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Abstract In the past decades, many studies have focussed

on the relation between the input and output of neurons with

the aim to understand information processing by neurons.

A particular aspect of neuronal information, which has not

received much attention so far, concerns the problem of infor-

mation transfer when a neuron or a population of neurons

receives input from two or more (populations of) neurons,

in particular when these (populations of) neurons carry dif-

ferent types of information. The aim of the present study

is to investigate the responses of neurons to multiple inputs

modulated in the gamma frequency range. By a combina-

tion of theoretical approaches and computer simulations, we

test the hypothesis that enhanced modulation of synchro-

nized excitatory neuronal activity in the gamma frequency

range provides an advantage over a less synchronized input

for various types of neurons. The results of this study show

that the spike output of various types of neurons [i.e. the

leaky integrate and fire neuron, the quadratic integrate and

fire neuron and the Hodgkin–Huxley (HH) neuron] and that

of excitatory–inhibitory coupled pairs of neurons, like the

Pyramidal Interneuronal Network Gamma (PING) model,

is highly phase-locked to the larger of two gamma-modu-

lated input signals. This implies that the neuron selectively

responds to the input with the larger gamma modulation if

the amplitude of the gamma modulation exceeds that of the

other signals by a certain amount. In that case, the output of
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the neuron is entrained by one of multiple inputs and that

other inputs are not represented in the output. This mecha-

nism for selective information transmission is enhanced for

short membrane time constants of the neuron.

Keywords Synchronization · Gamma oscillations · Phase

locking · Stimulus selection

1 Introduction

Action potentials, or spikes, are responsible for transmitting

information through the nervous system (Adrian 1932). In

the past decades, many experimental and theoretical stud-

ies have focussed on the relation between spike input and

output of neurons and of populations of neurons with the

aim to understand information processing by (groups of) neu-

rons (see, e.g. Tiesinga et al. 2001; Dayan and Abbott 2001;

Escalona et al. 2002; Kuhn et al. 2004; Herz et al. 2006). In

general, most of these studies have investigated the response

of a neuron to a single stimulus, which may be encoded in

single-unit or multi-unit activity. This means that if multi-

unit activity was studied as input to a neuron, the multi-unit

activity represented one signal, such as for a population of

Poisson neurons, all modulated by the same signal. Several

measures, such as Mutual Information, Fischer information

and coherence (for an overview, see, e.g. Averbeck et al.

2006), have been used to quantify the amount of information

in the input and output. These studies have provided a thor-

ough overview of the neuronal properties and of the neural

encoding of information that is critical for reliable informa-

tion transmission (see, e.g. Meunier and Segev 2001; Hansel

et al. 1995).

A particular aspect of neuronal information, which has

not received much attention so far, concerns the problem of
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information transfer when a neuron or a population of

neurons receives input from two or more (populations of)

neurons, in particular when these (populations of) neurons

carry different types of information. This might happen, for

example, when two stimuli are presented in the receptive field

of a neuron in the visual system. The question then arises as

to whether the output of the neuron reflects a linear summa-

tion of the information contained in both inputs, or whether

one input signal may dominate over the other. A good exam-

ple where this is relevant is in selective attention (Reynolds

and Desimone 2003), where two stimuli are presented within

the receptive field of a single neuron. Experimental stud-

ies in visual cortex (Treue and Maunsell 1996; Luck et al.

1997; Reynolds et al. 1999; Reynolds and Desimone 2003)

have shown that the output of a neuron may reflect either

input, depending on whether attention is directed to one or

the other stimulus. This biasing of competition in favour of

the attended stimulus is correlated with the appearance of

enhanced gamma band (30–80 Hz) synchronization (Fries

et al. 2001, 2007; Fries 2009; Gruber et al. 1999; Taylor

et al. 2005; Womelsdorf et al. 2005). This observation sug-

gests that the responses of a neuron to multiple input signals

not only depend on the properties of the neuron, but also on

the neuronal encoding of information in oscillatory, synchro-

nized firing of the spike input.

Recently, Fries (2005), Fries et al. (2007) and Börgers and

Kopell (2008) hypothesized a specific link between gamma

rhythmicity in neuronal firing and the selective transmis-

sion of information. These authors postulated that a coher-

ent input oscillating in the gamma frequency range can be

highly effective at preventing another less coherent input to

affect the output of a neuron. This hypothesis implies that

selective information transmission is determined to a large

extent by the amount of synchronized, oscillatory neuronal

activity at the input. Two factors are thought to contribute to

this effect. The first is that balanced excitation and inhibition

decrease the resistance of the cell membrane and thereby

raise the leakiness of the target neurons. If the time con-

stant of the cell membrane decreases, the neuron behaves

more like a coincidence detector and tends to respond better

to synchronized input (Azouz and Gray 2000; Kuhn et al.

2004), thereby greatly amplifying the advantage of a more

coherent excitatory input A over a less coherent competitor

B. The second factor relates to the role of inhibition (Börgers

et al. 2010). One way to generate periodic inhibition is by the

“PING” (Pyramidal Interneuronal Network Gamma) mech-

anism (Börgers and Kopell 2003, 2005; Whittington et al.

2000), in which a gamma rhythm arises from the interac-

tion between excitatory pyramidal cells (E-cells) and inhibi-

tory interneurons (I-cells). A synchronized gamma frequency

train A of excitatory input pulses triggers synchronous spike

volleys of the I-cells, which then synchronize the E-cells by

inhibitory spike volleys. The timing of the inhibition from

the inhibitory neurons after the spike volleys of a coherent

stimulus A to the excitatory neurons decreases the contribu-

tion of a competing, less coherent pulse train B that is uncor-

related with the more coherent stimulus A. As demonstrated

by Börgers and Kopell (2008), this inhibition amplifies the

advantage of coherent input by raising the effective leakiness

of the target neurons. Therefore, the two factors of leakiness

and timing of inhibition are partly related.

Leakiness and inhibition provide modulations in excit-

ability, which are the key for the Communication-through-

Coherence (CTC) hypothesis by Fries (2005), which states

that oscillatory activity is a mechanism for efficient infor-

mation transfer. The aim of the present study is to test

the hypothesis that enhanced modulation of synchronized

excitatory neuronal activity in the gamma frequency range

provides an advantage over a less synchronized input for var-

ious types of neurons using theoretical approaches and com-

puter simulations. Recently, Börgers and Kopell (2008) have

shown that more coherent excitatory stimuli may have a com-

petitive advantage over less coherent ones for coupled excit-

atory and inhibitory neurons, in agreement with experimental

observations. In their study, they investigated the responses

of the PING model (consisting of an excitatory neuron and

an inhibitory neuron, bi-directionally coupled to each other),

to two input signals, each composed of a series of Gaussians

at a gamma rhythm. For a small standard deviation σ of the

Gaussians, the input was sharply peaked, whereas the oscil-

lation amplitude of the input rapidly decreases for broader

pulses with increasing σ . Sharper peaks and higher amplitude

correspond to more synchronized input spikes, correspond-

ing to a more coherent input. The main finding of Börgers

and Kopell was that the responses to the less coherent sig-

nal are suppressed by the more coherent signal as long as

the inhibitory neuron provides sufficiently strong and long-

lasting inhibition after firing of the excitatory neuron.

The main focus of our study is to explore in detail, both

analytically and by computer simulations, the responses of

various types of single model neurons to multiple gamma-

modulated input signals. There are two main differences

between our work and the work by Börgers and Kopell. The

first difference relates to the fact that we focus mainly on the

responses of single model neurons. A few simulations were

done for the PING model to compare the results for the single

neurons to that for the PING model. The second difference

is related to the type of input. In the study by Börgers and

Kopell (2008), the width and amplitude of the gaussian-

shaped volleys covaried, whereas we only considered varia-

tions in amplitude of the gamma-modulated signal. We use

sinusoidal input signals with a frequency in the gamma range

superimposed on a mean firing rate, rather than periodic

Gaussian-shaped input. Recordings of EEG and MEG (see,

e.g. Schoffelen et al. 2005) and local field potentials (see

Womelsdorf et al. 2005) have shown that a realistic gamma
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Fig. 1 Phase locking for a LIF

neuron with membrane time

constant τ = 7 ms in the

presence of one sinusoidal input

(lower panels in a and b) with

frequency γ = 43 Hz.

a Membrane potential for

sinusoidal input with amplitude

B = 4.7 s−1. The phase of the

sinusoid, when the LIF neuron

spikes, decreases when the

amplitude B increases. This is

illustrated in panel b, where

B = 6 s−1. For clarity, dashed

lines relate the time of the spike

to the sinusoidal input. c The

locking phase as a function of

the amplitude B of the

sinusoidal input. d The time it

takes to the next spike for the

LIF neuron given the initial

condition V (0) = 0 and the

initial phase equal to ϕ. The

dashed line corresponds to

B = 3.5 s−1, the solid line to

B = 4.147 s−1 and the

dashed-dotted line to B = 6 s−1.

The left intersection point of the

dashed-dotted line with the line

T = 1000/43 ≈ 23.25 ms gives

the (stable) locking phase

V

00

time (ms) time (ms)

a b

c d 

0

φ
π 2π0 20 40 60 80 100

B (s-1)

lo
ck

in
g
 p

h
as

e 
(r

ad
ia

n
s)

 

T
 (

m
s)

 

100 200 100 200

34
0.9

0.8

0.7

0.6

0.5

0.4

0.3

32

30

28

26

24

22

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

signal has a band-pass frequency spectrum and look very sim-

ilar to band-pass filtered Gaussian White noise (see Wom-

elsdorf et al. 2005, Fig. 1). A rougher but still reasonable

approximation is by a sinusoid, which motivates our choice.

Through a combination of theoretical results and simulations,

we show that entrainment of the output of the LIF neuron can

occur by the input with the larger gamma modulation and we

specify the parameter range where it takes place. The com-

bined simplicity of our input signal and the LIF model allows

for some rigorous results.

Our results demonstrate that stimulus selection can take

place at the level of a single neuron, even without inhibi-

tion as in the PING model. The input signal with the larger

gamma modulation can entrain the output of a single neuron

because the structure of the input prevents firing at specific

time windows. If the amplitude of one of the gamma sig-

nals is sufficiently large, the neuron may fire at a high prob-

ability when the sinusoid is positive, and by the time that

the membrane potential returns to the firing threshold again,

the sinusoid with the larger amplitude becomes negative and

thereby reduces the probability of firing. This result applies

to a variety of models [quadratic integrate and fire neuron,

Hodgkin–Huxley (HH) neuron, PING model] showing that

the pattern of the entrainment of the output of the neuron by

the input with a larger gamma modulation is similar as in the

case of the LIF neuron.

2 Phase coherence as measure of entrainment

In order to study entrainment, we will study the responses of

a few types of neurons and pairs of excitatory and inhibitory

coupled neurons to an input signal modulated by two differ-

ent sinusoids at a gamma frequency. A quantitative measure

for entrainment of a neuron by sinusoidally modulated inputs

can be obtained using the phase coherence, which is defined

by R =
∣

∣

∣

1
N

∑

j=1,N ei2πω j t j

∣

∣

∣ . Here, the summation is over

all N output spikes of the neuron with corresponding firing

times tj and ω j represents the frequency of the sinusoidal

input signal j (Lachaux et al. 1999). The phase coherence

provides a measure for the variability of the spike output rel-

ative to the phase of the input signal with frequency ω j . It has

the value 1 if the neuron perfectly locks to the input signal

(i.e. all output spikes are at a fixed phase in the cycle of the

input signal). The value is 0 if there is no locking at all, i.e.

the spikes are generated at completely random times relative

to the periodic input signal.
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Throughout this study, our input consists of one or two

gamma signals, represented by sinusoids with frequencies

ω1 and ω2, superimposed on a constant input, which ensures

a mean firing rate in the absence of the sinusoidal input sig-

nals.

3 LIF neuron

The dynamics of the linear integrate and fire (LIF) neuron is

given by

dV

dt
= −

1

τ
(V − V0) +

I

C
, (1)

where C represents the (constant) capacitance of the cell

membrane and τ = RmC is the time constant of the neu-

ron with Rm representing the membrane resistance. When

the voltage V reaches a threshold value Vθ , its value is reset

to V0. In this article, we will use V0 = 0, Vθ = 1, and

the dimensionless “membrane potential” V, which is scaled

to values between 0 and 1. The parameter I represents the

external input to the neuron. Without the reset mechanism,

the membrane potential of the neuron has a steady-state value

V∞ = V0 + τ I
C

. If the reset is taken into account, the tran-

sition from non-spiking to spiking occurs when the value of

V∞ exceeds Vθ . We define Ib as the transitional value for the

input that causes spiking when V∞ exceeds Vθ . This transi-

tional input value is given by Ib = C Vθ−V0

τ
.

In our analysis, the total input to the LIF neuron is defined

by

I/C = µ + B1 cos(2πγ1t) + B2 cos(2πγ2t), (2)

where B1 and B2 are the amplitudes of two sinusoidal inputs

with frequencies γ1 and γ2 and where µ represents a constant

input. In order to investigate the effect of the leak time con-

stant τ of the LIF neuron, simulations were done for different

values of τ. Throughout this section, we set the constant input

µ to a value (slightly) larger than Ib

C
such that the firing rate

of the LIF neuron is 38 spikes/s in the absence of any other

input signals.

3.1 Phase-locking to a single sinusoidal input

For an understanding of the two-input case, it is helpful to

first consider the case of a single input:

I/C = µ + B cos(2πγ t). (3)

More specifically, we consider Eq. 1 with the input current

given by Eq. 3 and initial condition V (t0) = 0. For this case,

the explicit solution for Eq. 1 is given by (see Appendix 1A)

V (t + t0) = (τµ + V0)

(

1 − e− t
τ

)

−B
τ

√

4π2γ 2τ 2 + 1
sin(2πγ t0 − θ)e− t

τ

+B
τ

√

4π2γ 2τ 2 + 1
sin(2πγ t0 − θ + 2πγ t)

with θ = arctan(2πγ τ). In order to obtain an expression for

the one-to-one phase-locked solution for driving frequency

γ , we substitute T = 1/γ for t and the threshold for firing

Vθ for V (γ −1 + t0). For simplicity, we define ϕ = 2πγ t0
as the phase of the sinusoidal input at the time when the LIF

neuron fires. After some algebra (we refer to Appendix 1A

for details), this gives the expression

B sin(ϕ − θ) = (µγ − µ)

√

4π2γ 2τ 2 + 1, (4)

where µγ is the constant drive needed for tonic spiking of

the LIF neuron at frequency γ when B = 0. Equation 4 gives

an explicit expression of the phase ϕ of the sinusoidal input

when the LIF neuron fires. We now see that the smallest value

of B for phase locking to exist is

Bbif = (µγ − µ)

√

4π2γ 2τ 2 + 1 (5)

and the corresponding value of ϕ is ϕ = θ +π/2. This shows

that the LIF neuron will only synchronize to the sinusoidal

input if the amplitude of the sinusoidal input is sufficiently

large. For any B > Bbif , Eq. 4 has two solutions, one with

θ < ϕ < θ +π/2 and the other with π/2+θ < ϕ < θ +π. A

lengthy but straightforward computation shows that it is the

smaller value of ϕ which corresponds to stable phase locking

(see Appendix 1B). Hence ϕ is between θ and θ + π/2, and

as B increases ϕ decreases towards θ.

Figure 1a and b shows the membrane potential of the

leaky integrate and fire neuron for γ = 43 Hz and τ = 7 ms

for two values of B, 4.7 s−1 and 6 s−1, respectively. In both

cases, the neuron fires at a more-or-less constant phase of

the input signal. This phase is well above the lower bound

θ = arctan(2πγ τ) = arctan(2π ×43×0.007) ≈ π/3. Note

that we use seconds as a unit of time rather than milliseconds.

Notice that the phase of the sinusoid at the time of the spike

is smaller in Fig. 2b than in Fig. 2a. This illustrates that the

phase of firing decreases when the amplitude B of the gamma

frequency increases.

We point out that when B is sufficiently large, a solution

for Eq. 1 may no longer correspond to a spiking solution

with frequency γ. This happens when the positive phase of

the sinusoid generates two spikes in some of the cycles. This

is illustrated in Fig. 2, which shows the membrane potential

when the amplitude B of the sinusoidal input is just below

the value (Fig. 2a) or just above the value (Fig. 2b), where it

would generate multiple spikes per cycle. In the latter case,

the coherence decreases since spikes are generated at dif-

ferent phases of the sinusoidal input. When the value of B
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Fig. 2 Membrane potential

of the LIF neuron (upper panels)

and sinusoidal input (lower

panels) for the phase-locked

solution for a relatively large

values of B. In a, the locking

is almost perfect

(B = 112 s−1, τ = 7 ms and

γ = 43 Hz). If the value B

increases any further (see b),

a second spike develops causing

doublets of firing and a perfect

phase-locked solution no longer

exists
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approaches the value, which causes two spikes per cycle, the

phase ϕ of the sinusoid at the time of the first spike in the

doublet converges to θ. We will not consider this situation

for large values of B any further in this article.

Figure 1c shows the dependence of the locking phase ϕ on

theamplitudeof thesinusoidal input B forγ = 43 Hzandτ =
7 ms.The value of the locking phase decreases from the initial

value θ + π/2, which is approximately 5π/6, and asymptot-

ically approaches the value θ = arctan(2πγ τ) ≈ π/3.

In order to further illustrate these results, we computed the

inter-spike interval T (ϕ) between a spike at phase ϕ of the

sinusoid and the next spike, as a function of ϕ. Strictly speak-

ing, this relation is equivalent to the return map 5(ϕ) = ϕ +
2πγ T (ϕ)(mod 2π), which gives the phase of the next spike

as a function of the phase of a spike. Figure 1d shows T (ϕ)

for three values of B : B < Bbif , B = Bbif and B > Bbif .

If B < Bbif (dashed line), the time interval to the next spike

always exceeds the period of the 43 Hz sinusoid (23.25 ms).

Therefore, phase locking does not occur. When B = Bbif

(solid line in Fig. 1d), there is exactly one phase ϕ with

T = 1/γ. If the amplitude of the sinusoidal input exceeds

Bbif (dashed-dotted line), there are two intersection points

with the horizontal line T = 1/γ = 23.25 ms. Only the first

value corresponds to a stable state (see Appendix 1B). This

value decreases for larger values of B, approaching the lower

bound θ = arctan(2πγ τ) = arctan(2π×43×0.007) ≈ π/3

for large values of B.

3.2 Phase-locking for two sinusoidal inputs

It turns out that Bbif is also a key parameter for the case with

two sinusoidal input signals. The results in Fig. 3a and b

show the phase coherence between firing of the LIF neuron

and each of the two sinusoidal inputs as a function of the

amplitudes B1 and B2 of the sinusoids. These amplitudes,

B1 and B2, were chosen such that the total input to the LIF

neuron was never less than zero. This was achieved by

B1 ≤
3

2
Bbif(γ1, τ ), B2 ≤

3

2
Bbif(γ2, τ ), (6)

Note that this also implies that the average input remains

the same as the amplitude of the sinusoid is varied. The

values of the gamma frequencies in Fig. 3 are γ1 = 40 Hz

and γ2 = 43 Hz.

The value of the phase coherence between the signal with

frequency γ1 and the spike output of the LIF neuron is

close to one in the upper left part of Fig. 3a (i.e. for large

values of B1 and small values of B2). Similarly, the value

of the phase coherence between the signal with frequency

γ2 and the spike output of the LIF neuron is close to one

in the lower right part of Fig. 3b (i.e. for large values of B2

and for small values of B1). This result shows that the LIF

neuron can be entrained by either one of the two sinusoids.

If B1 = 0 s−1 phase locking to the sinusoidal input with fre-

quency γ2 starts at B2 = Bbif(γ2) (i.e. near B2 = 4 s−1) and

persists for larger values of B2. Similarly, phase locking to

signal 1 starts at B1 = Bbif(γ1) when B2 = 0 s−1.

Furthermore, we claim that for B1 > 0 s−1, there is

approximate phase locking to signal 2 with high coherence

values as long as the amplitudes (B1, B2) are to the right

of the line (B, B + Bbif(γ2)). The claim is based on the

following argument, which takes into account not only the

amplitudes of the two sinusoids, but also the relative phase,

which, because of the small difference in the frequencies,

evolves slowly. We treat the case of B1 > 0 s−1 as a pertur-

bation of the case B1 = 0 s−1. The presence of the weaker

sinusoidal input can, over one period, advance or delay the

spike, depending on the relative phase of the two sinusoidal

inputs at the time of the preceding spike. Over one period, the

relative phase of the two sinusoids hardly changes because

of the small difference in the frequencies of the sinusoidal

inputs. The largest delay of the next spike due to the pres-

ence of the weaker input 1 takes place if the two sinusoids are
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Fig. 3 Phase coherence to signal 1 (a) and to signal 2 (b) for the LIF

neuron with membrane time constant τ = 7 ms. In a, the black line

corresponds to the line (B + Bbif (γ1), B), which gives the approximate

boundary of the region of approximate locking to signal 1 with sup-

pression of signal 2. In panel B the black line corresponds to the line

(B, B + Bbif (γ2)), which gives the boundary of the region of approxi-

mate locking to signal 2 with suppression of signal 1

approximately in anti-phase. If for anti-phase of the two sinu-

soidal inputs B2 − B1 > Bbif(γ2), then approximate locking

occurs.

Figure 4a shows the evolution of the phase of spiking

when, the relative phase of the two sinusoids changes. Firing

of the LIF neuron shifts to earlier phases of the sinusoid with

the larger amplitude (B2 in this case) when the relative phase

of the sinusoidal inputs shifts from anti-phase to in-phase.

The phase of spiking relative to input 2 is bounded below by

the locking phase corresponding to the value B2 − B1 and

frequency γ2. By a similar argument, we obtain an approxi-

mate upper bound for the locking phase corresponding to the

input value B2 + B1 and frequency γ2. Since the decrease in

frequency results in the decrease of θ , this upper bound is just

approximate and becomes less accurate as B1 increases rela-

tive to B2. Figure 4b shows the variation of the phase of input

2 at the time of spiking of the LIF neuron. The black lines

correspond to the bounds evaluated using the locking phases

of B2 − B1 and B2 + B1. The LIF neuron tends to lock to

a
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(B2+B1)

200

V

time (ms) 
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0

Fig. 4 Approximate locking of the LIF neuron to the stronger of two

sinusoids for τ = 7 ms, γ1 = 40 Hz, and γ2 = 43 Hz, B1 = 2 s−1,

B2 = 6.147 s−1. a The phase of the output approximately follows the

phase of the stronger input (solid line), not that of the weaker sinusoid

(dashed line). b Polar plot of the phases of the spikes relative to input

2 (green arrows) and relative to input 1 (red arrows). The phase of

the sinusoid with the larger amplitude (sinusoid with solid line in a) is

confined to a small region while the phase of the other input is homo-

geneously distributed around the circle. The black lines correspond to

the locking phases for the input amplitudes B2 − B1 and B2 + B1,

respectively, for frequency γ2

sinusoidal input 2 (green arrows in Fig. 4b) at phases between

the two bounds. Locking to sinusoidal input 1 (which has a

much smaller amplitude) is absent and the spikes occur at

more-or-less random phases (red arrows in Fig. 4b).

The black lines in Fig. 3a and b correspond to the bounds

of approximate phase locking given by the above argument.

Indeed, input 1 dominates at the upper/left of the black line in

Fig. 3a and input 2 dominates at the lower/right of the black

line in Fig. 3b. In both cases, the black lines give a good

prediction of the boundary of approximate phase locking.

3.3 The effect of varying γ2 and τ

In Sect. 3.1 and 3.2, we showed that the regions for a large

phase coherence to signal 1 and to signal 2 are roughly

defined by the conditions:
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Fig. 5 The dependence of Bbif on γ and τ for the LIF neuron for

various frequencies of the sinusoidal input

B1 − B2 > Bbif(γ1, τ ) and B2 − B1 > Bbif(γ2, τ ), (7)

respectively. Therefore, the dependence of Bbif on γ and τ is

important for understanding the boundary regions of phase

coherence for various values of Bbif , γ, and τ. Figure 5 shows

the dependence of Bbif on τ for various values of γ. Accord-

ing to Eq. 5, Bbif increases with γ and τ. For fixed γ , the

increase in τ is linear for sufficiently large values of τ, with

the slope increasing as γ increases.

Given the estimate of the approximate locking regions

given by Eq. 7, we will study the effect of changes in the

frequencies or the time constant on Bbif . Since Bbif(γ2, τ )

increases with γ , it follows in a straightforward way from

Eq. 5 that larger amplitudes Bbif are needed to achieve lock-

ing if the gamma frequency increases. Understanding the

effect of changes in the time constant is more complicated:

if τ decreases the leak becomes faster such that the firing

frequency in the absence of gamma modulation decreases.

In order to restore this base firing frequency to 38 Hz, we

must increase µ. Given the adjustment of µ to maintain the

base firing frequency at 38 Hz, the prediction based on (5) is

that gamma modulation becomes more effective for smaller

values of τ. This phenomenon is illustrated in Fig. 6, which

shows the coherence between the output spikes of the LIF

neuron and input 1 (left panels) and input 2 (right panels)

for two different values of τ 7 ms (upper panels) and 13 ms

(lower panels). The upper two panels are a replica of Fig. 3,

showing regions of phase locking to both signal 1 and signal

2. In Fig. 6c and d, the time constant τ was changed from

7 to 13 ms and the value of µ was adjusted to achieve the

same mean firing rate of 38 spikes/s without any sinusoi-

dal input. The range of gamma modulation values B1 and

Fig. 6 Coherence between the

spike output of the LIF neuron

and one of two sinusoidally

modulated inputs (40 and 43 Hz)

for different values of τ. a Phase

coherence with signal 1 (40 Hz)

for τ = 7 ms, b phase coherence

with signal 2 (43 Hz) for

τ = 7 ms, c phase coherence

with signal 1 (40 Hz) for

τ = 13 ms, d phase coherence

with signal 2 (43 Hz) for

τ = 13 ms
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Fig. 7 Phase coherence

between spike output of LIF

neuron and two sinusoids with

frequencies γ1 = 40 Hz and

γ2 = 42 Hz, rather than

γ2 = 43 Hz as in the previous

simulations. Panels a and b

show phase coherence for

τ = 7 ms, and panels c and d for

τ = 13 ms. In all the pictures,

the bounds for B1 and B2 are
3
2

Bbif . Note the similarity to the

results obtained for γ2 = 43 Hz

in Fig. 6a and b. This confirms

the prediction that small changes

in γ1 and γ2 do not significantly

affect the phase coherence as

long as the range of B1 and B2

is adjusted consistently

(i.e. relative to Bbif (γ, τ ))
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B2 is the same in all panels of Fig. 6. For τ is 13 ms, there

is no longer coherence to signal 2 and almost no coherence

to signal 1. This can be understood based on Fig. 5, which

shows that the value of Bbif(γ2, τ ) approximately triples as

τ changes from 7 to 13 ms. Increasing the time constant to

larger values changes the nature of the LIF neuron from that

of a coincidence detector to an integrator (Kuhn et al., 2004).

The nice property of Eq. 7 is that it gives a prediction of the

amplitudes B1 and B2 that provide approximate locking for

a range of values for γ1, γ2 and τ. For example, if we change

the value of γ2 and modify the range of B1 and B2 according

to Eq. 6, the phase coherence plots should look very similar to

the plots shown in Fig. 3. In order to illustrate this, we made

simulations with γ1 = 40 Hz, γ2 = 42 Hz, and two different

values of τ, namely τ = 7 ms and τ = 13 ms (with an adjust-

ment ofµ as discussed in the preceding paragraph). The range

of B1 and B2 was adjusted for the different time constants

according to Eq. 6. The phase coherence plots are shown in

Fig. 7. They are remarkably similar to the plots in Fig. 3.

In summary, the main finding of this section is that entrain-

ment of the spike output of the LIF neuron by a sinusoi-

dally modulated input in the gamma frequency range is

possible. Entrainment is also possible in the case of two sinu-

soidal inputs. In that case the spike output is phase-locked

to the stronger of the two gamma signals, provided that the

difference between the amplitudes of the sinusoidally modu-

lated signals exceeds the lower bound for entrainment (Eq. 7).

Moreover, phase locking is easier when the time constant of

the neuron is short.

4 Other models

In this section, we will briefly describe the results of computer

simulations for the quadratic integrate and fire (QIF) neuron,

the classical HH model and the PING model in response to

two sinusoidally modulated inputs.

4.1 Quadratic integrate and fire

The quadratic integrate and fire neuron (QIF neuron) is

described in detail in Latham et al. (2000). It is formally

equivalent to the Theta neuron (Ermentrout and Kopell 1986)

and has been often used in computational studies because it

has analytical solutions for many input signals. In our study,

we use the version used by (Börgers and Kopell 2005), given

by

dV

dt
=

a

τ
V (V − 1) +

I

C
,

where V is the membrane voltage (dimensionless), C is the

capacitance of the membrane and I represents the external
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input to the neuron. τ is the time constant of the QIF neuron

and a is a parameter with the same dimension as V . In our

study, we have taken a
τ

= 0.002 s−1 as in Börgers and Kop-

ell (2005). When the voltage V reaches the threshold value

of V = 1, its value is reset to 0. There is a stable state

and an unstable state for I/C < 0.5 ms−1, which merge for

the input I/C = 0.5 ms−1 in a saddle-node bifurcation. For

inputs I/C > 0.5 ms−1, the neuron spikes. In order to inves-

tigate the entrainment to external inputs, we have simulated

the responses of a QIF neuron to an input consisting of two

sinusoidally modulated signals, given by

I/C = 0.5 + µ + B1 cos(2πγ1t) + B2 cos(2πγ2t), (8)

which is analogous to Eq. 2. The parameter µ > 0 s−1 rep-

resents a constant input such that the mean firing rate of the

QIF neuron is 38 spikes/s in the absence of the two gamma

input signals. We have chosen the ranges of the amplitudes

of the gamma signals to be sufficiently large so that locking

occurs. Figure 8 shows the results of computer simulations.

These results are very similar to the results in Fig. 3, obtained

for the LIF neuron.

4.2 Hodgkin–Huxley neuron

In this section, we present the results of the simulations for

the classical HH neuron, with the parameter values as given

in Appendix 2. With these parameter settings, the HH neu-

ron is a type-II neuron, which means that the neuron does

not fire for small inputs and starts firing at a firing rate well

above zero when the input exceeds a particular threshold. For

the parameter values given in Appendix 2, this minimal fir-

ing frequency is approximately 50 Hz. Hence, the frequency

of the gamma inputs has been increased accordingly. In our

simulations, we have set the value of µ so that the mean firing

rate without any additional input (i.e. without the sinusoidally

modulated input) of the HH neuron is 55 Hz. The frequencies

of the sinusoidally modulated gamma inputs were set to 57

and 60 Hz, respectively.

Figure 9 shows the phase coherence between the spike

output of the HH neuron and the 57 Hz sinusoidal input

(a) and the 60 Hz sinusoidal input (b). The phase coherence

depends on the amplitudes of the gamma-modulated signal

(Fig. 9a, b) in a very similar way as for the LIF and the QIF

neurons. The phase coherence is close to one if the amplitude

Fig. 8 Phase coherence

between the spike output of QIF

neuron and two sinusoidal input

signals with frequencies 40 and

43 Hz. a Phase coherence to

signal 1 (frequency 40 Hz),

b phase coherence to signal 2

(frequency 43 Hz)
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Fig. 9 Phase coherence

between spike output of the

classical HH neuron and two

sinusoidal inputs as a function

of the amplitude of the

sinusoidal inputs. a Phase

coherence of spike output with

signal 1 (frequency 57 Hz),

b phase coherence with signal 2

(frequency 60 Hz). The

parameter values for the HH

neuron are given in Appendix 1
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Fig. 10 Phase coherence

between spike output of the

excitatory neuron in the

QIF–PING model and two

sinusoidal input signals.

a Phase coherence to signal 1

(40 Hz); b phase coherence to

signal 2 (43 Hz)
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of one sinusoid exceeds the amplitude of the other sinusoid

by about 2, qualitatively in agreement with Eq. 7 for the LIF

neuron.

4.3 PING model

In the literature, a particular role has been attributed to the

“PING” (Pyramidal-Interneuronal Network Gamma) mech-

anism (Whittington et al. 2000; Börgers and Kopell 2003,

2005) in the context of gamma rhythms, which arise from

the interaction between excitatory pyramidal cells (E-cells)

and inhibitory interneurons (I-cells). The underlying mecha-

nism is that spikes of the I-cells inhibit and thereby synchro-

nize the E-cells, and that spike volleys of the E-cells trigger

synchronous spike volleys of the I-cells. Recently, Zeitler

et al. (2008) have shown that a mechanism with interacting

E- and I-cells may selectively respond to the stronger of two

gamma-modulated signals. In order to compare the results

obtained for the LIF, QIF and HH neurons, we have analysed

a PING model with an excitatory QIF neuron, coupled to an

inhibitory QIF neuron. Since theta neurons are equivalent to

QIF neurons (Börgers and Kopell 2005), this PING model is

equivalent to the PING model with theta neurons, proposed

by Börgers and Kopell (2008). For brevity, we will refer to

this model as the QIF–PING model.

The maximum synaptic coupling strength of the excitatory

to the inhibitory neuron was gEI = 0.05 10−3 s−1; that from

the inhibitory to the excitatory neuron gEI = 0.2 10−3 s−1.

The state of the synapse jumps to 1 (s(ti) = 1) at time ti of

the spike and decays exponentially
(

ds

dt
= − s

τs

)

. The time

constant τs is 2 ms for the excitatory synapse and 10 ms for

the inhibitory synapse.

Figure 10 shows the phase coherence between the spike

output of the excitatory neuron with each of the two sinu-

soidal inputs for the QIF–PING model. In our simulation,

we used a similar input as for the QIF neuron, see Eq. 8,

with µ corresponding to the constant input needed for the

QIF–PING model to fire with a firing rate of approximately

38 Hz. The phase-coherence plots, shown in Fig. 10a and b,

are qualitatively very similar to that of the LIF neuron and

QIF neuron. Quantitatively, the range of amplitudes is much

smaller for the QIF neuron than for the PING model.

After the presentation of the results for the LIF, QIF and

HH neurons and the PING model, the question arises to what

extent the responses of the LIF, QIF and HH neurons on the

one hand side and the PING model on the other hand differ

from each other. First of all, the LIF and QIF neurons (see

Figs. 7, 8) reveal entrainment for smaller gamma amplitudes

than the PING model (Fig. 10). Moreover, large inputs give

multiple spikes for the LIF and QIF neurons (see Fig. 2),

which does not happen for the PING because of the strong

inhibition of the excitatory cells by the inhibitory neurons

after firing of the excitatory cells. Similarly, if two sinusoids

with different frequencies, which provide input to the neuron,

are in phase, they may elicit multiple spikes within a single

cycle in the LIF and QIF neurons for sufficiently large ampli-

tudes of the input. This would not happen for the PING model

because of the inhibition after firing of the excitatory cell.

5 Discussion

The aim of the present study was to test the hypothesis that

enhanced modulation of synchronized excitatory neuronal

activity in the gamma frequency range provides an advan-

tage over a less synchronized input for various types of

neuron models using theoretical approaches and computer

simulations. The work of Börgers and Kopell (2008) has

already shown that more coherent excitatory stimuli may

have a competitive advantage over less coherent ones for

coupled excitatory and inhibitory neurons, in agreement with

experimental observations. In their study, they investigated

the responses of the PING model (consisting of an excit-

atory neuron and an inhibitory neuron, bi-directionally cou-

pled to each other), to two input signals, each composed of a

series of Gaussians constituting a periodic input in the gamma
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range. The main finding of Börgers and Kopell (2008) was

that coherence matters more than amplitude of the input: the

responses to the less coherent signal are suppressed by the

more coherent signal as long as the inhibitory neuron pro-

vides sufficiently strong and long-lasting inhibition after a

firing of the excitatory neuron. It is important to notice that

this is due both to the timing of inhibition, as well as due to

the leakiness of the neuron by inhibition.

In our study, we have taken a step back, trying to explain

the basic mechanism of how entrainment by one of the inputs

with suppression of the other can occur by studying the

responses of single neurons. We have used the simplest pos-

sible choice of input consisting of a constant drive modulated

by two sinusoids in the gamma range. The idea was that a

larger gamma modulation corresponds to a more synchro-

nized activity in the population of neurons that make up the

gamma-modulated input, keeping the time-averaged input

constant. The results of our study show that several types of

neuron models, including the leaky integrate and fire neu-

ron, the quadratic integrate and fire neuron and HH neuron

model can respond selectively to one input in the presence

of other inputs, as long as the difference in amplitudes of the

two sinusoidal inputs is sufficiently large. The phase coher-

ence between the spike output of the neuron and one of the

inputs can be close to one if the difference in amplitudes of

the gamma modulations exceeds a particular threshold. The

output of the neuron does not reflect a linear summation of

the contributions of both inputs; rather, it locks to the neuro-

nal input with the larger gamma amplitude, even if the other

input also has a significant amplitude. With these inputs, we

obtain qualitatively similar results for single neurons and for

E–I coupled neurons (PING model). The results for the PING

model are in agreement with the results previously obtained

by Börgers and Kopell (2008). The phase coherence between

spike output and one of the sinusoidal inputs can be observed

if the difference between the amplitudes of the sinusoidally

modulated inputs is sufficiently large (see Eq. 7) and if the

time constant of the neuron is relatively short (see Fig. 6).

The latter agrees with the conclusion by Börgers and Kopell

(2008) that not only timing of inhibition, but also leakiness

is important for selective responses to the input signal with

the largest gamma modulation.

In this study, we have used variations in gamma frequency

amplitude as a measure for synchronized input. The basic

idea was that the input to a neuron consists of a population

of neurons. If these neurons fire in a coherent way, the popu-

lation activity will reveal large variations, whereas the mean

population activity will reveal small (noisy) fluctuations if all

neuron fire completely uncorrelated. Therefore, variations in

gamma frequency amplitude should be read as variations in

the degree of input synchrony.

The issue of large gamma frequency amplitudes and the

degree of synchrony in neuronal input is also relevant in the

context of the leakiness of the neuron. Suppose that a LIF neu-

ron fires at time t = 0 and then receives a square input pulse

of duration 1t > 0 and strength s > 0 with w = s1t. We

can think of w as the ‘total amount of charge injected’. This

input will generate a spike if the membrane potential reaches

the threshold, which is the case if and only if w >
1t/τ

1−e−1t/τ .

This inequality shows that decreasing the leak time constant

τ requires larger inputs. Therefore, if we compare two stim-

uli, one with a smaller 1t (more ‘coherent’) and the other

with a larger 1t (less ‘coherent’), the threshold (for w) is

lower for the more coherent than for the less coherent one.

The phenomenon, that a neuron responds selectively to

one out of several inputs, is highly important in the con-

text of selective attention where subjects focus on one out

of several features in the sensory environment. A good

example is the simultaneous presentation of two stim-

uli within the receptive field of a neuron. Experimental

studies in visual cortex (Treue and Maunsell 1996; Luck

et al. 1997; Reynolds et al. 1999; Reynolds and Desimone

2003) have demonstrated that the output of a neuron may

be related to either input, depending on whether atten-

tion is directed to one or the other stimulus. This bias in

favour of the attended stimulus is correlated with enhanced

gamma band (30–80 Hz) synchronization (Fries et al. 2001;

Gruber et al. 1999; Taylor et al. 2005). Zeitler et al.

(2008) showed that a relatively simple feed-forward model

with excitatory and inhibitory neurons could explain these

results by assuming that the relevant stimulus is encoded

by a larger amplitude of the gamma-rhythm than the non-

preferred stimulus. The results of our study show that selec-

tive responses to multiple inputs can also be observed for

single neurons and for pairs of neurons coupled by excit-

atory and inhibitory synaptic connections.

Börgers and Kopell (2008) argued that suppression of the

less-coherent inputs is due both to the timing of inhibition as

well as to the effect that inhibition affects the leakiness of the

neuron. A similar mechanism explains the results in our study

for each of the neurons that we considered (i.e. the LIF, QIF

and HH models). Regarding the timing of inhibition in our

study, there are several aspects that matter; first of all, it takes

some time to generate a new action potential when the neu-

ron has just fired. Therefore, if a strong stimulus causes the

neuron to fire, it takes some time before the neuron can gen-

erate another action potential due to other inputs. Moreover,

the spike occurs in the phase when the stronger sinusoid is

positive, but by the time that the membrane potential returns

to the threshold level the sinusoid corresponding to the stron-

ger stimulus reaches its negative phase, so that the total input

may be too small to cause an action potential. Notice that we

carefully limited the amplitude of our sinusoidal inputs such

that the total input was always positive, even at the through of

the sinusoid, and that the neurons in our study never received

inhibition. Larger amplitudes of the sinusoids, giving rise
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to inhibition, would have enhanced the effect of timing of

inhibition, strengthening the enhanced responses to the sig-

nal with the large gamma amplitude. Therefore, timing of

inhibition partly explains why the neuron is less sensitive to

other uncorrelated input signals. A second important expla-

nation for selective responses to signals with larger gamma

amplitudes comes from the leak-time constant of the neuron

(see Eqs. 4, 5 and 7; Fig. 6). Leakiness promotes enhanced

responses to the sinusoid with the larger gamma amplitude

(see Fig. 7), in agreement with previous results for the PING

model (Börgers and Kopell 2008).

Since the inputs in our study were sinusoids, the question

arises whether the patterns of selective entrainment we have

found persist for noisy inputs, such as band pass filtered white

noise, Poisson spike input or experimental data as measured

by MEG and local field potentials. Our results show that the

PING model requires larger amplitudes of the gamma signal

for entrainment, which makes it less vulnerable for noise than

the LIF, QIF and HH models. We hypothesize that the pres-

ence of inhibition in the PING model will be instrumental for

the persistence of entrainment, in agreement with previous

results by Börgers and Kopell (2003, 2005).

The finding of prominent gamma-related activity in neu-

ronal signals has led to several hypotheses regarding its func-

tional role, in particular on the role of coherent activity in the

gamma-frequency range within a population of neurons. It

has been hypothesized that a coherent input may (i) enhance

the effectiveness of excitatory signals (Murthy and Fetz 1994;

Singer 1999), (ii) may weaken the effectiveness of inhibitory

signals (Börgers et al. 2005; Börgers and Kopell 2005; Lumer

2000; Tiesinga 2002; Tiesinga et al. 2004), (iii) may cre-

ate modulations of excitability, thereby providing windows

for effective communication (Fries 2005), (iv) may play an

important role in the creation of cell assemblies (Hayon et al.

2005) or (v) may serve as a label for solving the ‘binding

problem’ (Engel et al. 2001; Singer and Gray 1995; von der

Malsburg and Schneider 1986). Although these hypothesis

are clearly different, they may not be exclusive. The results of

this study provide strong evidence for the first hypothesis that

gamma-encoding may enhance the effectiveness of an excit-

atory neuronal signal and may suppress or annihilate neuronal

responses to inputs with less prominent gamma encoding.

Based on our results, we hypothesize that gamma-

oscillations in itself may not carry specific sensory informa-

tion, but rather that gamma modulations operate as a vehicle

to encode sensory information such that this information is

processed accurately and efficiently by subsequent groups

of neurons. This is in agreement with the CTC hypothesis

proposed by Fries (2005); Fries et al. (2007) and the possible

role of the PING mechanism (Börgers and Kopell 2008). The

CTC hypothesis emphasizes the role of the membrane time

constant. By balanced excitation and inhibition, the average

subthreshold membrane potential does not change, but the

resistance of the cell membrane decreases, and this decreases

the time constant of the cell membrane. With the shorter time

constant, the neuron behaves more like a coincidence detec-

tor and tends to respond better to synchronized input (Azouz

and Gray 2000; Kuhn et al. 2004), thereby greatly amplify-

ing the advantage of a more coherent excitatory input A over

a less coherent competitor B. Regarding the PING mech-

anism (Börgers and Kopell 2003, 2005; Whittington et al.

2000), a synchronized gamma frequency train A of excit-

atory input pulses triggers synchronous spike volleys of the

I-cells, which then synchronize the E-cells by inhibitory

spike volleys. The timing of the inhibition from the inhib-

itory neurons after the spike volleys of a coherent stimulus A

to the excitatory neurons decreases the contribution of a com-

peting, less coherent pulse train B that is uncorrelated with

the more coherent stimulus A (Börgers and Kopell 2008).

The notion of modulation of excitability, which is the key in

the CTC hypothesis by Fries (2005), also implies that oscilla-

tory activity is a mechanism for efficient information transfer,

rather than a carrier of stimulus-specific information.

The CTC hypothesis postulates that oscillatory activity is

processed accurately if the periodic excitatory input arrives at

the neuron near the peak of the oscillatory excitability. How-

ever, the CTC hypothesis does not explain how the proper

(optimal) phase relation between oscillatory input and oscil-

latory excitability is achieved. Our study shows that a sinusoi-

dal input gives rise to a small range of stable phase relations

in the range between approximately 90◦ to 135◦. This implies

that the spike in the output neuron is generated at the peak

of the input sinusoid or slightly later. This implies that the

stable phase for entrainment is such that the sinusoidal input

arrives at or just prior to the peak excitability of the neuron.

Therefore, our study shows that the intrinsic dynamics of

neurons and neuronal coupling ensures that the modulations

of excitability of the neuron adjust to a phase relative to the

periodic input such, that the excitability is near its maximum

at the peak input.
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Appendix

1A. Dynamics of membrane potential

In this section, we will derive an explicit solution of the

equation for the leaky integrate and fire neuron with a sinu-

soidal input with amplitude B and frequency γ :
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dV

dt
= −

1

τ
(V − V0) + µ + B sin(2πγ t).

Using the integrating factor et/τ

(

dV

dt
+

1

τ
V

)

e
t
τ =

(

1

τ
V0 + µ

)

e
t
τ + B sin(2πγ t)e

t
τ

the differential equation becomes:

d

dt

(

V e
t
τ

)

=
(

1

τ
V0 + µ

)

e
t
τ + B sin(2πγ t)e

t
τ .

Integration over the time interval t from t0 to t + t0 gives

V (t + t0)e
t+t0

τ =

t+t0
∫

t0

(

1

τ
V0 + µ

)

e
s
τ ds

+B

t+t0
∫

t0

sin(2πγ t)e
s
τ ds.

Now, we evaluate the two integrals separately.

t+t0
∫

t0

(

1

τ
V0 + µ

)

e
s
τ ds = (V0 + τµ)

(

e
t+t0

τ − e
t0
τ

)

.

The other integral can be evaluated using integration by parts

(twice)

t+t0
∫

t0

sin(2πγ t)e
s
τ ds =

[

τ sin(2πγ s)e
s
τ

]t+t0

t0

−2πγ τ

t+t0
∫

t0

cos(2πγ t)e
s
τ ds

= τ

[

sin(2πγ (t + t0))e
t+t0

τ − sin(2πγ t0)e
t0
τ

]

−2πγ τ 2
[

cos(2πγ (t + t0))e
t+t0

τ − cos(2πγ t0)e
t0
τ

]

−4π2γ 2τ 2

t+t0
∫

t0

sin(2πγ t)e
s
τ ds.

Transferring the term−4π2γ 2τ 2
∫ t+t0

t0
sin(2πγ t)e

s
τ ds to the

other side gives

(

1 + 4π2γ 2τ 2
)

t+t0
∫

t0

sin(2πγ t)e
s
τ ds

= τ

[

sin(2πγ (t + t0))e
t+t0

τ − sin(2πγ t0)e
t0
τ

]

− 2πγ τ 2
[

cos(2πγ (t + t0))e
t+t0

τ − cos(2πγ t0)e
t0
τ

]

.

Now we divide both sides by
(

1 + 4π2γ 2τ 2
)

:

t+t0
∫

t0

sin(2πγ t)e
s
τ ds =

τ

1 + 4π2γ 2τ 2

×
[

sin(2πγ (t + t0))e
t+t0

τ − sin(2πγ t0)e
t0
τ

]

−
2πγ τ 2

1 + 4π2γ 2τ 2

×
[

cos(2πγ (t + t0))e
t+t0

τ − cos(2πγ t0)e
t0
τ

]

=
τ

√

1 + 4π2γ 2τ 2

(

1
√

1 + 4π2γ 2τ 2

×
[

sin(2πγ (t + t0))e
t+t0

τ − sin(2πγ t0)e
t0
τ

]

−
2πγ τ

√

1 + 4π2γ 2τ 2

×
[

cos(2πγ (t + t0))e
t+t0

τ − cos(2πγ t0)e
t0
τ

]

)

.

We now define θ = arctan(2πγ τ) and use the formula

sin(α − β) = sin(α) cos(β) − sin(β) cos(α) to obtain

t+t0
∫

t0

sin(2πγ t)e
s
τ ds =

τ
√

1 + 4π2γ 2τ 2

×
(

sin(2πγ (t + t0) − θ)e
t+t0

τ − sin(2πγ t0 − θ)e
t0
τ

)

.

Combining all these results, we obtain the explicit expres-

sion

V (t + t0) = (τµ + V0) (1 − e− t
τ )

−B
τ

√

4π2γ 2τ 2 + 1
sin(2πγ t0 − θ)e− t

τ

+B
τ

√

4π2γ 2τ 2 + 1
sin(2πγ t0 − θ + 2πγ t)

(A1)

B. Computation of the fixed point

In Eq. A1, we insert t = 1/γ, define ϕ = 2πγ t0 and set the

LHS to Vθ . This gives:

Vθ = (τµ + V0) (1 − e
− 1

τγ )

+B
τ

√

4π2γ 2τ 2 + 1
sin(ϕ − θ)(1 − e

− 1
τγ )

We define µγ to be the amount of constant input needed for

spiking with frequency γ. Then, since Vθ = (τµγ + V0)

(1 − e
− 1

τγ ), we obtain:

τµγ − τµ = B
τ

√

4π2γ 2τ 2 + 1
sin(ϕ − θ).
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Dividing both sides by τ√
4π2γ 2τ 2+1

, we obtain formula (4).

Recall (see Sect. 3.1) that as B becomes too large, this

formula does not define a 1-to-1 phase-locked solution due

to the appearance of a spike at an earlier time (see Fig. 2).

C. Computation of stability

For a given initial phase ϕ = 2πγ t0 at the moment of a spike

(in other words, the LIF neuron fires at t = t0), we can write

an implicit condition for the time it takes until the next spike.

This is done using Eq. A1 with the LHS replaced with Vθ and

t replaced with T (ϕ). This yields the following expression

Vθ = (τµ + V0) (1 − e− T (ϕ)
τ )

−B
τ

√

4π2γ 2τ 2 + 1
sin(ϕ − θ)e− T (ϕ)

τ

+B
τ

√

4π2γ 2τ 2 + 1
sin(ϕ − θ + 2πγ T (ϕ)) (A2)

which defines T (ϕ) implicitly. Recall the return map 5(ϕ) =
ϕ +2πγ T (ϕ)( mod 2π). Recall also that if B > Bbif , where

Bbif is defined by (5) then this map has two fixed points,

one satisfying θ < ϕ < θ + π/2 and the other satisfying

π/2 + θ < ϕ < θ + π. Here, we focus on the first type of

fixed point and denote it ϕl .

Recall that ϕl exists for B sufficiently small. We will show

that 0 < d5

dϕ
(ϕl) < 1 which implies that ϕl is always stable

(only a weaker estimate −1 < d5

dϕ
(ϕl) < 1 is needed). The

other fixed point can be shown to be unstable by a similar

argument.

Differentiating both sides of (A2) with respect to ϕ we

obtain a formula for dT/dϕ :

0 =

(

(τµ + V0)

τ
+ B

1
√

4π2γ 2τ 2 + 1
sin(ϕ − θ)

)

e− T (ϕ)
τ

×
dT (ϕ)

dϕ
+ 2πγ B

τ
√

4π2γ 2τ 2 + 1

× cos(ϕ − θ + 2πγ T (ϕ))

×
dT (ϕ)

dϕ
− B

τ
√

4π2γ 2τ 2 + 1
cos(ϕ − θ)e− T (ϕ)

τ

+B
τ

√

4π2γ 2τ 2 + 1
cos(ϕ − θ + 2πγ T (ϕ)).

Now if we let ϕ = ϕl (the phase corresponding to locking)

then the above expression simplifies since T (ϕl) = 1/γ and

Eq. 4 holds. We include one intermediate level of the com-

putation:

0 =
(

(τµ + V0)

τ
+ (µγ − µ)

)

e
− 1

τγ
dT

dϕ
(ϕl)

+2πγ τ(µγ − µ) cot(ϕl − θ)
dT

dϕ
(ϕl)

− cot(ϕl − θ)τ (µγ − µ)

(

1 − e
− 1

τγ

)

.

Finally, we have

dT

dϕ
(ϕl ) =

−
cot(ϕl − θ)τ (µγ − µ)

(

1 − e
− 1

τγ

)

(

(τµ+V0)
τ +(µγ − µ)

)

e
− 1

τγ + 2πγ τ(µγ − µ) cot(ϕl − θ)

.

It follows that dT

dϕ
(ϕl) = 0 for ϕl = θ +π/2 (the bifurcation

value). When ϕl < θ + π/2 (which is the case except at the

bifurcation) then dT

dϕ
(ϕl) < 0. Moreover, dT

dϕ
(ϕl) > − 1

2πγ
;

this follows from the estimate

cot(ϕl − θ)τ (µγ − µ)

(

1 − e
− 1

τγ

)

(

(τµ+V0)
τ

+ (µγ − µ)

)

e
− 1

τγ + 2πγ τ(µγ − µ) cot(ϕl − θ)

≤
cot(ϕl − θ)τ (µγ − µ)

(

1 − e
− 1

τγ

)

2πγ τ(µγ − µ) cot(ϕl − θ)
=

1 − e
− 1

τγ

2πγ

<
1

2πγ
.

Since 5(ϕ) = ϕ + 2πγ T (ϕ), it follows that for any ϕl as

specified at the beginning of this section the estimate 0 <
d5
dϕ

(ϕl) < 1 holds.

Appendix 2

The parameters for the Hodgkin–Huxley neuron

This appendix gives the parameter values for the HH

neuron that have been used in this study. The parame-

ters for the HH neuron are the following. The reversal

potentials for sodium, potassium and the leak channel

are set to ENa = 45 mV, EK = −82 mV and EL =
−59.387 mV, respectively. The maximum conductances

are gNa = 120(mS/cm2), gK = 36(mS/cm2)andgL =
0.3(mS/cm2). The rate constants are given by

αm =
(V + 45)/10

1 − exp(−(V + 45)/10)

αh = 0.07 exp(−(V + 70)/20)

αn =
(V + 60)/100

1 − exp(−(V + 60)/100)

βm = 4∗ exp(−(V + 70)/18)
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βh =
1

1 − exp(−(V + 40)/10)

βn = 0.125∗ exp(−(V + 70)/80)
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