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The purpose of this study was to obtain a better understanding of neu-
ronal responses to correlated input, in particular focusing on the aspect
of synchronization of neuronal activity. The first aim was to obtain an
analytical expression for the coherence between the output spike train
and correlated input and for the coherence between output spike trains of
neurons with correlated input. For Poisson neurons, we could derive that
the peak of the coherence between the correlated input and multi-unit
activity increases proportionally with the square root of the number of
neurons in the multi-unit recording. The coherence between two typical
multi-unit recordings (2 to 10 single units) with partially correlated in-
put increases proportionally with the number of units in the multi-unit
recordings. The second aim of this study was to investigate to what ex-
tent the amplitude and signal-to-noise ratio of the coherence between
input and output varied for single-unit versus multi-unit activity and
how they are affected by the duration of the recording. The same prob-
lem was addressed for the coherence between two single-unit spike series
and between two multi-unit spike series. The analytical results for the
Poisson neuron and numerical simulations for the conductance-based
leaky integrate-and-fire neuron and for the conductance-based Hodgkin-
Huxley neuron show that the expectation value of the coherence function
does not increase for alonger duration of the recording. The only effect of
a longer duration of the spike recording is a reduction of the noise in the
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coherence function. The results of analytical derivations and computer
simulations for model neurons show that the coherence for multi-unit
activity is larger than that for single-unit activity. This is in agreement
with the results of experimental data obtained from monkey visual cor-
tex (V4). Finally, we show that multitaper techniques greatly contribute
to a more accurate estimate of the coherence by reducing the bias and
variance in the coherence estimate.

1 Introduction

The recent advent of multiple electrode recording technology makes it pos-
sible to study the simultaneous spiking activity of many neurons. This
allows us to explore how stimuli are encoded by neuronal activity and how
groups of neurons act in concert to define the function of a given brain
region. However, in spite of the considerable technological developments
and the advanced analysis tools (for an overview, see Brown, Kass, & Mitra,
2004), there are many fundamental questions regarding the interpretation
of multi-unit activity.

The gold standard in animal neurophysiology has been thought to be
the study of isolated single units for a long time. However, it appears as if
the use of measures of neuronal aggregate activity, like multi-unit or local
field potential recordings, greatly enhances the sensitivity of correlation
and coherence analyses (see, e.g., Baker, Pinches, & Lemon, 2003; Rolls,
Franco, Aggelopous, & Reece, 2003). This empirical observation is not yet
understood. Related to this is the question whether a multi-unit recording
for time T and consisting of m single units with the same correlated input
carries the same information as a single-unit recording for time mT.

Many studies (see, e.g., Singer & Gray, 1995; Kreiter & Singer, 1996; Engel,
Fries, & Singer, 2001; Fries, Neuenschwander, Engel, Goebel, & Singer, 2001)
have so far demonstrated that neurons in early and intermediate visual cor-
tex in cat and macaque exhibit significant correlated fluctuations in their
responses to visual stimuli. These cells undergo attention-modulated fluc-
tuations in excitability that enhance temporal coherence of the responses to
visual stimuli (Fries, Reynolds, Rorie, & Desimone, 2001; Fries, Schroder,
Roelfsema, Singer, & Engel, 2002). The coherence is an important parameter,
since it provides a measure for the similarity between two signals. Moreover,
coherence among subthreshold membrane potential fluctuations likely ex-
presses functional relationships during states of expectancy or attention,
allowing the grouping and selection of distributed neuronal responses for
further processing (Fries, Neuenschwander, et al.,, 2001). The coherence
between spike activity and local field potential was larger for multi-unit ac-
tivity than for single-unit activity. Along the same lines, Baker et al. (2003)
studied the cross-correlation and coherence between local field potentials
and neural spike trains in monkey primary motor cortex. They concluded
that a (small) population of neurons is necessary to encode effectively the
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cortical oscillatory signal, that is, the rapid modulations of synaptic input
reflected in the oscillatory local field potential.

Several studies reported a lack of evidence for synchronized neuronal
activity. For example, Tovee and Rolls (1992), in the inferior temporal visual
cortex, and Luck, Chelazzi, Hillyard, and Desimone (1997) did not ob-
serve clear synchronization in neuronal responses in V2 and V4. However,
Kreiter and Singer (1996) did find clear synchronization in the middle tem-
poral area (MT) if two cells were activated by the same stimulus. Besides
recording in different recording areas and the use of different types of
stimuli, the statistical analysis technique might also play an important role
in detecting synchronization. Advanced multitaper techniques (Percival &
Walden, 2002) have proven to be useful in estimating coherence between
spike trains and local field potentials by improving the signal-to-noise ratio
(Pesaran, Pezaris, Shahani, Mitra, & Andersen, 2002; see also Jarvis & Mitra,
2001). These multitaper techniques improved the significance of synchro-
nized oscillatory neuronal activity.

The aim of this study was threefold. First, we wanted to obtain a quanti-
tative understanding of the interpretation of correlated output spike trains
in terms of correlated input (indirectly related to the local field potential)
to the neurons. In order to do so, we started with a network of simple Pois-
son neurons, the behavior of which could be analyzed analytically. This
simple model was then made more realistic by replacing the Poisson neu-
rons by conductance-based neurons. The second aim of this study was to
investigate to what extent the shape, amplitude, and signal-to-noise ratio
of the coherence between input and output varied for single-unit versus
multi-unit activity and whether the recording of single-unit activity over
a long period of time could produce the same cross-correlation and coher-
ence with local field potential as multi-unit activity over a shorter period
of time. We addressed the same question for the coherence between two
spike outputs for both two single-unit and two multi-unit spike series.
The third aim of this study was to investigate the effectiveness of analy-
sis techniques in revealing coherent activity in multi-unit activity. These
three topics were investigated by comparing the results of coherence for
single-unit and multi-unit activity in theoretical analyses for Poisson neu-
rons, in computer simulations for conductance-based model neurons, and
for data measured in monkey visual cortex (V4) (Fries, Reynolds, et al.,
2001).

2 Methods and Theory

In order to obtain better insight into the coherence between the local field
potential (LFP) at the one hand and single-unit or multi-unit activity at
the other hand and in the coherence between spike trains of neurons that
receive partially correlated input, we will start with a simple model (see
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Figure 1). The local field potential reflects mainly the sum of postsynaptic
potentials from local cell groups (Buzsédki, 2004). Therefore, the local field
potential is seen to be indirectly related to the correlated input of neurons.
We consider groups of neurons receiving correlated input that is reflected
in a simulated LFP. We therefore modeled those neurons as rate-varying
Poisson processes with a baseline firing rate plus rate modulations driven
by the LFP fluctuations. Note that in this study, we refer to the LFP as
common rate fluctuations of the input signal (for short, common input). In
order to prevent any misunderstanding, we would like to point out that this
meaning of common input differs from the usual physiological meaning of
common input, which implies that two neurons receive the same synaptic
input due to a bifurcating axon.

In this study, we will determine the coherence between different signals
present in the model, as shown in Figure 1. First, we concentrate on the Pois-
son model and derive an expression for the coherence between the common
input (LFP) and the response of a single Poisson neuron (the small circle
in Figure 1). After deriving a similar expression for multi-unit activity, we
compare both results of spike-field coherence functions. We finish the the-
oretical part, concerning the coherence functions, by deriving expressions
for the spike-spike coherences, first between two single-unit activities and
later between two multi-unit series of Poisson neurons. Simulation results
of these coherence measures will complete the Poisson model section. We
continue by simulations of the complete model, including the conductance-
based neurons (the large circles in Figure 1). The common input (LFP)
to the Poisson neurons will be taken as the local field potential in order
to determine the spike-field coherences between the common input and
the response(s) of the conductance-based neuron(s). The spike-spike coher-
ences are taken between the responses of two conductance-based neurons
(single-units) and then between the sums of 10 responses (multi-units) of
this neuron type. We finish with the coherence analysis of experimental
data.

2.1 Poisson Model and Coherences. Inthesimple modelinFigure1, we
feed Poisson neurons with partially common rate fluctuations N,o no(t) and
uncorrelated noise (1 — N;)o n;(t) (as described below), in order to translate
the LFP into a series of (partially) correlated spike trains. For this part of
the model, we derive analytical expressions for the coherence between LFP
and single-unit or multi-unit activity and for the coherence between spike
trains. The spike output of the Poisson neurons is fed into a set of neu-
rons, which could be conductance-based leaky integrate-and-fire neurons
or conductance-based Hodgkin-Huxley neurons.

The Poisson neurons each receive an input

xi(t) = A + Neono(t) + (1 — Np)on;(t) 2.1)
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with a constant input A, gaussian colored noise 79, and gaussian white
noise 7;, with < n;(t)n;(t + ) >= §;;(r). The common input ratio N, varies
from zero (uncorrelated input to all neurons) to one (the same input to all
neurons). Both n(t) and 5;(t) have zero mean and a variance of one. In this
study, o is set to 1/3, so the total input to the neurons is always positive
and, therefore, the probability that a spike occurs too.

Experiments in visual cortex (Fries, Neuenschwander, et al., 2001; Fries,
Reynolds, et al., 2001; Fries et al., 2000) have shown that the local field
potential, which represents a measure of the local correlated input to a
group of neurons (Buzsaki et al.,, 2004), has a peak in the power spec-
trum in the range between 40 and 60 Hz. Therefore, we used bandpass-
filtered gaussian white noise 7o(t) as a time-dependent common rate fluc-
tuation, which was obtained by filtering gaussian white noise with a
bandpass filter with 3 dB points at 45 and 55 Hz and a quality factor
Qof 5.

The response of Poisson neuron i to the input x;(t) is represented by a
sequence of action potentials y;(f) =, 8(t — t;), where ti represents the
occurrence time of the jth spike of neuron i. In this study, we introduce a
discretization of time in bins At of 1 ms, such that y;(t) =1 for an action
potential in the time interval [¢, t + At) with probability x;(t)At and with
yi(t) = 0 with probability (1 — x;(t)At). Multi-unit activity is defined as the
sum of m single-unit activities z(f) = Y. ; 3 ;o — t;).

A commonly used measure to estimate the relation between input x(t)
and output y(f) of a neuron is the normalized cross-covariance function

Figure 1: Schematic overview of the network of neurons for the simulations.
A set of Poisson neurons receives common rate fluctuations (local field poten-
tial) and uncorrelated input to generate a set of correlated spike trains. These
spike trains provide the input for a set of neurons, which are modeled as leaky
integrate-and-fire (LIF) neurons or Hodgkin-Huxley (HH) neurons. A popu-
lation of Poisson neurons is represented by an oval with small circles. Each
Poisson neuron receives a common input given by A + N.on,(t) and a unique
input given by (1 — N;)on;;(t), which is uncorrelated in time and space. 1 is a
constant, 1 represents the common rate fluctuations to the Poisson neurons
and is represented by bandpass filtered gaussian white noise, and »;; is gaus-
sian white noise for the jth Poisson neuron of the ith population. Poisson model:
Only one population of 20 Poisson neurons is used for the Poisson model.
yi(t) represents the single-unit activity of Poisson neuron i, multi-unit activ-
ity is the sum of the responses of 10 neurons. LIF (HH) model: Each of the 20
LIF (HH) neurons (large circle) receives input from one of the 20 populations
with 100 Poisson neurons each (oval). Single-unit activity is the response of
one conductance-based neuron; multi-unit activity is the sum of 10 single-unit
activities.
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(1-Nc) ongzi(t)

A +Neome(t)
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or correlation coefficient function, which is defined by (Marmarelis &
Marmarelis, 1978),

Cry(7)

AT — (2.2)
Cx(0)Cyy(0)

/Oxy(f) =

with the cross-covariance function between two ergodic signals x and y
defined as

Coy(1) = [ [ x(t+ 1) y(t) pe(t + 1), () dx(t + DAy —x 7. (23)

where p(x(t + 1), y(t)) is the joint probability distribution of x(t + r) and
y(t) and where X and ¥ represent the averaged value of signal x and y,
respectively.

The coherence function y(w) reflects how much of the variation in the
output y can be attributed to a linear filtering of the input signal x. The
coherence function y (w) is defined by

| ny(w) |

e)l= \/|Cxx )|\/|Cy1/(w)|

(2.4)

The coherence takes values in the range between 0 (input and output are
fully uncorrelated) and 1 (the output is equal to the input after convolution
by a linear system).

First, we determine the coherence between the single-unit activity of a
Poisson neuron and the common rate fluctuations by deriving expressions
for the covariance functions in the denominator and the cross-covariance
function in the numinator of equation 2.4.

Consider x(t) to be the input given by equation 2.1 and y;(t) = y(t)
the response of a single Poisson neuron. Each Poisson neuron is repre-
sented by a small circle in Figure 1. The covariance function of the input is
given by

Cartt)= [ [ x(tx(t + 2)p(a(0). 2t + Mx()x(E + )

//// x(t + ) p(no(®), no(t + ) p(ni (), mi(t + 7))

dno(t)dno(t + T)dni(H)dni(t + 1) — X°
= N?o?p(t) + (1 — N.)*0%8(), (2.5)
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where the joint probability distributions for r # 0 are given by

1
p(no(t + 1), no(t)) = m

o [T+ T) = 2p(@)mo(t + )no(t) + nj(1)
P 2(1 - p2(x))

pi(t + 7). mi()) = p(ni(5)) p(mi(t + 2), (2.6)

with p(t) = py,, (r) being the normalized covariance function of the gaus-
sian colored noise 79. In order to obtain equation 2.5, we used for the
common input colored noise 7o(t) and for the uncorrelated noise »;(t) in the
input signal x(t) defined in equation 2.1 for v = 0:

/ No(t 4+ T)p(no(t + 1), no(t) | T)dno(t + ) =no(t) p(no(t))
_ ) _ng(t)
V2 P\ T2
/ nitt +)pmit + ), i) | ©) dni(t + ) =ni(t) p(ni(t))

) (_n?(t))
Var CP\TT2 )
2.7)

The first term on the right-hand side of equation 2.5 is due to the common
rate fluctuations to the neurons, and the second term due to the neuron-

specific input fluctuations.
The covariance function of a single-unit response results in

Cyp()=plyt +7) =1, y(t) = 1) — 7

f [ [ruso

=1]nolt + ), m(t +1)py®) =11 no®), ni () p(no(®),
no(t + ) p(ni(t), ni(t + 7))dno(t)dno(t + )dn;(t)
x dn;(t + 1) —yZ

= At?0? N2 (p(7) — 8(7)) + Ata(1 — AtR)S(1), (2.8)

where p is the normalized covariance function of the gaussian colored noise.
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The cross-covariance function between the input x and the single-unit
response Y is given by

Cyy(r) = / x(t+T)px(t+1), y(t) =1 t)dx(t + ) — XY

= Ato?N2p(t) + Ata*(1 — N,)*8(z). (2.9)

The first term on the right-hand side is due to the common rate fluctuations,
and the second term is due to the neuron-specific input fluctuations.

Thelocal field potential is considered to be a measure of the local common
rate fluctuation of the neurons near the recording electrode. Therefore,
we will take only the contributions of the common rate fluctuations in
equations 2.5 and 2.9 into account for determining an analytical expression
for the spike-field coherence between single-unit activity and local field
potential. The spike-field coherence between the single-unit activity and the
common rate fluctuations can be obtained by taking the Fourier transform
of equation 2.8 and the first terms on the right-hand side of equations 2.5
and 2.9. This results in

Ato?N? | p(o) |
o N/l p(@) | Atr(1 = Atd) + (At 0)2NX(p(w) = 1) |

|VSSpl§~‘ (w)’ =

AtO'NC\/ | p(w) |

= JTAGA = Ay + (A0 N2(p(@) — 1) |

N Ato N,
At

| (@) |, (2.10)

where p(w) is the Fourier transform of the normalized covariance function of
the colored noise. The approximation in the last step is valid since (Ato)? «
AtA.

In order to obtain an expression for the coherence between multi-unit
activity and the common rate fluctuations, we have to determine the covari-
ance function of multi-unit activity and the cross-covariance function be-
tween multi-unit activity and common rate fluctuations. Since the probabil-
ity that a neuron fires twice within a time bin At is very small ((Af))? < 1),
we take terms only to the second order of At into account. For multi-unit
activity z, which is the summation over m simultaneously recorded single-

unit signals y;(f) with a common input ratio N, and for m << -, we find
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for the multi-unit covariance function:

Ca®) =YY jhplalt + 1) = j.2() =) - 2

j=0 k=0

~m(At) o? N2 (mp(t) — 8(t)) + mAtA(1 — Atr)S(z). (2.11)

The cross-covariance function between multi-unit activity and the total
input is given by

Cal®) =2 [ x4+ 0)jplatt + 0. 2() = izt + ) — 72
i=0

~mAta* N> p(t) + mAta?(1 — N.)?8(z). (2.12)

Equation 2.12 is equal to equation 2.9 except for the factor m.

Combining equation equation 2.11 and the first term on the right-hand
side of equations 2.5 and 2.12 leads to the expression for the spike-field
coherence between multi-unit activity and the common rate fluctuations:

| Cxz(w) |
\/| Cxx(w) |\/| C(w) |

Ato N/ mo(w) |

VIAI( = AtL) + (Ato)2NZ(mp(w) — 1) |
N Ato N,
VAt

The spike-field coherence for multi-unit activity, which is the summation
of m single-unit recordings, is equal to that for single-unit activity (see
equation 2.10) except for a coefficient /m.

We can also calculate the coherence between two single-unit responses or
between two multi-unit recordings. The cross-covariance function between
two single-unit signals 14 and 1, is given by

lyat ()| =

4

| mp(w) |. (2.13)

Cyp@=ppt+1)=1,1pnt=1)-nn
=(Ato)*N2p(2). (2.14)

The spike-spike coherence between two simultaneously recorded single-
unit signals with partly common rate fluctuations is given by

su | Cy1 » (w) |

= 2.15
| Vspsp | 1 Coy(@) | (2.15)
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_ (Ato)*NZ | p(w) |
AR — AtL) + (Ato )2 N2 (p(w) — 1)

(Ato N,)?

NW | p(@) |,

where we used ny' =Cyy = .Cyzyz. o o
The cross-covariance function of two multi-unit signals is given by:

Con(0)= Y jkpzi(t +7) = j.2a(t) =k | 1) = 2
k=0

~m* N> (Ato)?p(t). (2.16)

The spike-spike coherence between two simultaneously recorded multi-
unit signals is given by

MU | m?(Ato)?N? | p(o) |
Ysrse 1= 2 (Ato)EN2p(@) + m(AtA(L — Atr) — (Ato)2NP) |
N m(Ato 2N | p(w) |
T AL = AR + (Ato )2 N2(mp(w) — 1) |
(Ato N,)?

~ Wm | p(w) | . (2.17)

Equations 2.15 and 2.17 show that for low firing rates (AAt << 1) and
for m << 1/(AAt), the expected spike-spike coherence between multi-unit
signals is approximately m-times larger than the expected spike-spike co-
herence between single-unit signals. Equations 2.13 and 2.17 show that
the spike-spike coherence is (approximately) the square of the spike-field
coherence and thus much smaller.

In summary, for our Poisson model, the spike-field coherence and the
spike-spike coherence are larger for multi-unit recordings than for single-
unit recordings and the spike-spike coherences are much smaller than the
spike-field coherences.

2.2 Conductance-Based LIF Model. Since the simple Poisson model
is not very realistic, we will discuss a model where conductance-based
leaky integrate-and-fire neurons (LIF) receive spike input from the Poisson
neurons. The membrane equation of the neurons is then given by

au
Cr = —L(H) = L(o). (2.18)
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with membrane capacitance C, membrane potential U, and excitatory and
leak currents I, and Ij, respectively. These currents are given by

Ie(t) = Ge(t)(u(t) - Ee)
L(t)=Gi(U(t) — Ey), (2.19)

with the excitatory reversal potential E,, rest potential E,, and excitatory
(leak) conductance G, (t) (G;). The excitatory conductance depends on the
recent presynaptic spike times and is modeled by:

max
m ki

Ge(t) =) gt —t), (2.20)

i=1 k=1

with tf the time of the kth spike of neuron i and with m the number of
input neurons. In this study, the conductivity is modeled by an alpha func-
tion:

s =g () ep (-1 ) 00 (221)

Here 7, denotes the time-to-peak of the conductivity g.(t). © is the Heaviside
function. When the membrane potential reaches the threshold Uy, a spike
will be generated, and the membrane potential U is reset. Specific values
for the LIF model are (Stroeve & Gielen, 2001): membrane capacitance C =
325 pF, threshold potential Uy, = —55 mV, excitatory reversal potential
E, =0 mV, rest potential E, = —75 mV, leak conductance G; = 25nS, g9 =
3.24nSand 7, = 1.5 ms.

Each LIF neuron (the large circle in Figure 1) receives input from
a population of 100 Poisson neurons (oval), with a spike rate output
modulated by a common input (A + N.ono(t)) and an uncorrelated input
(1 — Ny)x + on;i(t)), where no(t) is gaussian colored noise and #;(t) is gaus-
sian white noise, both with zero mean and variance one. For our simulations,
these quantities are chosen as for the Poisson model except for o, which
has been chosen by o = 20/12, for A = 20. In our simulations, we derived
the membrane potential by using Euler integration with a step width of
1 ms.

2.3 Conductance-Based Hodgkin-Huxley Model. The next modifica-
tion of our simple model in Figure 1 is the replacement of the conductance-
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based LIF neurons (circles) by conductance-based Hodgkin-Huxley
neurons. These neurons are characterized by the differential equation

O = )~ 1k — 10~ L0, (2.22)

where the sodium and potassium currents are given by

INg (t) =Z4Na mSh(U(t) - VN!I)
Ik (t) = gxn*(U(t) — Vi), (2.23)

and the leak and excitatory currents are as described before (see equation
2.19). VN, and Vi are the sodium and potassium reversal potentials. The
time-varying gate variables m, i, and n are given by the differential equation

dx  Xeo — X

— = 2.24
dt Ty ( )
with xe{m, h,n}, t, = ﬁ and xo, = ax‘jfﬁx . These parameters are expressed
by
U+ 40
o, =0.1 +

1 — exp(—0.1(U + 40))
B =4exp(—(U + 65)/18)
0.01(U + 55)
1= T~ exp(0.1(U + 55))
Br=0.125exp(—(U + 65)/80)
o = 0.07 exp(—(U + 65)/20)
1
~ 1T+ exp(—0.1(U +35))°

B (2.25)

The typical values of the parameters at 6.3°C for the squid axon are
membrane capacitance per unit surface, C = 1uF/ cm?; maximum conduc-
tance per unit area for the sodium, potassium, and leak currents, gn, =
120 mS/cm?, gk = 36 mS/cm?, and G; = 0.3 mS/cm?; excitatory rever-
sal potential, E, =0 mV; rest potential, E, = —75 mV, sodium reversal
potential, Vn, = 50 mV; and potassium reversal potential Vx = —77 mV,
g0 = 1.5uS/cm?, and 7, = 1.5 ms.

As for the conductance-based LIF model, we use spike trains as input for
the conductance-based HH neurons. We derived the membrane potential
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using Euler integration with a step width of 0.05 ms for the HH neurons.
The sequence of output action potentials of the HH model was represented
in time bins of 1 ms.

2.4 Multitaper Method. The usual way of estimating the frequency
content of a signal is by taking the Fourier spectrum (periodogram). If the
signal x(f) has a stochastic character, the variance of the spectral estimates
in the Fourier transformed signal may be considerable. This is particularly
important if we are dealing with the coherence of two stochastic spike
series. This is not solved by taking a signal with a longer duration since a
longer time signal gives rise to a higher spectral resolution in the Fourier
transformed signal but does not decrease the variance of each point in the
frequency spectrum.

To solve this problem, the multitaper estimation procedure was intro-
duced (see Thomson, 1982; Mitra & Pesaran, 1999). The key idea behind the
Welch method and the multitaper method is that a physiological signal has
no discontinuities in the frequency spectrum and that the variability in the
estimate of a signal can be reduced by smoothing in the frequency domain.
The multitaper method achieves this by optimizing the minimum of bias
and variance of the estimate. This involves the use of multiple orthonormal
data tapers, which provide a local eigenbasis in frequency space for finite-
length data sequences. A simple example of the method is given by the
direct multitaper spectral estimate Sy;r(f) of a discrete time series signal
x witht =nAtandn e l,2,..., N defined as the average over individual
tapered spectral estimates,

K
Sr(F) =5 Y0150 P (2.26)
k=1
where
N
B(f) =Y wik)x; exp(-27ift). (2.27)
1

Here wy(k) (k=1,2,...,K) are K orthogonal taper functions with ap-
propriate properties. Let wi(k, W, N) be the kth taper of length N and
frequency bandwidth parameter W. This forms an orthogonal basis set
for sequences of length N, characterized by a bandwidth W. The im-
portant feature of these sequences is that for a given bandwidth pa-
rameter W and taper length N, K =2NW —1 sequences out of a to-
tal of N each have their energy effectively concentrated within a range
2W in frequency space. This range can be shifted from [-W, W] cen-
tered around zero frequency to any nonzero center frequency interval
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[fo— W, fo + W] by simply multiplying by the appropriate phase factor
exp(27 fot). The product of the number N of samples in the signal and the
bandwidth W of the spectral estimator (NW) is used to balance between
variance and resolution of the power spectral density estimation. In this
article, we use a simple set of orthonormal sine tapers {w;r :t =1,..., N;
k=0,...,N—1} (McCoy, Walden, & Percival, 1997). The kth taper is given

by

1 ((k+Dnt
= . 2.2
Ork N+1sm< b ) (2.28)

For our analysis, we used signals of length 0.512 s and the first K = 2NW — 1
tapers, which gave K = 6. This means that the bandwidth W of the spectral
estimator is 6.83 Hz. The frequency bin width is f;/nfft= 1.95 Hz, with
sampling frequency f; (1000 Hz) and where nfft is the number of data in
the FFT (512).

2.5 Neurophysiology

2.5.1 Surgery. Experiments were performed on two male Macaca mu-
latta, weighting 8 to 11 kg. Each monkey was surgically implanted with a
head post, a scleral eye coil, and a recordings chamber. Surgery was con-
ducted under aseptic conditions with isofluorane anesthesia. Antibiotics
and analgesics were administered after the operation. The skull remained
intact during the surgery. Subsequently, small holes (5 mm in diameter)
were drilled within the recording chamber under ketamine anesthesia and
xylazine analgesic. All experimental procedures were performed in accor-
dance with the National Institutes of Health guidelines and approved by
the National Institute of Mental Health Intramural Animal Care and Use
Committee.

2.5.2 Recording-Technique. Neuronal recordings were made through the
surgically implanted chamber overlying area V4. Recordings were made
from two hemispheres in two monkeys. Four to eight tungsten microelec-
trodes (Frederick Haer and Co., Brunswick, ME) were inserted through
the intact dura mater by means of a hydraulic microdrive (Frederick Haer)
mounted to the recording chamber. The electrodes had tip impedances
of one to two MQ and were separated by 650 or 900 um. Each electrode
was advanced separately at a very slow rate (1.5 mm/s) to minimize sup-
pression artifacts (dimpling) resulting from the deformation of the corti-
cal surface by the electrode. Data amplification, filtering, and acquisition
was done with a multichannel acquisition processor (MAP) system from
Plexon Incorporated (Dallas, TX). The signal from each electrode was passed
through a headstage with unit gain and an output impedance of 240 Q. It
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was then split to separately extract the spike and the LFP components.
For spike recordings, the signals were filtered with a passband of 100 to
8000 Hz, further amplified and digitized with 40 kHz. A threshold was set
interactively, and spike waveforms were stored for a time window from
150 s before to 700 us after threshold crossing. The threshold clearly sep-
arated spikes from noise but was chosen to include multi-unit activity.
Off-line, we performed a principal component analysis of the waveforms
and plotted the first against the second principal component. Those wave-
forms that corresponded to artifacts were excluded. For multi-unit anal-
yses, all other waveforms were accepted. For single-unit analyses, only
clearly isolated clusters of high-amplitude spikes were accepted. For all
further analyses involving spikes, only the times of threshold crossing were
kept and downsampled to 1 kHz. For LFP recordings, the signals were fil-
tered with a passband of 0.7 to 170 Hz, further amplified, and digitized at
1 kHz.

Each electrode was lowered separately until it recorded visually driven
activity. Once this had been achieved for all electrodes, we fine-tuned the
electrode positions to optimize the signal-to-noise ratio of the multiple
spike recordings and obtain as many isolated single units as possible. Since
the penetration was halted as soon as clear visually driven activity was
obtained, most of the recordings were presumably done from the superficial
layers of the cortex.

2.5.3 Behavioral Paradigm and Visual Stimulation. Stimuli were presented
on a 17 inch CRT monitor 0.57 m from the monkeys’ eyes that had a reso-
lution of 800 x 600 pixel and a screen refresh rate of 120 Hz noninterlaced.
Stimulus generation and behavioral control were accomplished with the
CORTEX software package (http://www.cortex.salk.edu/). A trial started
when the monkey touched a bar mounted in front of him; 250 ms later, a fix-
ation point appeared at the center of the screen. When the monkey brought
his gaze within 0.7 degree of the fixation spot for at least 1000 ms, stimulus
presentation commenced. The task of the monkey was to fixate the fixation
target while a drifting sine wave grating was presented within the recep-
tive field. He had to release the bar between 150 and 650 ms after a change
in stimulus color of the sine-wave grating. That change in stimulus color
could occur at an unpredictable moment in time between 500 and 5000 ms
after stimulus onset. With this task, we ensured that the monkey was con-
stantly monitoring the grating that induced the recorded neuronal activity
while fixating the fixation target. The first 300 ms after stimulus onset were
discarded in order to avoid strong stimulus-onset-related transients, and
the rest of the data were analyzed until the time of the color change. Suc-
cessful trial completion was rewarded with four drops of diluted apple
juice. If the monkey released the bar too early or moved his gaze out of
the fixation window, the trial was immediately aborted and followed by a
time-out.
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3 Results

In this section, we describe coherence estimates between various signals.
We always first analyze the spike-field coherence followed by the spike-
spike coherence for both single-unit and multi-unit activity. The simulation
results will be shown first for the Poisson model neurons (small circles in
Figure 1), followed by the conductance-based neurons (LIF and HH; big
circles in Figure 1). We end this section with the results of the spike-field
and spike-spike coherences of experimental data. Finally, we compare an
analysis without and with the use of multitaper techniques.

3.1 Simulation Results of the Poisson Model. The top panels of Fig-
ure 2 show the predicted (dashed line) and the simulated (solid line) coher-
ence between the LFP and single-unit activity (see Figure 2A) and between
LFP and multi-unit activity (see Figure 2B) for the Poisson neurons. In both
cases, there is a good match between the simulated and predicted spike-field
coherence functions.

The “predicted” coherence functions were obtained using the Fourier
transform of the normalized covariance function p(t) of the LFP. Since the
LFP had a finite duration, p(w) has noisy fluctuations that are evident in
the “predicted” coherence function of Figure 2. The coherence is larger
for the multi-unit activity in Figure 2B than for the single-unit activity
in Figure 2A. The ratio between the peak coherence for multi-unit versus
single-unit activity (0.37/0.12 = 3.08) is in agreement with the square root
of the number of neurons (+/10 = 3.16) that contributes to the multi-unit
activity (see Equations 2.10 and 2.13). One could argue that the larger co-
herence for the multi-unit case could be due to the fact that the multi-unit
recording with 10 (simultaneously measured) single-unit signals contains
10 times more action potentials. In order to correct for this, the single-
unit signal in our simulations was 10 times longer than the multi-unit
signal such that the number of action potentials was the same in both
signals.

Figure 2C shows the simulated (solid line) and predicted (dashed line)
spike-spike coherence for single-unit activity for the Poisson neurons.
Figure 2D shows the same results for multi-unit activity. The simulated
and predicted coherence are in agreement for the single-unit and multi-
unit data.

The spike-spike coherence for multi-unit activity increases linearly with
the number of units (m = 10) in the multi-unit recording for the spike-spike
coherence as long as m << 1/(AAt). This is shown by the peaks of the
coherences in Figures 2C and 2D (0.015 versus 0.14).

The spike-spike coherence differs from the spike-field coherence in two
aspects (see equations 2.17 and 2.13). The first difference concerns the fac-
tor m versus /m for spike-spike versus spike-field coherence. The second
difference is that the spike-field coherence is proportional to \/ p(w), whereas
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Figure 2: Predicted (dashed lines) and simulated (solid lines) coherence func-
tions for LFP and single-unit (A,C) and multi-unit (B,D) signals for the Pois-
son neurons (see Figure 1). Parameter values used were A =20, o =20/12,
N; = 0.4, and a simulation duration of 512 s. The number of action potentials
in the multi-unit and in the single-unit signals is about 20.480 spikes. (A) The
coherence between LFP and single-unit activity. (B) The coherence between LFP
and multi-unit activity shows a peak near 50 Hz, which is larger than that for
single-unit activity shown in A. (C) The predicted and simulated coherences
between two single-unit activities. (D) The predicted and simulated coherence
function between two multi-unit activities.

the spike-spike coherence is proportional to the normalized covariance
function of the common rate fluctuations, p(w). Since 0 <| p(w) |< 1, p(w) is
smaller and more narrow than /p().

Both aspects are reproduced in Figure 2. The peak value of the spike-
spike coherence (see figure 2D: 0.14) is approximately the square root of the
maximum peak value of the spike-field coherence (see Figure 2B: 0.37).

Equations 2.10, 2.13, 2.15, and 2.17 for the spike-field and spike-spike
coherence do not depend on the duration of the LFP and spike series. There-
fore, the expectation value for the coherence functions will not change if the
duration of the single-unit recordings increases. The only effect of a longer
duration of the spike recording is a reduction of the noise in the coherence
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Figure 3: Coherences between LFP and single- and multi-unit activities for the
conductance-based LIF model (dashed-dotted lines), the HH model (dashed
lines), and the predictions for the Poisson model (solid line) according to Equa-
tions 2.10, 2.13, 2.15, and 2.17. Parameter values used were . = 20, o = 20/12,
N, = 0.4, and a simulation duration of 512 s. (A) Spike-field coherence estimates
for single-unit activity. (B) Spike-field coherence estimates for multi-unit activ-
ity. (C) Spike-spike coherence estimates for single-unit activity. (D) Spike-spike
coherence estimates for multi-unit activity.

function. Therefore, a smaller coherence for single-unit recording relative
to multi-unit recording cannot be compensated by a longer recording time
for the single-unit recordings.

3.2 Simulation Results for the Conductance-Based LIF and HH Model.
Figure 3 shows the spike-field and the spike-spike coherences for single-
unit and multi-unit recordings for the conductance-based LIF neuron
(dashed-dotted line), the conductance-based HH neuron (dashed line)
model, and the predictions for the Poisson model (solid line) according to
equations 2.10,2.13,2.15, and 2.17, all with 0 = 20/12. The parameters were
chosen in such a way that the mean firing rate was the same for the Poisson
neuron, the LIF, and the HH neurons. Figure 3A (3B) shows the coher-
ence between the LFP and single-unit (multi-unit) activity. For both the
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single-unit and multi-unit recordings, the spike-field coherence estimate
shows a significant peak near 50 Hz. The peak value of the spike-field
coherence estimates for multi-unit recording in Figure 3B is considerably
higher than the peak value for the single-unit recording in Figure 3A. The
spike-field coherence estimates for the LIF and HH network have much
higher values than the spike-field estimates of the Poisson network. The
ratio of the two peak spike-field coherence values (multi-unit/single-unit)
is smaller than the square root of the number m (m = 10; /m = 3.16) of
neurons active in the multi-unit.

Figure 3C (3D) shows the coherence between two single-unit (multi-unit)
recordings. For the single-unit recordings, no significant peak near 50 Hz
is visible. The predicted coherence for the Poisson model is small and lies
almost on the x-axis, with a small (hardly visible) peak near 50 Hz for the
multi-unit activity. For multi-unit activity (see Figure 3D), a significant peak
near 50 Hz is visible.

The peak coherence is larger for the LIF neuron and the HH model than
for the Poisson neuron, for both the spike-field coherence and the spike-
spike coherence. The question is whether the higher coherence values for
the LIF and HH neuron are due to the dynamics of these neurons or due to
the different type of input (continuous LFP signal for the Poisson neurons
versus spike input to the LIF and HH neuron). In order to investigate this,
we have calculated the coherence between the spike input to the LIF and HH
neuron (i.e., the sum of spike series of the Poisson neurons) and their output.
These coherence values are much higher than the coherence between the
input and the output of a Poisson neuron, with the same input as the LIF
and HH neuron. Therefore, we conclude that the higher coherence values
of the LIF and HH neuron are the result of the dynamic properties of those
neuron types.

3.3 Data from Monkey Visual Cortex. As a final test of the significance
of the model simulations, we have analyzed data obtained in monkey visual
cortex (Fries, Reynolds, et al., 2001). The data consisted of single- and multi-
unit activity and local field potential activity recorded simultaneously in
area V4 of the awake macaque monkey:.

Figure 4A shows the coherence between the measured LFP and the
single-unit signal, which contains 15,371 spikes. The dashed-dotted lines
indicate the 95% confidence levels of the coherence estimates, calculated
with 130 bootstraps, and the solid line is the average of the bootstrap repli-
cations. For a multi-unit recording with a similar number (1 = 16,031) of
spikes and thus a shorter duration, the spike-field coherence is shown in
Figure 4B. In both Figures 4A and 4B, there is a peak in spike-field coher-
ence near 50 Hz. For multi-unit activity (sum of approximately eight single-
unit activities), this peak is significantly higher than that for single-unit
activity. Figure 4C shows the spike-field coherence for a multi-unit signal
with a duration equal to the duration of the single-unit recording used for
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Figure 4: Coherences between LFP and single-unit or multi-unit recordings
(experimental data), using the multitaper method. For the multitaper method,
we used a set of six orthonormal sine tapers. The 95% confidence level (dashed-
dotted lines) is obtained using 130 bootstraps. (A) Coherence between LFP
and single-unit recording with 15,371 spikes. (B) Coherence between LFP and
multi-unit recording, with 16,031 spikes. (C) Coherence between LFP and multi-
unit recording, with 668,766 spikes. (D) Coherence between two single-unit
recordings. The variance in coherence is too large to detect a significant peak
near 50 Hz. (E) Coherence between two multi-unit recordings. (F) Coherence
between two multi-unit recordings, with durations equal to those of the single-
unit recordings used in Figure 4A. Compared to Figure 4E, the 95% confidence
regime has been reduced.

Figure 4A. The coherence estimate, including the 95% confidence level, in
Figure 4C, is entirely within the 95% regime shown in Figure 4B. Figures 4B
and 4C illustrate that increasing the duration of a spike recording improves
the signal-to-noise ratio but does not change the expectation value of the
coherence function.

The spike-spike coherence for single-unit signals in Figure 4D does not
show a significant peak near 50 Hz. Neither does the spike-spike coherence
for multi-unit signals if the analyzed time period is shortened such that
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Figure 5: The effect of the multitaper method on the spike-spike coherence
between multi-units. (A) The spike-spike coherence estimate of experimental
data without the use of multitapers. There is no significant peak near 50 Hz.
(B) Using the multitaper method with sine tapers resulted in a significant peak
and a significant reduction of the 95% regime.

the number of spikes is the same as in the longer single-unit recording in
Figure 4E. The coherence values for the multi-unit signals in Figure 4E are
larger than for single unit signals shown in Figure 4D. However, the 95%
confidence regime is relatively large. Figure 4F shows the spike-spike co-
herence for multi-unit signals with duration equal to the duration of the
single-unit activities used in Figure 4D. The coherence function in Figure 4F
shows a significant peak near 50 Hz. The signal-to-noise ratio is consider-
ably better than in Figure 4E. The results shown in Figure 4 are typical for
the spike signals that were obtained in the study by Fries, Reynolds, et al.
(2001).

All coherence estimates of Figure 4 were obtained with the multitaper
method as described in the section 2. Each trial was cut into equally long
segments of 512 ms such that the number of tapers was constant. In fact,
this is a combination of the Welch method and the multitaper technique.

As an alternative to using the Welch method with equally long time
segments, one could use the multitaper technique for the analysis of spike
signals, which in general each have a different duration. Since the trial
durations are different, so is the number of samples in each trial. In order to
keep the frequency of smoothing in the frequency domain (2W) constant,
the number of tapers given by K =2NW — 1 is different for each trial.
Since averaging over power spectra of different trials requires that the
frequency resolution of the spectra be the same for all trials, all signals
(after application of the tapers) are made of equal duration by adding zeros
(zero padding). Now the average FFTs of the cross and covariance functions
can be derived for the coherence functions.
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Figure 5A shows the spike-spike coherence estimate of experimental
multi-unit spike trains without the use of multitapers and without using
the Welch method. The frequency resolution in Figure 5 is much higher
than that in Figure 4F because the number of data points in the frequency
domain is eight times larger. The variance in the coherence estimate is large,
and no significant peak is visible near 50 Hz. By applying the multitaper
method with W = 5 Hz, the variance is reduced, and a significant peak near
50 Hz is visible in the same data (see Figure 5B).

4 Discussion

The coherence between neuronal signals (e.g., EEG, MEG, two spike trains)
or between neuronal input (e.g., a local field potential) and neuronal out-
put is generally considered as an important measure for synchronization
or temporal locking. The main result of this study is that the coherence
reaches higher values when multi-unit spike activity is used instead of
single-unit activity. This cannot be overcome by extending the recording
time of the single-unit signal. The latter only improves the signal-to-noise
ratio (SNR) of the coherence. The SNR can also be improved by using
multitaper techniques or by using the Welch method. Experimental data
obtained in monkey V4 could be reproduced by simulations. Our results
illustrate the significance of multi-unit activity over single-unit activity and
provide new insights for the interpretation of multi-unit activity and for the
interpretation of coherence estimates using oscillatory activity such as g-
oscillations and y-oscillations in cognitive neuroscience studies. Our results
will be discussed in more detail below.

Although many studies have investigated the firing behavior of Poisson
neurons and integrate-and-fire neurons for partially correlated and uncor-
related input (for an overview, see Salinas & Sejnowski, 2001), most studies
have focused on the mean firing rate and the coefficient of variation (see,
e.g., Feng & Brown, 2000; Stroeve & Gielen, 2001; Salinas & Sejnowski, 2000,
2002; Kuhn, Aertsen, & Rotter, 2004). The coefficient of variation is an im-
portant parameter to understand the temporal structure of spike trains, but
this parameter itself cannot provide insight into the temporal correlation
of the action potential signals of different neurons receiving partially cor-
related input. As far as we know, this study is the first to give analytical
expressions and results of computer simulations for the coherence between
local field potential and neuronal firing and for the coherence between spike
signals for neurons receiving (partly) correlated input.

In this study, we investigated the relations between spike-field and spike-
spike coherences for single-unit and multi-unit activity. Analytical expres-
sions (see equations 2.10, 2.13, 2.15, and 2.17) showed that the spike-field
coherence values are higher than the spike-spike coherence values and
that the coherences are larger for multi-unit recordings than for single-
unit recordings. Although we could derive analytical expressions for the
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coherence between input and spike output only for the Poisson neu-
rons, simulations show qualitatively similar results for an ensemble of
conductance-based LIF neurons or HH neurons.

For Poisson neurons, the spike-spike coherence should be proportional
to the square of the spike-field coherence. This was confirmed by sim-
ulations (compare Figures 2B and 2D) where the spike-spike coherence
equals the square of the spike field coherence for the Poisson model.
Figures 3A, 3B, and 3D show similar results for the conductance-based LIF
model and the Hodgkin-Huxley neuron model. The full width at half maxi-
mum and the amplitude of the peak are smaller for the spike-spike than for
the spike-field coherence, as expected in case the spike-spike coherence is
proportional to the square of the spike-field coherence, which has values be-
tween zero and one. However, coherence values were typically larger for the
conductance-based LIF and Hodgkin-Huxley neuron than for the Poisson
neuron. This is due to the characteristic dynamic properties of the neuron
models.

Our results demonstrate that multi-unit activity gives significantly
higher estimates for the coherence than single-unit activity even if the num-
ber of action potentials in both signals is the same (see Figures 4A, 4B and
4D, 4E). This is partially due to the fact that the mean firing rate is typically
higher in a multi-unit recording than in a single-unit recording and the
modulations in firing rate are larger. Equations 2.10 and 2.13 show that the
coherence decreases with the square root of firing rate (proportional to A)
but increases linearly with modulation depth o. Since firing rate and mod-
ulation depth increase proportionally when adding single-unit signals, the
coherence will effectively increase with the number of single-unit contribu-
tions in a multi-unit signal.

Several studies have reported a lack of evidence for synchronized neu-
ronal activity; see, for example Tovee and Rolls (1992) in the inferior tempo-
ral visual cortex and Luck et al. (1997) who did not observe clear synchro-
nization in neuronal responses in V2 and V4. This is in contrast to findings
by Fries, Reynolds, et al. (2001). Our results indicate that the explanation for
these apparently contradictory findings may be related to the techniques
used to analyze the neuronal data. In Figure 3C the spike-spike coher-
ence between single-unit signals is small and disappears in the relatively
high variance of the estimate. Simulations with larger values of o (larger
modulations of the stimulus) showed a clear, small, and narrow peak near
50 Hz. However, the signal-to-noise ratio increases to plausible levels only
for unrealistically high modulations of the input. Therefore, the variance
in experimental data should be reduced by using dedicated data analysis
techniques like the multitaper method (see Figures 4 and 5). Our simula-
tions were done for data segments of equal duration (512 ms) and with a
constant number (K = 6) of tapers repeated over many time segments. This
results in smoothing of the frequency spectrum by averaging over many
signals.
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In electrophysiological experiments, the recording duration will vary
by experiment and will typically be much longer than 512 ms. Therefore,
Fries, Reynolds, et al. (2001) used a different number of tapers for each
recording signal, such that smoothing was done over the same frequency
window (2W = constant) for all experimental data. Since the duration of
their recordings was typically much longer than 512 ms, the longer du-
ration gives more samples in the time domain, which results in a higher
resolution in the frequency domain. This is illustrated in Figure 5. Their
result shows a higher resolution in the frequency domain but averaging
over a smaller number of signals. Effectively the result is the same: the re-
duction of smoothing by the smaller number of signals is compensated by
smoothing by the tapers over a larger number of samples in the frequency
domain. However, note that the multitaper method with Slepian sequences
as tapers is optimal among quadratic estimators because of the good con-
centration properties of Slepian sequences (see Percival & Walden, 2002).
The lack of optimality of the Welch estimates means that it is a more biased
estimate than the multitaper estimate with Slepian sequences, the variance
and the frequency resolution being equal. The bias will grow as the size of
the windows becomes smaller.
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