that may help mature the current BCI
technology.

8. Applications for disabled and healthy users

EEG-based BCIs have been used for patients suffering from
various degrees of paralysis. These BCIs are based on
signatures such as slow cortical potentials [15], ERD/ERS [3]
or the P300 evoked potential [93] to control a computer cursor
for communication with the external world. Although the
target users for a BCI system are mainly completely locked-in
patients, relatively few systems have actually been successful
for this group. One consideration is that a system, which is
designed and tested for healthy subjects, does not necessarily
generalize to the patient population. For example, some
studies have reported that about 45% of patients suffering
from ALS reveal some form of cognitive impairment [94, 95]
as well as modified EEG signatures [96]. A possible reason
for this cognitive impairment may be the enduring immobility,
but the disease may also have effects on brain functioning that
have not yet been properly clarified [97]. Next to the use
of BCIs in paralysed patients, we foresee an increased use
of BCI technology in monitoring or prediction of particular
(pathological) functional states such as in the prediction of
seizure onset in epileptics [98] or monitoring the depth of
anaesthesia during surgery [99].

Quite recently, chronically implanted intra-cortical micro-
electrode arrays have been used to measure multi-unit activity
to restore motor function in tetraplegic subject [39]. He was
able to open e-mails, to operate devices such as a television,
even while conversing, to open and close a prosthetic hand and
to perform rudimentary actions with a multi-jointed robotic
arm. Although these results are promising, many technical
problems, mainly related to electrode biocompatibility, have
to be resolved before these techniques can be used on a routine
basis.

Neurofeedback paradigms have been used in several
clinical settings. Through operant conditioning (i.e., a reward
is given when some desired activity is produced) an EEG
component can be selected for training. Typically, such a
component is the (ratio of) power in certain frequency bands
in particular brain areas. This has resulted in several interesting
clinical results showing possible beneficial effects for illnesses
such as ADHD and epilepsy. Quite recently, Leins and
colleagues [79] have shown that on-line feedback of slow
cortical potentials and feedback of the ratio of power in theta
and beta bands in ADHD children resulted in behavioural and
cognitive improvements, which were stable for at least six
months. This was one of the first studies with controls, which
revealed significant effects of neurofeedback on cognitive
performance. The use of fMRI feedback has also yielded
interesting results, such as training certain brain regions
to reduce chronic pain and obsessive compulsive behaviour
[100].

There is a broad repertoire of potential BCI applications
for the healthy user as well, ranging from the detection
and amplification of particular emotional and cognitive states
to new forms of human—computer interaction. Many such
applications are framed in the context of BCI games. Already
in 1977 visually evoked potentials were used to allow users
to navigate in a maze [101]. Some BCI games are used
in the development of medical applications (e.g., novel
training environments in neurofeedback research) but often
they are designed to illustrate BCI systems in research and
entertainment. Simple and familiar video games have been
placed under BCI control. For example, the Berlin brain—
computer interface [86] has used motor imagery to play
Pacman, Pong and Tetris. Motor imagery applications also
exist for more advanced applications such as the control of a
first-person shooter game [102] or for navigation in Google
Earth [103]. Other games have been introduced that exploit
more global brain activity. Brainball is one example, where
gamers have to control a ball on a table through their state of
relaxation [104], showing that such games can have a profound
impact on a user’s cognitive state. Several small companies
currently introduce cheap and portable BCI devices on the
market for non-medical use.

9. Towards the future

On the one hand, many of the aforementioned results reflect
significant theoretical and practical advances. On the other
hand, the low reliability, low speed and huge inter-subject
variability prevent a rapid deployment of BCI techniques for
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clinical and consumer applications [105]. Why is it that, in
all these years of development, not more progress has been
achieved? We believe that in each of the steps of the BCI cycle
major improvements are needed. Yet, expectations concerning
BCTI’s potential use easily runs high, especially in the popular
media. It is important, both for the research community as
well as for potential users, to make a clear distinction between
currently feasible and potentially possible applications in order
to prevent unrealistic expectations.

Like other new and promising research areas, such as
bioinformatics and nanotechnology, BCI provides cause for
considering its potential philosophical, ethical and societal
consequences. Research in BCI has implications for and
can be influenced by discussions of general topics within
neuroethics, ranging from mind-reading and privacy [106],
personal identity [107], free will and mind-control [108],
to human enhancement and social stratification [109]. In
addition, researchers should consider several other ethical
issues regarding clinical BCI applications.  Specifically,
acquiring informed consent from a locked-in patient should
be done very carefully considering the high expectations of
the patient, the difficulty in communication, and the lack of
alternatives for the patient [110].

When interpreting neural activity for BCI applications
it is useful to reflect what it means for a thought to drive a
BCI. The described research mainly uses some specific task as
a correlate of user intention, such as the use of imagined
movement for decision making. It would be much more
satisfying if the BCI employs the neural signal associated
with the decision making process directly (e.g., activity in the
prefrontal cortex) or if the BCI signal can be controlled using
subject-specific strategies, where the user has the freedom to
choose the employed brain signature [111]. In this context
it is highly interesting that subjects can modulate brain areas
without knowing what they really do. A good example is
the study by deCharms et al [112] on patients with a high
pain sensation. If activity in brain centres, involved in the
perception of pain, was measured using fMRI and shown to
the subject as the height of a fire on a monitor, subjects were
able to modulate their brain activity such that the flames on
the monitor became smaller. Of course, this corresponded
with a reduced activity in pain-related brain centres and with
a reduction of perceived pain. This illustrates that subjects
somehow know what to do in order to modulate brain activity
that is fed back to the subject, even when the subject is not
aware of the source of that brain activity. This raises some
very interesting questions about the role of introspection and
modulation of brain activity in specific brain areas.

We envision that the real-time single-trial analysis, that is
afforded by BCI, may also have a profound impact on the way
neurophysiological data are analysed. Traditional univariate
analysis of data which is averaged over multiple trials and
subjects can now be augmented by sensitive multivariate
methods that allow (on-line) the classification of single-trial
data in single subjects [113, 114]. This not only makes it
possible to quantify between- and within-subject variability
but also implies that signal characteristics which previously
could only be observed off-line can now be tracked in real

time. This allows brain function to be probed in dynamic
and natural contexts [115]. The possibility of instructing
subjects to maintain a specific feature of their brain activity
at a certain level, while conducting the experimental task,
makes it possible to include such features as independent
variable in experimental designs [116]. Conversely, stimulus
presentation during an experiment can be made dependent
on the presence or absence of particular brain signatures,
allowing for more complex experimental designs. Finally,
recent advances in single-trial analysis have led to an increased
interest in brain reading, where the goal is to infer the contents
of subjective perception given knowledge of the observed brain
state [117-119]. This increased focus on real-time single-
trial analysis should ultimately increase our understanding of
human cognition.

In conclusion, we observe that much research is devoted
to advance the state of the art in every step of the BCI cycle.
It is our belief that this research should ultimately translate
into practical applications for the healthy and disabled user as
well as into novel ways of analysing neurophysiological data
in cognitive neuroscience. These developments will ensure
that BCI research will have a lasting impact on society even
after the hype is over.
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