J. Phys. A: Math. Ger31 (1998) 6615-6634. Printed in the UK PIl: S0305-4470(98)92032-7

Finite-size effects in separable recurrent neural networks

A Castellanog, A C C Coolent and L Viang

1 CICESE, Fsica de Materiales, A. Postal 2681, Ensenada 22800, BC, Mexico and Dept. de
Fisica, Universidad de Sonora, A. Postal 1626, Hermosillo 83000, Son., Mexico

1 Department of Mathematics, King’s College, University of London, Strand, London WC2R
2LS, UK

§ CCMC, UNAM, A. Postal 2681, 22800 Ensenada, BC, Mexico

Received 24 February 1998, in final form 28 April 1998

Abstract. We perform a systematic analytical study of finite-size effects in separable recurrent
neural network models with sequential dynamics, away from saturation. We find two types of
finite-size effects: thermal fluctuations, and disorder-induced ‘frozen’ corrections to the mean-
field laws. The finite-size effects are described by equations that correspond to a time-dependent
Ornstein—Uhlenbeck process. We show how the theory can be used to understand and quantify
various finite-size phenomena in recurrent neural networks, with and without detailed balance.

1. Introduction

Infinite-range spin models of recurrent neural networks, with information stored in the
values of the interaction strengths of pairs of spins, have been studied intensively with
statistical mechanical tools following [1, 2]. The first wave of such studies involved
mainly equilibrium analyses, and was consequently restricted to models obeying detailed
balance. Away from the saturation regime (where small numbers of patterns are stored)
such models can be solved with standard mean-field techniques and display standard mean-
field behaviour. In contrast, in the saturation regime (where an extensive number of
patterns are stored) tools from spin-glass theory are required (replica theory), and non-
trivial phases occur. The second wave of studies employed tools from non-equilibrium
statistical mechanics. Here restriction to detailed balance models is irrelevant. However, in
view of the highly non-trivial nature of the glassy non-ergodic dynamics of models close
to saturation, most dynamical studies have been restricted to recurrent neural networks
with only small numbers of patterns stored. For an overview of the relevant literature see
textbooks such as [3] or reviews such as [4].

Despite the fact that finite-size effects have been reported regularly in literature, and
that they are known to persist even for system sizes uy ter 10° [5], it appears that
systematic studies of finite-size effects in recurrent networks which go beyond pilot studies
such as [6] have not yet been performed. The purpose of this paper is to carry out a
comprehensive analysis of finite-size effects (in first non-trivial order in the system size) for
a reasonably general class of recurrent neural network models, where the interaction matrix
has a separable structure. This class contains detailed balance models, as well as models
without detailed balance. Away from saturation, finite-size effects in these systems take the
form of mainly thermal fluctuations of orded(N~—Y2) around mean-field trajectories for
dynamical order parameters, as well as disorder-induced ‘frozen’ corrections to the mean-
field laws. Close to saturation even tNe— oo dynamics cannot be solved in explicit form
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(describing transients is found to necessitate approximations in all of the present approaches;
in the path integral formalism [7, 8] as well as in dynamical replica theory [9]). Therefore
in the latter regime the development of a finite-size theory would be premature.

We study the evolution of finite recurrent neural network models away from saturation
and with Glauber-type (stochastic) neuronal dynamics. We expand the Kramers—Moyal
expansion for the system’s natural dynamic order parameters on finite timescales, and
calculate the statistical properties of finite-size effects to first non trivial order/ M. 1
The finite-size effects turn out to be governed by a time-dependent Ornstein—Uhlenbeck
process. Our theory is used to analyse the dependence of finite-size effects on detailed
balance, scaling properties of fluctuations close to phase boundaries, and escape processes
in critical models which are driven purely by finite size effects. Comparison with extensive
numerical simulations confirms the theoretical predictions in all cases.

2. Derivation of macroscopic laws

2.1. Model definitions and simple relations

We consider a system composed of a large, but finite, numvbeir interconnected neurons,
modelled as Ising spins; € {—1,1}. The vectoro(t) = (01(2), ..., on(t)) defines the
state of the system at time The dynamics of the system is defined by a master equation
for the microscopic probability distributiop, (o):

%pr(cr) = Z{wi(ﬂa)pr(ﬂa) —w;(o)p/(0)} 1)

w;(0) = 3[1 — o; tanh(Bh; (c))] (2)

wherew; (¢) defines the rate of the single-spin transitieng) — —o;(t), 8 = T ! (the
inverse temperature) controls the stochasticity in the dynamics Faimslan operator that

flips theith spin, i.e.F; f(o1,...,0y) = f(01,..., —0i,...,0on). The local fieldh; (o) is
given by the usual linear expression
hi(o) ZZJijUj+9i (3
J

where J;; is the strength of the synaptic connection from neuyjoio neuroni, andg; is
a response threshold. The interactiofis are assumed to result from a learning process
involving a finite numberp of randomly chosen binary pattergé = (§;,...,&y) €
(=1, 1}V, with u = 1,..., p. We restrict ourselves to situations where the interactions
have a separable form (see e.g. [10-12]) and introduce a paraetef0, 1} to control
whether or not self-interactiong; will be allowed:
1 P
Jij=[1- A(Sij]ﬁ Z £ ALE] 4)

pnv=1

A=0: Li7éO
A=1: Jii=0.

Given the process (1), (2), we can define averages over the microscopic ensemble in
the usual way, and find simple relations for the temporal derivatives of such averages:

d
(f@)=) p@f@)  S{f@)= <Z wi (@) f(Fio) — f(a)]> : Q)
In particular, application tof (o) = oy gives
d
—({ow)r = (tanh(Bhi (o)) — (0% (6)

dr
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In order to make the transition to a macroscopic description of the process, we define the
usual pattern overlaps. These observables (which for fiMiteake discrete values only)
measure the similarity between the state of the system and each pfdfueed patterns:

1 N
(o) = (m(@),....mp(@)  mu(0) == > &0 @

The probability density for the macroscopic variablasis given by:
Pi(m) =) p/(o)8[m — m(o)]. ®)

We next define conditional, or subshell, averages of observatiles. These are averages
over the statistical ensemble, with the microscopic probability distribytigar), restricted
to those microstates that obeym (o) = m (in a distributional sense):
_ 2o Pi(0)8[m —m(a)] f (o)

Y pi(@)dm—m(o)]

Note that thes-distribution in definition (9) allows us to replace all occurrencesrifo)
in f simply by m:

(flo, m(@)])m = (flo, m])mu- (10)

(f(@)m: ©)

2.2. The Kramers—Moyal expansion

The dynamic equation for the macroscopic variabie&r) can be obtained by making the
choicef(a) = §[m — m(o)] in equation (5)

2
—Pf (m) = Z pi(©) Z wi(o) { [m —m(o) + ﬁa,-ei] — 8[m — m(a)]} .

Inside this expression we make a Taylor expansion in powers of the vﬁo’g@; and write
the result in terms of subshell averages (9):

d _ 1< - d* © )
g P = ; i Zl. . ,; R {P,(m)FY" _ [m;1]) (11)
FIE?’ m: t] _ <Z w; (0') |: O,lg:llli| . [%Uisiﬂlé} >m;t — O(lef). (12)

This is the so-called Kramers—Moyal expansion, applied to the present class of models.
Since equation (11) cannot be solved exactly, we follow the standard procedure for

‘large systems’ (see e.g. [13]), and expand (11) in powers/of.1By keeping only the

two leading orders, we obtain, at least on finite timescales (i.e. on times not scaling with

the system siz&V), the N — oo (mean-field) equations plus the leading-order contribution

due to the finite-size effects

d oo 1 92
_ D[y 2 @[y —2
o P (m) 321 o, {Pi(m)F,”[m; 1]} + 5 WE=1 S, {Pi(m)F,J[m; 1]} + O(N79).

(13)

 Note that due to Pawula’s theorem [14] we have but three options: (1) to retain ond¥(#i&) terms of (11),

(describing the infinite system), (2) to include in addition eV —1) terms, or (3) to keep all remaining orders
in N. Retaining a finite number of terms, until and including ordér” with » > 1 would generate solutions
P,(m) which violate the obvious condition that they be positive definite (i.e. represent probability densities).
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Upon insertion of the transition rates (o) (2) and the local fields (3), written in terms of
the overlaps (7), we can work out explicitly and simplify (with e.g. (10)) the various terms,

giving
FPIm:tl=m, — % &/ tanhplg; - Am +6]
S S oimatl € - A&~ tank ple, - Am 011 + OV D). (14)
Similarly:
2 K

1 1
SERImt] = 5 3 L — (01)m t@NhB(E; - Am +6)] + ON ). (15)

In the limit N — oo equation (13) reduces to a Liouville equation:

p

d 0
EP,(m) - Z om

n=1 23

{Pr(m)[m,, — (§,tanhB[& - Am + 6])¢ o]}

with the deterministic solution

d
P,(m) = §[m — m*(1)] Em*(t) = (§tanhp[§ - Am™ (1) +6])eo —m*(1)  (16)

where we defined

1
(616 Neo = Im 5D gl 6] £=(Croby)
Wlth gi = (sl‘lv ey %ip)'

3. Description via rescaled variables

3.1. Derivation of Fokker—Planck equation

The stochastic vectam (o) can apparently be written as the sum of a deterministic term
m*(¢t) and a fluctuating term, with the latter vanishing fdr — oo. Since for mean-
field models the overlaps can be seen as an averageNowedependent random variables,
one would expect, from the central limit theorem, the fluctuating term to scalé-as
Therefore we define a new stochastic variaie):

q(0) = VN[m(o) — m*(1)] Pi(q) = / dm P,(m)s[g — VN[m —m*®)]]  (17)

in which m*(¢) is the solution of the deterministic equation (16). Working out the temporal
derivative ofP;(q), with the help of the macroscopic equation (13), and takingMhe- co
limit, leads to a convenient description of the Iead'(ﬁgN*%) finite-size effects in terms

of a Fokker—Planck equation for the rescaled varialtes

m(o(t)) =m*(t) + Tlﬁq(t) +0 (%)

d d 02
3P @ =2 s —P@Flad+)
. 9du v

049,09,

{P,(@)D,[q; t]} (18)
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in which the flow term is given by
Fulg: 1] = g, — B(Eu(& - AQ)[L — tanif B[€ - Am* (1) + 0]])e.o
+ Jim vk e, tanngle - Am 0+ 0

—% Z g/ tanhB[¢; - Am*(t) + 9,»]}

where we used (14), (16) and (17). The last term¥jiq; ¢] describes a ‘frozen’ finite-
size correction to the flow field, depending on the microscopic realization of the pattern
components. Similarly, we can work out the diffusion matrix:

.1 v X
Dynligi ] = M 3 T& L = (orhes OB, - Am’(0) + 0] (19)
where we have use; )y, = (0;)mr@): + O(N‘%). According to (6) we may also use
! 1
Nmr s = ,~0e*’+/.dthanh ;- Am* +9,~—|—(’)<—>. 20
(U > (I),I g ( ) 0 S ,3[5 m (S) ] \/N ( )

We conclude that the diffusion matrix does not dependybn

. 1 U *
Dus(t) = (Euu)eo — €' lim — Z 5/'6)0:(0) tanhp; - Am” (1) + 6]

- / ds €7 (£,&, tanhB[& - Am* (s) + 0]tanhBl€ - Am* (1) + 0])ep. (21)
0

The fact that the above limits exist and give a non-trivial flow term and diffusion matrix
for (18) is thea posteriori justification of the ansatz (17).

We finally have to specify the pattern and threshold statistics in order to analyse
the Fokker—Planck equation (18). We choose independently drawn pattern components
g/ € {—1, 1} (with equal probabilities) and independently drawn neural threstpl@sith
probability distributionW (6)):

(ole Ohes =27 Y- [ o worele. o] (22)
ce{—1,1}»
which gives convenient relations such as
(f©)g@))eo=2" Z f(£)/d9 W(0)g(©) (u)eo =0 (ubv)eo = Suv-
ge(-1,1y

The flow term F'[q; ¢] in (18) can be written as the sum of two contributions; the first
(K) depends on the specific microscopic realization of the pattern components, whereas
the second (with the matriX) depends only on the probability distribution of the pattern
components:

Fulg: ] = Ku() + Y Lun(t)gy (23)

K, (1) = IJi_r]"loo Jﬁ{ (£, tanhB[€ - Am* (1) 4 0])¢.o — % Z gl tanhg[€; - Am* (1) + e,-]}

(24)
Ly () = 8, = B Y (Eu[1 — tant? BIE - Am™ (1) + 6]])¢.6 Avs. (25)
A
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The diffusion matrix in (18) is symmetric, and can be simplified to

1
Dun(®) =8 =& M 53 &6/ 01(0)tanhBlE, - Am() + 61

- / ds € (£,&, tanhB[& - Am* (s) + 0]tanhB[E - Am* (1) + 0])e. (26)
0

Equation (18), with its flow term (23) which is linear in the rescaled fluctuation variables
g and with its g-independent diffusion matrix (26), is called the ‘linear noise’ Fokker—
Planck equation; it describes a so-called time-dependent Ornstein—Uhlenbeck process (see

e.g. [15]).

3.2. General solution

The natural solution of the Ornstein—Uhlenbeck process (18) is a Gaussian distribution:

Pi(q) =

- Y P =1 _
(h)p/zmexp{ sla —(q)] - E7"(1)[q — (q):]}. (27)

It is fully characterized in the usual way by the time-dependent avejggend the time-
dependent correlation matrix
E;w(t) = (CIMqv>I - (QM>Z(Qv>t~ (28)

Here we denote averages over the distribution (27)/ag)), = [ dq P.(q) f (g). Insertion
of equation (27) as an ansatz into the Fokker—Planck equation (18) gives the following three
necessary and sufficient conditions for (27) to be a solution:

d

g (@ =L@ - K® (29)
%E(r) =—L(OE@W) — =)L) +2D@) (30)
% logdet=(r) + 2 Tr[L — DE™ ' =0 (31)

with the (symmetric) diffusion matrix (26). Equations (29) and (30) define the evolution in
time of the moments of the distribution (27). Equation (31) is then solved automatically,
which can be seen by combining the Wronski identfijogdetB = Tr[B~*2 B] with
equation (30).

Since the differential equations (29) and (30) are linear, they can be solved using standard
procedures (see e.g. [13, 15]). One defines the propa@gatgras the (matrix) solution of

%G(r) =—-L#)G() GO =1I or Git)=1 —/ ds L(s)G(s) (32)
0

in which I denotes the unit matrix. This allows us to express the solution of (29) and (30)
in the following compact way:

(@) = G (@0 — G1) /O ds G1(5) K (s) (33)

E@t) = GHOEOG (1) + 2G(1) / ds G 1) DG ()] 'G(1)  (34)
0

(as can be verified by insertion). Note, however, that calculating the propagator (32) can
still be non-trivial.
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3.3. Stationary states and detailed balance

For large timest — oo the dependence of (26) on the microscopic initial conditions
vanishes. Furthermore, for macroscopic stationary statesmitér) = m* for all ¢, with
m* given by the solution of the macroscopic fixed-point equation

m* = (§tanhB[§ - Am™ +6])¢0 (35)

we can in addition perform the time integration in (26). All flow and diffusion terms in the
Fokker—Planck equation (18) become independent of time, the convection matrix (25) can
be expressed in terms of the diffusion matrix as

L=1-8DA (36)

and our process (18) reduces to a time-independent Ornstein—Uhlenbeck process,
characterized by

F[q] =K+ [I - IBDA]q Dp.v = S;w - (E,u‘i:v tanﬁﬂ[g - Am* + 0])69
. 1
K = lm «/N{ (g tanhplg - Am” +0])eo — Zg tanhg[¢; - Am* + e,-]}.

Since the matrixL (36) is stationary, the propagator (32) reducesG@¢) = exp[—¢L].
Whether or not a macroscopic stationary stat&(r) = m* will be reached will depend on
the choice made for the matriA.

A sufficient condition for asymptotic stationarity is (microscopic) detailed balance,
which states that, in addition to stationarity of the probability distribugir), there is no
net probability current between any two configuratienand o’. For the models studied
in this paper this translates into symmetry of the mattiand absence of self-interactions,
i.e. A =1 (apart from pathological exceptions, such as systems with self-interactions only).
See, e.g. [16, 17]. Note, however, that our equations (16), (18) show that presence or
absence of self-interactions does not yet play a role in the first two leading orders in the
system size. We will now inspect the conditions for the Fokker—Planck equation (18) to
have a stationary solution, and show that for this solution to obey detailed balance (i.e. for
there to be no net probability current ipspace) we must again require symmetry of the
matrix A. Equation (18) can be written as a continuity equation for the probability density
P (q):

d
aPz(Q) +V-Ji(q =0

with V = (-, ..., ;&) and with, in the case of macroscopic stationarity,
9q1 9q,

Ji(@) = P(@{DE (g - (9)) — K — Lg}. (37)
From (29) and (30) we deduce that for (33) to be a stationary solutiong—t'(@) =0and
4= = 0, we must require

(q) = —L 'K HLE+ (LB} = D. (38)
For such stationary states the probability current (37) reduces to

J(q) = P(@[DE™" ~ Ll(g + LT'K). (39)
We conclude that detailed balance, i.e. a vanishing current, requires in addition to (38) that

L= =D. (40)
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Combination of (38) and (40) leads to the conditib. = LD, which, with identity (36),
translates intaDA'D = DAD. We now use the symmetry and non-negativity of the
stationary diffusion matrixD, i.e. - Dz = ((z - £)?[1 — tanlf B[£ - Am* + 6]])¢p = O

(with - D2 = 0 only for x = 0). We denote witl{|n)} the orthogonal basis of normalized
eigenvectors ofD, and with{d,} the corresponding (positive) eigenvalues. This allows us
to derive fromDA'D = DAD thatVn, m : d,d, (n|[A' — A]|m) = 0. This implies that

A = AT, which thus is found to be not only a sufficient condition, but also a necessary
condition for a stationary solution of equation (18) to obey detailed balance.

4. Application to associative memories

Our first application is an associative memory model, which generalizes the standard
model of [1] by allowing for patterns to be stored with different embedding strengths:
Jij = =[1 — AS;)] >, wu&l g (with 0 < w, < 1 for all u). This model, due to [18],
corresponds to the choicg¢,, = w,é,, in the language of (4), and thus obeys detailed
balance. For simplicity we choose zero thresholds, W&0) = §(0). We will only study

finite size corrections to the so-called ‘pure states’, whet¢r) = m()8,,, which are

the most important macroscopic solutions from both a thermodynamic and an information
processing point of view. Without loss of generality we can chopé¢® > 0 andx = 1

(as long as we refrain from ordering the embedding strengths with respect to magnitude),
S0

d
mj;(t) =m*(t)8,,1 Em*(t) = tanhg[wim™(¢)] — m*(¢). (41)

The above mean-field equation (41) will always evolve towards a fixed point, given by the

solution of m* = tanhpB[wym*]. Above the critical temperaturé. = w; the macroscopic

fixed point is paramagnetic, i.e«* = 0, below 7, one finds an ordered state, ire* > 0,

which represents retrieval of pattern one. Both fixed points, however, need not be stable
against perturbations in the direction of non-nominated patterns [18]. We have to define
initial conditions that will generate a pure macroscopic state, for which we choose

po(@) = [ [(3IL+m(0)]8,, 1 + 3[1 — m(0)]8,, _s:}. (42)
This indeed givesny, (0) = m(0)d, 1, as it should.

4.1. Statistics of finite-size effects

The restriction to ‘pure’ macroscopic states simplifies our finite size analysis considerably.
The relevant objects in the Fokker—Planck equation (18) become

K@) =K@OR L(t) = €,(1)8,, D(1) = D()I
with the scalar functions
K (1) = —tanhB[wim*(1)] £,(1) = 1— Bw,[1 — tanift Blwim* (1)]] (43)

D) =1-— tanhﬂ[wlm*(t)]{e’m(O) + /I dse’~’ tanhﬁ[wlm*(s)]} (44)
0

and with the (stationary) vectdr, defined as

. 1
R1=0 Ry>1= N'[POQ ﬁ Z gl (45)
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The propagator (32) now becomes trivial:
G () = 8,8 o &t (46)

This will enable us to calculate the moments of the distribufiay) at any time explicitly.
Since (42) describes statistically independent initial componentthe initial distribution
Po(q) is Gaussian. From (42) it follows thag)o = m(0) R andE(0) = [1 —m?(0)]I. The
moments at any time > 0 then follow from (33), (34):

! ot
(@) = Ru{ mOye a4 / ds e it tanhﬂ[wlm*m]} a7)
0

t
B (t) = 8,8, (1) E,(0) = [1 — m?(0)]e 2o ¥t 4 2 / ds e 2L &4 D(s). (48)
0

This gives the full distribution

1
-3 .
Pl (Q) = |: 1_[[27'[ EM([)]} e_% Zu[qu_w;ﬁ/]z/ﬁu(l) (49)

i

which describes uncoupled fluctuations, together with ‘frozen’ finite size corrections to
the overlaps corresponding to uncondensed patterns. The above results obviously break
down when the propagator develops runaway solutions, which is likely to happen at phase
transitions.

4.2. Near the ordering transition

We will inspect the behaviour of the finite-size effects in stationary states close to the phase
transition separating the paramagnetic from the ordered state. For stationary states, where
m*(t) = m* for all t > 0 (with m* given by the solution ofz* = tanhg[w1m*]), we have
in the asymptotic region (i.e. for— oo) K(¢t) = K, £,(t) = ¢, and D(¢) = D, with
K =-m* €, =1—pw,[1— (m")? D=1— (m")>2

This gives

1— (m*)?
1— pw,[l— (m*)?]

_ m*R,
© 1= Bwyll - (m1F

(Gu) oo E,(00) =

In the paramagnetic state, i* = 0, we thus find

T
T—w,

()0 =0 Ep(o0) =

The fluctuations diverge fdaf | T, = max, w,, which indeed marks the temperature where
the paramagnetic state destabilizes, in favour of a non-trivial pure state. In a non-trivial pure
state, i.e. forn™ > 0, we find that both the asymptotic averagg )., and the asymptotic
variance g, (co) for a fluctuation directiory. diverge when¢,, — 0. This again makes
sense: the conditiop, > 0 for all © > 1 is the condition for the pure state corresponding

to pattern one to be macroscopically stable, with= 0 signalling destabilization of this
pure state in favour of an alternative pure state> 1 (see [18]). Expansion of the
macroscopic fixed-point equation closefq for that particular pure state which is the first
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to order as the temperature is lowered (i.e. we now assume max wi and T, = w),
gives

c —

O<k=

<1 Bwi =1+ Kk + O®?) m* =3k + O).
This allows us to expand the finite-size terms in powers of the rescaled distdra®a the
critical temperature:

V3kR,w
(@)oo =0  (Guo1)oe = ——L2 4+ O®k)
w1 — Wy
1 w
E1(00) = 5=+ O(°) Ea1(00) = ———.
K w1 — Wy

The approach of the transitich 1 T, is signalled by diverging fluctuations, as it should.

Finally we test some of the above predictions against numerical simulations. The
simplest model of our (symmetric) class is the one where all embedding strengths are
equal: w, = 1 for all u. Here we know that ai’ > 1 the system will be paramagnetic,
whereas al' = 1 a second-order thermodynamic transition occurs to a pure low-temperature
state. If we denote the non-negative solution of the macroscopic fixed-point equation
m* = tanhB[m*] by m(T), with m(T > 1) = 0, we arrive at the following predictions:

T[1—m*T
w condensed:  (gu)oo =0 (6],3)00 —{qu)% = T[_Tmm(z(;])
_ ) Tm(T) T[1 — m*(T)]
w uncondensed: (qM)OQRMl = T —1+m2T) <qﬁ)°° —{au)% =

T T —14+mXT)’

In figure 1 we show these predicted equilibrium moments as functions of temperature,
together with results from numerical simulations carried outNoe 10000 forT < 0.6

andN = 50000 forT > 0.6, in systems with three stored pattefps= 3). Each point was
obtained upon performing = 1000 simulations (following different initializations). The
accuracy in an observation which is averaged ovénials, (¢,),, is given by the relation

(@ )n>o0 = (qu)nll £ /E,./n]. If we calculate the error bars for the data in figure 1, we
find that these are negligible far < 0.8, that for7T = 0.9 they are of the order of 5% and

that for T = 0.95 they increase to about 9%. As we can see, the agreement between theory
and computer simulations is quite satisfactory.

4.3. Zero temperature

ForT — 0 (or 8 — o0) the mean-field equation for the amplitude of pure states reduces
to %m(r) = 1—m(¢), given our conventiom: (0) > 0, with solution

m@) =m@Oe ' +1—¢e". (50)

Sincem(t) > 0 for any time (i.e. we will always be away from ttfe = 0 discontinuities
atm = 0), we may deal with the non-trivial terms in our problem by using

ﬁlim BI1 — tani? Blwym ()] = wyt lim  lim ditanhﬂ%ulm] = 2wt Iim()a(m) =0.
-0 m—m(t

m—m(t) B—~oo Am

With this identity we obtain foil’ = O:
K@) =-1 =1 D(1) = e'[1 — m(0)]
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Figure 1. Comparison between the theoretical predictions for the moments of the finite-
size contributions to the pattern overlaps and numerical simulations, in stationary sttes. (
Normalized average&;;) and (qﬂ)ooR;l (n>1). b) Variances(q&)OQ - <qﬂ>§0. Full curves:
theoretical predictions. Markers: simulation results, o= 10 000 for7 < .6 andN = 50 000

for T > 0.6.

which, in turn, gives the simple propagatét(r) = Ie’ and the following moments for
the finite-size corrections:

u condensedyg, ), =0 (g7) — (qu)7 = [1 —m(0)]e” {2 —[1L — m(0)]e™"}
u uncondensedy, ), R,* = m(t) (@2) — (g7 =11 —mOle " {2—[1 — m(O)]e '}

with m(¢) given in (50). The ‘frozen’ correction to the mean-field laws, i.e. the tér),,
increases in absolute strength as time progresses. The fluctuations, wHick &t have

their origin purely in the randomness of the order of the single-spin updates, decrease to zero
exponentially. In figure 2 we show these predicted zero-temperature moments as functions
of time, together with results from numerical simulations carried outNoe 5000 in a

system with three stored patterns. As it can be seen in figbg fi{e largest standard
deviation was found at = 0, where the error bars of aly,) (figure 2@)) are of the

order of £0.02, which amounts to approximately 3% of the overlap of the uncondensed
patterns. The error bars decrease at larger times. So, again the agreement between theory
and computer simulations is quite satisfactory.

5. Application to non-equilibrium models

In this section we will apply our theory to non-symmetric systems,Ag, # A,,, for
which detailed balance does not hold. We will restrict ourselves to the gase? and
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Figure 2. Comparison between the theoretical predictions for the moments of the finite-size
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wW(©) = §(@0) for simplicity; extensions to larger values ¢f and/or non-zero external
fields are straightforward and are not likely to generate new physics. We define an initial
microscopic distribution with statistically independent spins, in order to guarantee a Gaussian
shape forPy(q), given by

po(e) = [ [{3[1 — m1(0) — ma(0)] + m1(0)3,, zr + m2(0)3,, z2}. (51)
Obviously, we have to restrict ourselves to the physical region, defined by the two conditions
|m1(0) +m2(0)] < 1 and|m1(0) — m2(0)] < 1. Our definition generates the required initial

macroscopic observables, lim(m,(o))o = m,(0) (» = 1,2), and gives the following
initial moments for the finite size variables:

(q1)o\ _ p { m2(0) = _ [ 1—m?*0) —2m1(0)m2(0)>
(<q2>o>‘R <m1<0>) “(O)‘<—2m1<0>m2<0> 1— m2(0) (52)

with m(0) = (m1(0), m2(0)) and with R = limy_ o %ﬁ 3, Ee2.

5.1. Non-equilibrium stationary states

In this section we will study the class of networks where the ma#rikas the form

(3
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with € > 0. These systems obey detailed balance only fer0. The mean-field equations,
describing the overlap evolution in thé — oo limit, are given by

d 1 1
—m* = -—m* + > tanhp[m} + (e + Dmj3] <i> + > tanhg[mi + (¢ — Hmj3] ( ! ) .

dr -1
(53)

In the low-temperature regime these equations have two types of fixed points. First, for
T < 1 one finds the two non-trivial fixed point®* = £(m*, 0), related only to pattern

one, wheren* is the positive solution ofz* = tanh[8m*]. The second set of fixed points

is related to pattern two. A more detailed analysis of the space of states of the system
as a function ok, and the behaviour of the system within the various basins of attraction
will be published elsewhere [19]. We will study the finite-size effects for the pure fixed
point m* = (m*, 0), and their dependence on the parametarhich can be interpreted as
measuring the degree of violation of detailed balance. To assess the macroscopic stability
of this pure state we study the effect of perturbations*(r) = (m*, 0) + (81(2), 82(2)),

with |81(7)] < 1 and|82(¢)| « 1. Linearization of the mean-field laws gives

d
< (ﬁ;) - {[ﬂ[l )] = 1)+ Bell — (m*)?] (8 (1,)} (j;) ..

with the solution

(w)) _ A1y (81(0> + per[l - (m*)2]32(0)>
82(1) 52(0) '

Therefore the pure states™ = (m*, 0) are (globally) stable if and only j8[1— (m*)?] -1 <
0. This condition is met by the solution ef* = tanh[gm*] as soon as it is non-zero, i.e.
forall T < 1.

For finite N the mean-field picture will be modified by finite-size effects. In the pure
fixed pointm* = (m*, 0), obtained following a pure initializatiom*(0) = (m*(0), 0), the
stationary Ornstein—Uhlenbeck process is characterized by

1

with R given by equation (45) withh = 2. We work out the propagatd®&(z) (32) by
splitting the matrixL into two commuting parts, such thét(r) = exp[—rL] factorizes into
two separate matrix exponentiations:

“0= exp{_t[l — BIL — "] + €pt[Ll — (m*)?] <8 é>}

_ o M—pl-(n*] [I +ept[l — (m*)’] (8 é)} '

The condition for the propagator to be well behaved is identical to the condition for the
fixed point under consideration to be macroscopically stapj@— (m*)?] < 1. By working
out (33) and (34) we arrive at the moments of the distribuf(g):

(q), = m*(O)Re™'F <2> +m*RL7YI —e '] <2>

_enf 1-mAO  —2mOma0))
—2my(Omz(0)  1—m?(©)

L=T-fl-m)]A D=[-mHI K= —m*R<0)

d n
+2[1 - (m*)z] / ds es—NLgls—nLT
0
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The limitst — oo are given by:
1 -1
@ =R i1 plt - - ept - 0 (o)) (§)

_ m*R eBIL — (m")?]
T - Bl - m? (1 .y <m*>2]> (54)

E(00) = 2[1— (m*)?] lim / ds 0 ~0[L=AlL=0n")] {I —eB(s — D[1 — (m*)?] (2 é)
t—>00 0
202 2 w22(1 0

1+ 2?B2HA(T) %eﬂH(T))
2eBH(T) 1

= H(T) ( (55)

in which

1— (m*)Z
1—Bll— (m)?
Note thatH (T > 1) = T/(T — 1). Apart from inducing a non-zero stationary correction
{(g1) o to the overlap with pattern one, violation of detailed balance (i.e. havind) rather
thane = 0) leads to an increase in the fluctuations of the non-trivial overlap, and a coupling
of the fluctuations in the; andg; directions, which in the case of detailed balance would
have been statistically independent.

We can appreciate most clearly the effects of the correlations in the fluctuations by
examining the curl of the probability curreot(q) in g-space. In doing so we can use
the stationarity condition (38) for the correlation matrix, i%éLE + (LE)'] = D (which
allows us to putx - [D — LE]x = 0 for eacha € R?), as well as the symmetry of both
the correlation matriX@ and its inverse. For stationary states the probability current (37),
which must be divergence-free, reduces to

J(q@) = P(@[DE " — LI(q — (q)o0)-

Its curl is found to be

V x J(@) = P@(V x [DE"" — L](q — (@)=) = (@ — (@)) - @)
x[D — LEIZ™ (q — (@)}
=P(@V x {[DE"! ~ L](q — (q)x)}
= —ef[1l — (m")?] P(q).

Violation of detailed balance, due to the asymmetry of the ma#ifor ¢ # 0, produces

a stationary rotational current in the space of the finite-size variapldhe magnitude of
this current is proportional to the magnitude of the parameteffor T < 1 the prefactor
B[1 — (m*)?] is a monotonically increasing function of temperature, starting at zero for
T = 0 and approaching one f@f — 1. The rotational current persists above the critical
temperature, where we fintl x J(q) = —¢B8P(q).

Finally we test the predictions (54), (55) for the momentsPaf(q) against numerical
simulations. In figure 3 we show these predicted equilibrium moments as functions of
temperature, together with results from numerical simulations carried ouY fer 50 000
ande € {0,0.2,0.5}. We performedn = 10000 simulation experiments in all cases,
therefore the observation errors in the observed fluctuation average are given by one

H(T) = H(©) =0, H(1) = oo.
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Figure 3. Comparison between the theoretical predictions for the first-order moments of the
finite-size contributions to the pattern overlaps and numerical simulations, in stationary states,
as functions of temperature and fere {0,0.2,0.5}. (a) Normalized averagéqi)ooR .

(b) Normalized averagégz).. R~1. Full curves: theoretical predictions. Markers: simulation

results, forN = 50000 and: = 10000 samples.

hundredth of the observed standard deviation times the fluctuation average. The present
non-equilibrium model is found to require larger system sizes for our fluctuation theory to
hold (i.e. neglected higher orders Nz are more prominent) than the equilibrium models
studied in earlier sections. In addition the time required for transient effects to have died
out is longer. This explains why the agreement between theory and experiment, as observed
in figure 3, although still reasonable, is less than that observed in our previous simulations.

5.2. Escape times controlled by system size

As a final application of our finite-size theory we turn to a model whicl at O is exactly
critical, in the sense that the mean-field flow is such that the asymptotic n&l(eo) of the

overlap vector is exactlpn a regional boundary imn-space which separates qualitatively
different macroscopic flow domains:
1 -1
A= .
(i 7)
As a result one finds in this particular system that the relevant escape times, which dictate
whether and when the state vector can leave a given domain, are controlled entirely by the

size N of the system.
At non-zero noise levels < T < 1 the solutions of the mean-field equations for

m*, describing the overlap evolution in thé — oo limit, show evolution into a stable
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R < 0 the system will eventually cross the, = 0 line and jump into the neighbouring basin of
attraction (region Il). ) In overlap space the system initially follows a straight line from any
initial state in region | towards the fixed poif®d, 1), slowing down exponentially. IR < 0,

the finite system (squares) eventually jumps to region Il and the flow is redirected towards the
point (-1, 0).

limit-cycle [10]. ForT = 0 the mean-field equations reduce to

am —ESgnﬁ"ﬂ(l)‘i‘ESgnﬁ"z]( 1 )—m

giving

region | m}(0) > 0, m5(0) > 0 m*(t) =m*(0)e’ + (0, D[1 — 7]

region I m3(0) <0, m3(0) > 0 m*(t) =m*0)e’ + (-1, 01 —e'] (56)
region |l m}(0) <0, m5(0) <0 m*(t) = m*(0)e’" + (0, -D[1l —e’]

region IV m3(0) > 0, m3(0) <0 m*() =m*0)e’ + (1, 0[1-e"].

There are four qualitatively different macroscopic flow regions, separated by the two lines
mj = 0 andm} = 0. In all four cases the macroscopic flow is directed towards a state
which is exactlyat the regional boundary, such that the asymptotics of the system (i.e.
whether or not the state vector will escape to another region) will be determined purely by
the finite-size effects. Figure 4 illustrates the time evolution of the escape process from
region | to region Il. Data obtained by simulation of a single finite system (markers) are
compared with theV — oo theory (continuous lines); foN — oo or R > 0 the system
gets trapped in region |I.

Due to the overall symmetry of our models with respect to the transformaion
p: (o) - p,(—o) (at least: in the absence of external fields), the properties of regions | and
[Il and of regions Il and IV are pairwise identical. Furthermore, the properties of region Il
follow from those of region | via the transformatigh — —¢&*, and the properties of region
IV follow from those of region Il via the transformatiog® — —&*. This implies that
without loss of generality we can restrict our quantitative analysis to region I. We choose
T = 0 and the initial staten*(0) = (m*(0), 0), with 0 < m*(0) < 1 (i.e. in region I). The
relevant quantities in the Fokker—Planck equation (18) are then given by

K(t) = — (1;) Lat)=1 D) =¢"! <—m];‘(0) _mi(0)>

with R given by equation (45) withh = 2. We find the simple propagat@# () = e™'I.
Note that working out the relevant moments (33), (34)R{q) for the present model,
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following the initial conditions (52), gives

@ =z () +1-e1r(g)

= a2 1- (m*(o))Z 0 —1 —1 1 —m*(0)
E@) =¢€ ( 0 1_(m*(o))2>+2e [1-e ]<—m*(0) 1 )

We want to calculate the probability that at timéhe system will have escaped from region
| to region Il. To this aim we first define

M,(M) = Probjni(o (1)) < M] =) _ pi()0[M — m1(a)]. (57)

Note that in both regions | and Il we havex(o) > 0 (in fact the escape processlI
happens close tai,(o) = 1). The time derivative of1,(M) follows from (5), which for
T = 0 reduces to

d 1
o = <{M = o ) + Mmoo }S[M - m1<a>1>

t

+ON™)

= <{M +0[-M] — %G[M]} S[M — m1(0')]> +O(NY

with the usual definitionR = \/iﬁ > L2, It follows that %H,(M) is discontinuous at
M =0:

. d R =
MII—TL EHr(M) = —\/—N@[ml(d)])t +OWNNT)
d
Jim T (M) = (8ma@)]) + ON™h.

The escape process requires times sufficiently large to allow finite-size effects to come into
play, i.e. €' = O(N‘%). We are thus led to the introduction of the new time varigble
y = € /+/N. For such times the averagé{m(c)]), can be written as

1
(S[ma(o)): = / g Py (@bl O™ + —gs + O )

_ VN @ o BR/Eno
21 By

In terms of the new time variable we writd, (M) = P,(M); using & = y% we then
arrive at

d R 1 m*(©) -32/5
lim —P,(M) = — g allan+ 5= +OWNT 2/ En() + O(N—l)
M—0, dy " Y21 E11
. d VN 1 m* ) -3v2/m
lim —P, (M) = e—§[<q1>:+T+O(N )/ Bua(t) + O(NO)
M—0_dy 7 Y/ 2T B

1 Here there could be a potential conflict with the assumptions of the theory. However, inspection shows that our
derivation of the Fokker—Planck equation as the correct description of the leading-order finite-size effects requires
limy_ o t/~/N = 0, which means that the theory still applies = O(log(N)).
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Note that on the timescalesig:), = R + O(N~2) and Ey1(f) = O(N~2). Consequently

9 p 0 =-Fs [R + X (0)} +O(N)
dy 12

iPy(o,) _ YN, [R n m*(o)} + O(NO).
dy Y 14

Since Pp(0+) = 0O (for we start withm}(0) > 0) we are led to the following predictions.
If R > O the state vector never escapes regionR i 0, on the other hand, the state vector
will ultimately escape. Once past the regional boundary, the state vector cannot return due
to the boost described bg, (0_). Integration overy gives the explicit form

P,(0") = —R/ %5[R+z] +O(N"2)
m*©/y 2
— 6[—R] e[y - m“§|0)] L O,

So, providedR < 0, the state vector leaves region | precisely when= m*(0)/|R|.
Translation back into the original time variable gives the following escape time:

m O 5 <\/iﬁ) . (58)

fesc= %IogN + log [W} +
If we use the simple transformations that relate the properties of the four regions, we arrive
at the following picture. IfR < 0 the system will be able to make the transitions-1II
and Ill — 1V, but never the transitions > Il or IV — I. For R > 0, on the other
hand, the transitions H> Ill and IV — | will be observed, but never the transitionss! 1l
or Il - IV. When R = 0, the case where the two patterns are orthogonal in the first
two leading orders iV, the escape properties will be controlled by thev 1) finite size
effects.

Finally we compare the prediction (58) for the escape time with the results of numerical
simulations. Figure 5 shows the average escape time as a functionaf (6y[|R|], where
the broken curve corresponds to the order of magnitude of neglected otderg /). The
agreement between theory and computer simulations is quite satisfactory.

6. Discussion

We have performed a systematic study of finite-size effects in separable recurrent neural
network models away from saturation. Since our approach is based on analysis of
the dynamics, our results apply to models with detailed balance (i.e. with symmetric
synaptic interactions) and to models without detailed balance (with non-symmetric synaptic
interactions). In leading order in the system sizxé*é) the finite-size effects turn out to
be governed by a time-dependent Ornstein—Uhlenbeck process, and their time-dependent
probability density can be calculated in explicit form. The leading-order finite-size effects
are found to come in two distinct forms: they show up as ‘frozen’ corrections to the mean
field laws (dependent on the details of the correlations between the randomly drawn stored
patterns) and as fluctuations, which have their origin in thermal noise in the local field
alignment as well as the randomness in the selection of the neuron to be updated.

We use our theory to work out several specific but characteristic examples, including
symmetric attractor neural network models, used as associative memories, and non-
equilibrium models (with non-symmetric interactions). For detailed balance models
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we quantify within our fluctuation theory the familiar features of equilibrium statistical
mechanics, e.g. diverging fluctuations near phase transitions and absent probability currents
in the stationary state. For non-equilibrium models, in contrast, we find persistent rotational
currents in the stationary state. One of our non-equilibrium examples involves the
calculation of escape times which are purely controlled by finite-size effects, which is a
nice example of a problem where the finite-size effects are significantly more than simply
a correction to the corresponding result for an infinite system. More extensive applications
will be published in [20]. Comparison with extensive numerical simulations confirms the
theoretical predictions in all cases.
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