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Abstract. We solve the dynamics of Hopfield-type neural networks which store sequences of
patterns, close to saturation. The asymmetry of the interaction matrix in such models leads to
violation of detailed balance, ruling out an equilibrium statistical mechanical analysis. Using
generating functional methods we derive exact closed equations for dynamical order parameters,
namely the sequence overlap and correlation and response functions, in the thermodynamic limit.
We calculate the time translation invariant solutions of these equations, describing stationary limit
cycles, which leads to a phase diagram. The effective retarded self-interaction usually appearing
in symmetric models is here found to vanish, which causes a significantly enlarged storage
capacity ofαc ∼ 0.269, compared withαc ∼ 0.139 for Hopfield networks storing static patterns.
Our results are tested against extensive computer simulations and excellent agreement is found.

1. Introduction

The equilibrium properties of the Hopfield model [1], a globally coupled neural network,
with the typically Hebbian prescription for the interaction strengths

Jij = 1

N

p∑
µ=1

ξ
µ

i ξ
µ

j (1)

(in which the ξµi represent components of patterns to be stored) have been successfully
described in the regime close to saturation, where the numberp of patterns stored scales as
p = αN , using replica methods [2, 3]. As an alternative approach, a path integral formalism
developed in [4], was applied to the dynamics of the same system, and both approaches
have indeed been shown to lead to identical phase diagrams [5]. Many modifications of the
standard Hopfield model have been proposed, including models where the network does not
statically recall individual patterns, but reproduces asequenceof stored patterns [1, 6–10].
The simplest way to induce this cyclical behaviour is by an asymmetric modification of
the interaction matrix (1), in combination with a parallel execution of the neural dynamics.
Numerical simulations show that in such (non-symmetric) models the number of patterns
that can be stored successfully is significantly larger than that of models storing static
patterns, with a storage capacity ofαc ≈ 0.27 [1, 7], compared withαc ≈ 0.14 for the
standard (symmetric) Hopfield model.
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In this paper we study such a model, where a single sequence of extensive length is
stored in a fully (but non-symmetrically) connected Ising spin neural network with parallel
stochastic dynamics. The asymmetry of the interaction matrix and the resulting violation
of detailed balance and associated fluctuation–dissipation theorems rule out equilibrium
statistical mechanical methods of analysis, including conventional replica theory. Some time
ago an approximate dynamical solution for this model was proposed [7], which provided
results roughly in line with the numerical evidence available at the time. To our knowledge,
an exact solution, however, has so far not yet been found.

In our present study we use the path integral methods of [4, 5, 11] to solve the dynamics
close to saturation exactly in the thermodynamic limit for our fully connected sequence
processing network, without having to resort to approximations. In the standard (symmetric)
Hopfield network two effects limit the storage capacity: a Gaussian noise in the equivalent
effective single-spin problem, which is non-local in time, and a retarded self-interaction.
The magnitude of both depends on the load factorα. Our theory shows that for the present
model the retarded self-interaction vanishes, similar to the situation in the non-symmetric
Sherrington–Kirkpatrick (SK) model [12–14], which explains the extended storage capacity.
Numerical simulations for large system sizes (up to 50 000 spins) are in excellent agreement
with our analytical results, both with respect to the maximum storage capacityαc ≈ 0.269
(at zero noise level) and with respect to the full phase diagram in theα − T plane.

2. Definitions

We study a system consisting ofN Ising-type neuronsσi = ±1 which evolve in time
according to a stochastic alignment to local fields. The neurons change their states
simultaneously, with probabilities

Prob[σi(t + 1) = −σi(t)] = 1

2

[
1− tanh

(
βσi(t)

[ N∑
j=1

Jijσj (t)+ θi(t)
])]

(2)

where the entries of the interaction matrixJ are given by

Jij = 1

N

p∑
µ=1

ξ
µ+1
i ξ

µ

j (3)

(the pattern labelsµ are understood to be taken modulop). The non-negative parameter
β = T −1 controls the amount of noise in the dynamics, withT = 0 corresponding to
deterministic evolution and withT = ∞ corresponding to purely random evolution. The
variablesθi(t) represent external fields. Thep vectorsξµ = (ξ

µ

1 , . . . , ξ
µ

N) ∈ {−1, 1}N
are randomly and independently drawn patterns. Our interest is in the saturation regime
p = αN . For discussions of the relation of such models to biological or artificial neural
networks see e.g. [15–18]. The matrixJ will generally be non-symmetric, so that (2)
will not obey detailed balance. Hence we cannot use conventional equilibrium statistical
mechanics to analyse the stationary behaviour: we will have to solve the dynamics. For
the subsequent analysis, it will turn out to be useful to represent our expression forJ in
matrix notation as

J = 1

N
(ξTSξ) Sµν = δµ,(ν+1)modp. (4)

Here thep × N matrix ξ is defined asξµi = ξµi . WhenS is replaced by the unity matrix
1, the definition (4) reverts to that of the standard Hopfield model.
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To analyse the dynamics of the system we follow [4] and define a generating (or
characteristic) functionalZ[ψ]:

Z[ψ] =
∑

σ(0)...σ(t)

p[σ(0), . . . ,σ(t)]e−i
∑

s<t σ(s)·ψ(s) (5)

in which σ(s) = (σ1(s), . . . , σN(s)) denotes the microscopic system state at times, and
with the usual notationx · y =∑i xiyi . In the familiar way one can obtain fromZ[ψ] all
averages of interest by differentiation, e.g.

mi(s) = 〈σi(s)〉 = i lim
ψ→0

∂Z[ψ]

∂ψi(s)
(6)

Gij (s, s
′) = ∂

∂θj (s ′)
〈σi(s)〉 = i lim

ψ→0

∂2Z[ψ]

∂ψi(s)∂θj (s ′)
(7)

Cij (s, s
′) = 〈σi(s)σj (s ′)〉 = − lim

ψ→0

∂2Z[ψ]

∂ψi(s)∂ψj (s ′)
. (8)

The dynamics (2) is a Markov chain, so the path probabilitiesp[σ(0), . . . ,σ(t)] are
simply given by products of the individual transition probabilitiesW [σ′|σ] of the chain:
p[σ(0), . . . ,σ(t)] = p[σ(0)]

∏t−1
s=0W [σ(s+1)|σ(s)]. For the dynamics (2) these transition

probabilities are given by

W [σ(s + 1)|σ(s)] =
∏
i

1
2

[
1+ σi(s + 1) tanh

(
β

[∑
j

Jij σj (t)+ θi(t)
])]

=
∏
i

eβσi (s+1)[
∑
j Jij σj (s)+θi (s)]−ln 2 cosh(β[

∑
j Jij σj (s)+θi (s)]).

To formally remove the coupling termsσi(s + 1)σj (s) we introduce the auxiliary variables
h(s) = (h1(s), . . . , hN(s)), representing the local fields at each spin site at given times, by
insertion of

1=
∫

dh(s)
∏
i

δ

[
hi(s)−

∑
j

Jij σj (s)− θi(s)
]
.

After writing the aboveδ-distributions in integral form, which generates conjugate field
variablesĥ(s) = (ĥ1(s), . . . , ĥN (s)), and upon introducting the more convenient notation
{dh dĥ} =∏i

∏
s<t [dhi(s) dĥi(s)/2π ], we can express (5) as

Z[ψ] =
∑

σ(0)...σ(t)

p(σ(0))
∫
{dh dĥ}

∏
s<t

eβσ(s+1)·h(s)−∑i ln 2 cosh[βhi(s)]+iĥ(s)·[h(s)−θ(s)]−iψ(s)·σ(s)

×e−iN−1ĥ(s)·(ξTSξ)σ(s). (9)

This expression describes the system dynamics (2), (3) in general form. To obtain
quantitative information about particular regimes of operation, we have to make specific
ansatze. Our ansatz will be one describing (possibly noisy) recall of the stored sequence
of patterns. At each timestep exactly one stored pattern is assumed to be ‘condensed’, i.e.
the overlap between that pattern (which without loss of generality can be labelled with the
time index) and the system state is ofO(1), whereas all other overlaps are ofO(N− 1

2 ).
The cumulative impact of the overlaps of the non-condensed patterns will introduce an
additional noise component into the system dynamics; the non-condensed patterns play the
role of ‘quenched disorder’. ForN →∞ the mean-field physics of the problem should be
self-averaging with respect to the realisation of the disorder, so we are allowed to average
the generating functional (9) over the non-condensed patterns (such averages will be denoted
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as f [{ξ}]). Since each pattern withµ 6 t will at some stage be condensed, in contrast
with those patterns withµ > t , we can simplify our calculation by averaging only over the
latter. The resulting expressions will, forN →∞, turn out not to depend on the remaining
patterns withµ 6 t .

As in most dynamic mean-field calculations of disordered systems based on evaluating
disorder-averaged generating functionals, we will consider the timet to be fixed, whereas
we will take the limitN → ∞. This restricts the predicting power of the theory to those
processes that take place on finite timescales. In the present calculation we will find that
a time-translation invariant state (representing motion on a stationary limit cycle) is indeed
approached on finite timescales, so this restriction is not a problem.

3. Dynamic mean-field theory

In (9) only the termĥ(s)·(ξTSξ)σ(s) contains both condensed and non-condensed patterns.
We isolate the non-condensed ones by introducing the variablesx andy:

1=
∫

dx
∏
s<t

∏
µ6=s

δ

[
xµ(s)− 1√

N

∑
i

ξ
µ+1
i ĥi (s)

]
1=

∫
dy
∏
s<t

∏
µ6=s

δ

[
yµ(s)− 1√

N

∑
i

ξ
µ

i σi(s)

]
.

Upon writing the aboveδ-distributions in integral form (which generates the additional
integration variableŝx and ŷ), we then arrive at the following expression for the disorder-
averaged generating functional:

Z[ψ] =
∑

σ(0)...σ(t)

p(σ(0))
∫
{dh dĥ}e

∑
s<t [βσ(s+1)·h(s)−∑i ln 2 cosh[βhi(s)]+iĥ(s)·[h(s)−θ(s)]−iψ(s)·σ(s)]

×e−iN−1∑
s<t [ĥ(s)·ξs+1][σ(s)·ξs ]

×
∫

dx dx̂ dy dŷ

(2π)2(p−1)t
ei
∑

s<t

∑
µ6=s [x̂µ(s)xµ(s)+ŷµ(s)yµ(s)−xµ(s)yµ(s)]

×[e−iN−
1
2
∑

s<t

∑
µ6=s [x̂µ(s)ĥ(s)·ξµ+1+ŷµ(s)σ(s)·ξµ] ]. (10)

We can now carry out the disorder average in the last term, which is significantly simplified
if in the exponent we use

∑
µ6=s [

∑
i . . .] =

∑
µ>t [

∑
i . . .] +O(N). It gives

[. . .] = eO(N
1
2 )[e−iN−

1
2
∑

s<t

∑
µ>t

∑
i ξ

µ

i [x̂µ−1(s)ĥi (s)+ŷµ(s)σi (s)] ]

= eO(N
1
2 )
∏
µ>t

∏
i

cos

[
N−

1
2

∑
s<t

[x̂µ−1(s)ĥi(s)+ ŷµ(s)σi(s)]
]

= eO(N
1
2 )
∏
µ>t

e−
1

2N

∑
s,s′<t

∑
i [x̂µ−1(s)ĥi (s)+ŷµ(s)σi (s)][ x̂µ−1(s

′)ĥi (s ′)+ŷµ(s ′)σi (s ′)] . (11)

Since the leading orderN in the exponent of (11) does not involve components of
{x, x̂,y, ŷ} with pattern indexµ 6 t , the latter can be integrated out in expression (10).
We now isolate the various relevant macroscopic observables occurring in (11) by inserting
integrals over appropriateδ-functions:

1=
∫

dm dm̂

(2π/N)t
eiN

∑
s<t m̂(s)[m(s)− 1

N

∑
i ξ

s
i σi (s)]



Sequence processing neural networks 8611

1=
∫

dk dk̂

(2π/N)t
eiN

∑
s<t k̂(s)[k(s)− 1

N

∑
i ξ

s+1
i ĥi (s)]

1=
∫

dq dq̂

(2π/N)t2
eiN

∑
s,s′<t q̂(s,s

′)[q(s,s ′)− 1
N

∑
i σi (s)σi (s

′)]

1=
∫

dQ dQ̂

(2π/N)t2
eiN

∑
s,s′<t Q̂(s,s

′)[Q(s,s ′)− 1
N

∑
i ĥi (s)ĥi (s

′)]

1=
∫

dK dK̂

(2π/N)t2
eiN

∑
s,s′<t K̂(s,s

′)[K(s,s ′)− 1
N

∑
i σi (s)ĥi (s

′)] .

Combination of (11) with (10) will then give us an expression forZ[ψ] which will factorize
over sites if we choose a factorized initial distributionp(σ(0)) =∏i pi(σi(0)), resulting in
an integral which forN →∞ will be dominated by saddle points:

Z[ψ] =
∫

dm dm̂ dk dk̂ dq dq̂ dQ dQ̂ dK dK̂ eN{9[...]+8[...]+�[...]}+O(N 1
2 ) (12)

in which the functions9[. . .], 8[. . .] and�[. . .] are given by:

9[m,k, m̂, k̂, q,Q,K, q̂, Q̂, K̂] = i
∑
s<t

[m̂(s)m(s)+ k̂(s)k(s)−m(s)k(s)]

+i
∑
s,s ′<t

[q̂(s, s ′)q(s, s ′)+ Q̂(s, s ′)Q(s, s ′)+ K̂(s, s ′)K(s, s ′)] (13)

8[m,k, q̂, Q̂, K̂] = 1

N

∑
i

ln

{ ∑
σ(0)...σ (t)

pi(σ (0))
∫
{dh dĥ}e

∑
s<t [βσ(s+1)h(s)−ln 2 cosh[βh(s)]]

×e−i
∑

s,s′<t [q̂(s,s
′)σ (s)σ (s ′)+Q̂(s,s ′)ĥ(s)ĥ(s ′)+K̂(s,s ′)σ (s)ĥ(s ′)]

×ei
∑

s<t ĥ(s)[h(s)−θi (s)−k̂(s)ξ s+1
i ]−i

∑
s<t σ (s)[m̂(s)ξ

s
i +ψi(s)]

}
(14)

�[q,Q,K] = 1

N
ln
∫

dx dx̂ dy dŷ

(2π)2(p−t)t
ei
∑

µ>t

∑
s<t [x̂µ(s)xµ(s)+ŷµ(s)yµ(s)−xµ(s)yµ(s)]

×e−
1
2

∑
µ>t

∑
s,s′<t [x̂µ(s)Q(s,s

′)x̂µ(s ′)+x̂µ−1(s)K(s
′,s)ŷµ(s ′)+ŷµ(s)K(s,s ′)x̂µ−1(s

′)+ŷµ(s)q(s,s ′)ŷµ(s ′)]

= 1

N
ln
∫

du dv

(2π)(p−t)t
ei
∑

µ>t

∑
s<t uµ+1(s)vµ(s)

×e−
1
2

∑
µ>t

∑
s,s′<t [uµ(s)Q(s,s

′)uµ(s ′)+uµ(s)K(s ′,s)vµ(s ′)+vµ(s)K(s,s ′)uµ(s ′)+vµ(s)q(s,s ′)vµ(s ′)]

(15)

with the shorthand{dh dĥ} = ∏s<t [dh(s) dĥ(s)/2π ]. The final expression (15) for� was
obtained by integrating out the variables(x,y), followed by a simple pattern index shift
transformation.

One can deduce the physical meaning of the various dynamic order parameters
introduced along the way in the usual manner by (repeated) derivation of the definition
(5) with respect to the external fieldsθi(s) andψi(s), in combination with usage of the
normalization identityZ[0] = 1. Evaluation of a functionf [. . .] at the dominating (physical)
saddle-point of the extensive exponent in (12) will be indicated byf |saddle. The external
fields occur in the function8 only (not in 9 or �). The resulting identities can be
summarized in a compact form upon introduction of an effective single-site measure〈. . .〉i ,
defined as

〈f [{σ, h, ĥ}]〉i =
∑

σ(0)...σ (t)

∫ {dh dĥ}Wi [{σ, h, ĥ}]f [{σ, h, ĥ}]∑
σ(0)...σ (t)

∫ {dh dĥ}Wi [{σ, h, ĥ}]
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with

Wi [{σ, h, ĥ}] = pi(σ (0))[e
∑

s<t [βσ(s+1)h(s)−ln 2 cosh[βh(s)]+iĥ(s)[h(s)−θi (s)−k̂(s)ξ s+1
i ]−iσ(s)m̂(s)ξ si ]

× e−i
∑

s,s′<t [q̂(s,s
′)σ (s)σ (s ′)+Q̂(s,s ′)ĥ(s)ĥ(s ′)+K̂(s,s ′)σ (s)ĥ(s ′)] ]|saddle. (16)

In particular we now find, in leading order inN :

〈σi(s)〉 = i lim
ψ→0

∂(N8)

∂ψi(s)

∣∣∣∣
saddle

= 〈σ(s)〉i (17)

0= ∂Z[0]

∂θi(s)
= lim
ψ→0

∂(N8)

∂θi(s)

∣∣∣∣
saddle

= −i〈ĥ(s)〉i (18)

〈σi(s)σj (s)〉 = − lim
ψ→0

∂2(N8)

∂ψi(s)∂ψj (s ′)

∣∣∣∣
saddle

− lim
ψ→0

[
∂(N8)

∂ψi(s)

∂(N8)

∂ψj (s ′)

] ∣∣∣∣
saddle

= δij 〈σ(s)σ (s ′)〉i + [1− δij ]〈σ(s)〉i〈σ(s ′)〉i (19)

∂〈σi(s)〉
∂θj (s ′)

= i lim
ψ→0

∂2(N8)

∂ψi(s)∂θj (s ′)

∣∣∣∣
saddle

+ i lim
ψ→0

[
∂(N8)

∂ψi(s)

∂(N8)

∂θj (s ′)

] ∣∣∣∣
saddle

= − iδij 〈σ(s)ĥ(s ′)〉i (20)

0= ∂2Z[0]

∂θi(s)∂θj (s ′)
= lim
ψ→0

∂2(N8)

∂θi(s)∂θj (s ′)

∣∣∣∣
saddle

+ lim
ψ→0

[
∂(N8)

∂θi(s)

∂(N8)

∂θj (s ′)

] ∣∣∣∣
saddle

= − δij 〈ĥ(s)ĥ(s ′)〉i . (21)

Note that we have already used identity (18) to simplify (20) and (21).

4. Derivation of saddle-point equations

In the limit N → ∞, the integral (12) will be dominated by the dominating (physical)
saddle point of the extensive exponent9 + 8 + �. We are now in a position to
derive the saddle-point equations by differentiation with respect to our integration variables
{m,k, m̂, k̂, q,Q,K, q̂, Q̂, K̂}. These equations will involve the average sequence
overlapm(s) (which measures the quality of the sequence recall) and the average single-site
correlation and response functionsC(s, s ′) andG(s, s ′):

m(s) = lim
N→∞

1

N

∑
i

〈σi(s)〉ξ si (22)

C(s, s ′) = lim
N→∞

1

N

∑
i

〈σi(s)σi(s ′)〉 (23)

G(s, s ′) = lim
N→∞

1

N

∑
i

∂〈σi(s)〉
∂θi(s ′)

. (24)

Straightforward differentiation, followed by usage of the identities (17)–(21) wherever
possible, then leads us to the following saddle-point equations:

for all s, s ′ : k(s) = m̂(s) = Q(s, s ′) = 0 (25)

for all s : k̂(s) = m(s) = lim
N→∞

1

N

∑
i

〈σ(s)〉iξ si (26)

for all s, s ′ : q(s, s ′) = C(s, s ′) = lim
N→∞

1

N

∑
i

〈σ(s)σ (s ′)〉i (27)
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for all s, s ′ : K(s, s ′) = iG(s, s ′) = lim
N→∞

1

N

∑
i

〈σ(s)ĥ(s ′)〉i (28)

for all s, s ′ : q̂(s, s ′) = i∂�

∂q(s, s ′)

∣∣∣∣
saddle

(29)

for all s, s ′ : Q̂(s, s ′) = i∂�

∂Q(s, s ′)

∣∣∣∣
saddle

(30)

for all s, s ′ : K̂(s, s ′) = i∂�

∂K(s, s ′)

∣∣∣∣
saddle

. (31)

The effective single-site measure (16) simplifies considerably due to (25), (26), and since
the function� depends on the trio{q,Q,K} only (see (15)), our saddle-point equations
can be reduced to a problem involving only the key physical observablesm(s), C(s, s ′) and
G(s, s ′).

In order to calculate the remaining Gaussian integral in� we have to define matrices
operating in the product space of vectors labelled by both time indicess and pattern indices
µ. Note: in the case of the standard symmetric Hopfield model, where integration variables
with different pattern labelsµ immediately decouple, this would not have been necessary.
We define a matrixΓ = S⊗R as having matrix elements0µµ′(s, s ′) = Sµµ′R(s, s ′), where
µ,µ′ = 1, . . . , p and wheres, s ′ = 0, . . . , t − 1. It will operate as follows: ify = Γx
thenyµ(s) =

∑
µ′>t

∑
s ′<t Sµµ′R(s, s

′)xµ′(s ′) for each(µ, s). Note that in evaluating� for
N →∞, and due tot remaining finite, we can safely drop the restriction thatµ > t , and
instead haveµ = 1, . . . , p. The above definition allows us to write

lim
N→∞

�[C,Q, iG] = lim
N→∞

1

N
ln
∫

du dv

(2π)pt
e−

1
2u·[1⊗Q]u− 1

2v·[1⊗C]v+iv·[S⊗1−G⊗1]u

= lim
N→∞

1

N
ln

{
det−

1
2 [1⊗C]

∫
du

(2π)pt/2

×e−
1
2u·{1⊗Q+[S⊗1−1⊗G]†[1⊗C]−1[S⊗1−1⊗G]}u

}
= − lim

N→∞
1

2N
{ln det[1⊗C]

+ ln det{1⊗Q+ [S ⊗ 1− 1⊗G]†[1⊗C]−1[S ⊗ 1− 1⊗G]}}. (32)

We use (32) to work out the saddle-point equations (29)–(31). The first of the three equations
comes out trivially:

q̂(s, s ′) = i
∂

∂C(s, s ′)
�[C, 0, iG]

= − lim
N→∞

i

2N

∂

∂C(s, s ′)
ln det{[S ⊗ 1− 1⊗G]†[S ⊗ 1− 1⊗G]} = 0. (33)

In order to work out the remaining two equations we use the general matrix identity
ln det[M + Q] = ln detM + Tr[M−1Q] + O(Q2), as well as the specific properties of
the p × p matrix Sµν = δµ,ν+1. In particular we will be using its unitarity,S†S = 1,
the identity [(S†)mSn]µµ = δmn, and itsp eigenvaluessµ being given bysµ = e−2π iµ/p.
Equation (30) now reduces to

Q̂(s, s ′) = i lim
Q→0

∂

∂Q(s, s ′)
�[C,Q, iG]
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= − lim
N→∞

i

2N

∑
µ6p
{[S ⊗ 1− 1⊗G]†[1⊗C]−1[S ⊗ 1− 1⊗G]}−1

µµ(s
′, s)

= − lim
N→∞

i

2N

∑
µ6p
{[1⊗ 1− S† ⊗G]−1[1⊗C][1⊗ 1− S ⊗G†]−1}µµ(s ′, s)

= − 1

2
αi
∑
n,m>0

lim
p→∞

1

p

∑
µ6p
{[S† ⊗G]n[1⊗C][S ⊗G†]m}µµ(s ′, s)

giving:

Q̂ = − 1
2αi

∑
n>0

(G†)nC(G)n. (34)

Finally we turn to equation (31):

K̂(s, s ′) = ∂

∂G(s, s ′)
�[C, 0, iG]

= − 1

2
α

∂

∂G(s, s ′)
lim
p→∞

1

p
{ln det[1⊗ 1− S† ⊗G]† + ln det[1⊗ 1− S† ⊗G]}

= − 1

2
α

∂

∂G(s, s ′)
lim
p→∞

1

p

∑
µ6p
{ln det[1− e−2π iµ/pG†] + ln det[1− e2π iµ/pG]}

= − 1

2
α

∂

∂G(s, s ′)
Tr
∑
n>0

1

n

∫ π

−π

dω

2π
{e−niω(G†)n + eniω(G)n} = 0. (35)

5. The effective single-spin problem

Let us summarize the present stage of our calculation. Most macroscopic integration
variables are found to vanish in the relevant physical saddle point:k(s) = m̂(s) =
Q(s, s ′) = q̂(s, s ′) = K̂(s, s ′) = 0. The remaining ones can all be expressed in terms
of three macroscopic observables, namely the overlapsm(s) and the single-site correlation
and response functionsC(s, s ′) andG(s, s ′), as defined in (22)–(24), by using the four
equations (26)–(34). We are thus left with a set of closed equations (26)–(28) from which to
solve{m(s), C(s, s ′),G(s, s ′)}. These equations are defined in terms of an effective single-
spin problem. At this stage it is natural to choose the remaining external fieldsθi(s) to be so-
called ‘staggered’ ones, i.e.θi(s) = θ(s)ξ s+1

i . If used as symmetry-breaking perturbations,
such fields will exactly single out macroscopic solutions of the type we introduced as an
ansatz. This choice also removes the formal need to break symmetries via initial conditions,
so that we may now choosepi(σ (0)) = p(σ(0)). As a consequence we find that the
single-site measure (16) becomes site independent, since the remaining site dependence
due to pattern componentsξµi can be eliminated via a gauge transformation whereby
σ(s) → σ(s)ξ si and h(s) → h(s)ξ s+1

i . The resulting single-spin problem involves the
following measure (which is properly normalized, as can be verified by explicit evaluation
of 〈1〉?):

〈f [{σ }]〉? =
∑

σ(0)...σ (t)

∫
{dh dĥ}p(σ(0))f [{σ }]e

∑
s<t [βσ(s+1)h(s)−ln 2 cosh[βh(s)]]

×ei
∑

s<t ĥ(s)[h(s)−θ(s)−m(s)]− 1
2α
∑

s,s′<t R(s,s
′)ĥ(s)ĥ(s ′) (36)

with R(s, s ′) =∑n>0[(G†)nC(G)n](s, s ′). This measure describes an effective single spin

σ(s) with a stochastic alignment to local fields given byh(s) = m(s) + θ(s) + α 1
2φ(s),
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in which the termφ(s) represents a zero-average Gaussian random field with (non-zero)
temporal correlations〈φ(s)φ(s ′)〉 = R(s, s ′). Note that, as a consequence of (35), there is
no term representing a retarded self-interaction, in contrast with the standard (symmetric)
Hopfield model. This is the mathematical explanation of the higher storage capacity in the
present sequence processing model. The asymmetry of the interaction matrix prevents the
build-up of a microscopic memory, similar to the situation in the non-symmetric SK-model
[12–14]. The equations from which to solve our remaining order parameters can be written
as

m(s) = 〈σ(s)〉? (37)

C(s, s ′) = 〈σ(s)σ (s ′)〉? (38)

G(s, s ′) = ∂

∂θ(s ′)
〈σ(s)〉?. (39)

Since the measure (36) factorizes with respect to spin variables at different times, we can
immediately perform the spin summations in (37)–(39) (which would not have been possible
for the standard Hopfield model). After a simple rescaling of fields and conjugate fields we
then arrive at

m(s) =
∫
{dv dw}eiv·w− 1

2w·Rw tanhβ[m(s − 1)+ θ(s − 1)+ α 1
2v(s − 1)] (40)

C(s, s ′) = δs,s ′ + [1− δs,s ′ ]
∫
{dv dw}eiv·w− 1

2w·Rw

× tanhβ[m(s − 1)+ θ(s − 1)+ α 1
2v(s − 1)]

× tanhβ[m(s ′ − 1)+ θ(s ′ − 1)+ α 1
2v(s ′ − 1)] (41)

G(s, s ′) = βδs,s ′+1

{
1−

∫
{dv dw}eiv·w− 1

2w·Rw

× tanh2 β[m(s − 1)+ θ(s − 1)+ α 1
2v(s − 1)]

}
(42)

with R(s, s ′) =∑n>0[(G†)nC(G)n](s, s ′). The response function is found to be non-zero
only if field perturbation and spin measurement are temporally separated by exactly one
iteration step. Thus anomalous response cannot occur, and macroscopic stationarity should
be achieved on finite timescales.

6. The stationary state

We now choose stationary external fieldsθi(s) = θξ s+1
i , giving θ(s) = θ in terms of the

single-spin problem, and inspect time-translation invariant solutions of our macroscopic
equations (40)–(42), which will describe motion on a macroscopic limit cycle:

m(s) = m C(s, s ′) = C(s − s ′) G(s, s ′) = G(s − s ′). (43)

In order to do this we shift the initial time in (40)–(42) fromt0 = 0 to t0 = −∞, and the
final time to t = ∞. According to (43) the matricesC andG become Toeplitz matrices
and commute, which implies that the matrixR simplifies to

R = C[1−G†G]−1 R(s, s ′) = R(s − s ′) (44)

and that we may thus write the stationary version of (40)–(42) as

m =
∫
{dv dw}eiv·w− 1

2w·Rw tanhβ[m+ θ + α 1
2v(0)]
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C(τ 6= 0) =
∫
{dv dw}eiv·w− 1

2w·Rw tanhβ[m+ θ + α 1
2v(τ)] tanhβ[m+ θ + α 1

2v(0)]

G(τ) = βδτ,1
{

1−
∫
{dv dw}eiv·w− 1

2w·Rw tanh2 β[m+ θ + α 1
2v(0)]

}
.

We separate inC(τ) andR(τ) the persistent from the non-persistent parts, i.e.

C(τ) = q + C̃(τ ) R(τ) = r + R̃(τ ) lim
τ→±∞ C̃(τ ) = lim

τ→±∞ R̃(τ ) = 0.

The persistent partr of R(τ) can be expressed in terms of the persistent partq of C(τ),
by combining (44) with the above expression forG(τ). This separation of persistent
parts induces a frozen random field into the above order parameter equations, which can
subsequently be absorbed into the local fields:

eiv·w− 1
2w·Rw = eiv·w− 1

2 r[
∑

s w(s)]
2− 1

2w·R̃w =
∫

Dz ei
∑

s w(s)[v(s)−z
√
r]− 1

2w·R̃w

(with the familiar abbreviation Dz = (2π)− 1
2 e−

1
2z

2
). Upon rewritingG(τ) = βδτ,1[1 − q̃]

andr = qρ, we arrive at the following expressions for our persistent observables:

m =
∫

Dz
∫
{dv dw}eiv·w− 1

2w·R̃w tanhβ[m+ θ + z√αqρ + α 1
2v(0)]

q = lim
τ→∞

∫
Dz
∫
{dv dw}eiv·w− 1

2w·R̃w tanhβ[m+ θ + z√αqρ + α 1
2v(τ)]

× tanhβ[m+ θ + z√αqρ + α 1
2v(0)]

q̃ =
∫

Dz
∫
{dv dw}eiv·w− 1

2w·R̃w tanh2 β[m+ θ + z√αqρ + α 1
2v(0)]

ρ = [1− β2(1− q̃)2]−1.

We only need to know the joint probability distribution of the pair(v(τ ), v(0)) in the limit
τ → ∞ to work out the remaining integrals overv andw. This distribution is clearly a
zero-average Gaussian one, so finding the second-order moments suffices. Integration over
w gives

〈v(τ)v(0)〉 = [detR̃]−
1
2

∫ ∏
s

[
dv(s)√

2π

]
e−

1
2v·R̃−1vv(τ)v(0) = R̃(τ )

from which we conclude that〈v(0)2〉 = R̃(0), and that limτ→∞〈v(τ)v(0)〉 = 0. The
varianceR̃(0) = R(0)− r immediately follows from (44):

R̃(0) = 1− q
1− β2(1− q̃)2 = (1− q)ρ.

All remaining integrals are now expressed in terms of persistent observables only:

m =
∫

Dz
∫

Dx tanhβ
[
m+ θ + z√αqρ + x

√
α(1− q)ρ

]
q =

∫
Dz

[ ∫
Dx tanhβ

[
m+ θ + z√αqρ + x

√
α(1− q)ρ

] ]2

q̃ =
∫

Dz
∫

Dx tanh2 β
[
m+ θ + z√αqρ + x

√
α(1− q)ρ

]
.
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Figure 1. Phase diagram of the sequence processing network, in which one finds two phases:
a recall phase (R), characterized by{m 6= 0, q > 0, q̃ > 0}, and a paramagnetic phase (P),
characterized by{m = 0, q = 0, q̃ > 0}. Full curve: the theoretical prediction for the phase
boundary. Markers: simulation results for systems ofN = 10 000 spins measured after 2500
iteration steps. The precision in terms ofα is at least1α = 0.005 (indicated by error bars); the
values forT are exact.

If we finally combine the two Gaussian variables in the equations form and q̃ into a single
Gaussian variable we arrive at our final result:

ρ = [1− β2(1− q̃)2]−1 (45)

m =
∫

Dz tanhβ
[
m+ θ + z√αρ] (46)

q̃ =
∫

Dz tanh2 β
[
m+ θ + z√αρ] (47)

q =
∫

Dz

[ ∫
Dx tanhβ

[
m+ θ + z√αqρ + x

√
α(1− q)ρ

] ]2

. (48)

Note that the trio (45)–(47) form itself a closed set, from the solution of which the persistent
correlationq simply follows.

7. Phase diagram and storage capacity

We have solved the coupled equations (45)–(47) numerically forθ = 0† in order to determine
the region in theα–T plane where solutions withm 6= 0, which describe pattern sequence
recall, exist‡. The boundary of this region determines the storage capacity of the system.
This theoretical result was tested against numerical simulations of the present model, carried
out at the spin level (2). We show the results in figure 1. One finds that, forT > 0 and

† The alternative choiceθ 6= 0 would have described the less interesting scenario where them 6= 0 state would
not be sustained autonomously (if at all), but where at each timestep and at each site a very specific external field
θi (s) = θξ s+1

i would have actively pushed the system towards the pattern sequence.
‡ With the proviso that the present (standard) version of dynamic field theory applies only on timescales which
are small compared with the system sizeN .
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α < ∞, the equations (45)–(47) admit only two types of solutions: a recall solution (R)
characterized by{m 6= 0, q > 0, q̃ > 0}, and a paramagnetic solution (P) characterized by
{m = 0, q = 0, q̃ > 0}. The absence of the analogon of a spin-glass phase will be discussed
in more detail below. The (first order) phase boundary R→ P as obtained theoretically (solid
line) shows an excellent agreement with the computer simulations (markers), as performed
for systems of sizeN = 10 000 (using bisection). The maximum storage capacityαc is
obtained in the zero noise limitT → 0 (or β → ∞). For β → ∞, where q̃ → 1 and
q → 1, the saddle-point equations can be simplified in the usual manner, using identities
such as

lim
β→∞

∫
Dz tanhβ

[
m+ z√αρ] = erf

[
m√
2αρ

]

lim
β→∞

β(1− q̃) = ∂

∂m
lim
β→∞

∫
Dz tanhβ

[
m+ z√αρ] = √ 2

παρ
exp

[
− m

2

2αρ

]
.

With the definition x = m/
√

2αρ, from which the overlapm follows according to
m = erf(x), we can combine our saddle-point equations forβ → ∞ into the single
transcendental equation

x
√

2α = ±
√

erf2(x)− 4x2

π
exp(−2x2). (49)

This equation is identical to that obtained in theT = 0 limit for the layered model of [19],
and for the present model we thus obtain the same maximum storage capacity, which is
defined as the largest value ofα for which (49) has non-trivial solutions, ofαc ≈ 0.269.
Note, however, that this equivalence does not extend beyond theT = 0 limit. To also verify
this latter result with numerical simulations, taking into account the possibility of finite size
effects, we measured the maximum storage capacity in zero temperature simulations for
different system sizes, ranging fromN = 2500 toN = 50 000. This resulted in figure 2.
The numerical data are again perfectly consistent with the resultαc ≈ 0.269 of ourN = ∞
theory.

Finally we turn to the non-recall phases, still for zero external field, wherem = 0 and
where the remaining order parametersq ∈ [0, 1] and q̃ ∈ [0, 1] follow from solving the
coupled equations

q̃ =
∫

Dz tanh2

[
βz

√
α

1− β2(1− q̃)2
]

(50)

q =
∫

Dz

{∫
Dx tanhβ

[
z

√
αq

1− β2(1− q̃)2 + x
√

α(1− q)
1− β2(1− q̃)2

]}2

. (51)

The first of these equations (50) determinesq̃, which is related to the response function
via G(τ) = β(1− q̃)δτ,1. Its solution is unique. For finite temperature one finds thatq̃ is
always non-zero, approaching zero only asymptotically asq̃ = αβ2 + Oβ4 for T → ∞.
The persistent correlationq subsequently follows from solving (51). This second equation
always admits the paramagnetic solutionq = 0. Careful numerical and analytical inspection
reveals that forT > 0 andα < ∞ it admits no solutions withq > 0, which would have
been the analogon of a spin-glass state. Only in the limitsT → 0 andα → ∞, where
β(1− q̃)→ (1+ 1

2πα)
− 1

2 andβ(1− q̃)→ 1 respectively, and where equation (51) converts
into

q =
∫

Dz erf2
[

z
√
q√

2(1− q)
]
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Figure 2. Results of determining the maximum sequence storage capacityαc at T = 0 via
numerical simulation of networks with different sizesN . The values forαc have been determined
with a precision of at least1α = 0.001 where possible. Note that theN = ∞ theory predicts
αc ≈ 0.269.

does one find a non-trivial solution, namelyq = 1. This implies that in the phase diagram
of figure 1 the phase beyond the boundary of the recall region is a paramagnetic state, with
only a transition to a spin-glass type frozen state precisely atT = 0. This type of behaviour
is very similar to that observed in non-symmetric spin-glass models [12–14].

8. Discussion

In this paper we have used path integral methods to solve in the thermodynamic limit the
dynamics of a non-symmetric neural network model, designed to store and recall sequences
of stored patterns, close to saturation. For about a decade this model has been known from
numerical simulations to have a significantly enlarged storage capacity (by about a factor
two) compared with the more familiar symmetric Hopfield network [1–3], which stores
static patterns and obeys detailed balance. So far the sequence processing model had not
yet been solved, and thus the enlarged storage capacity had not yet been explained, mainly
due to the complication that the absence of detailed balance rules out the more traditional
equilibrium statistical mechanical methods, including replica theory. In contrast, even in
the regime of interest where the number of patterns in the sequence scales asp = αN ,
and thus where the dynamical methods of simple mean-field models cannot be used, the
powerful path integral methods of [4, 11, 5] do still apply; they allow us perform the
disorder average in a dynamical framework, and thereby to calculate the system’s phase
diagram without having to resort to additional approximations.

In the standard (symmetric) Hopfield network two effects limit the storage capacity:
a Gaussian noise in the equivalent effective single-spin problem, which is non-local in
time, and a retarded self-interaction. The magnitude of both contributions depends on the
load factorα. For the present model we find, in contrast, that the retarded self-interaction
vanishes, which explains the extended storage capacity. Numerical simulations for large
system sizes (up toN = 50 000 spins) are in excellent agreement with our analytical results,
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both with respect to the maximum storage capacityαc ≈ 0.269 (at zero noise level) and
with respect to the full phase diagram in theα−T plane. In the limit of zero noise level we
find that the equation from which to solve the order parameter which describes the quality
of the sequence recall reduces to that of the layered model of [19]. Our order parameter
equations and their solutions also turn out to be very similar to those found for various
versions of the non-symmetric SK spin-glass model, as studied in [12–14]. In particular,
common features are the absence of a retarded self-interaction in the effective single-spin
problem, and the absence of a spin-glass-type phase for non-zero temperatures.

We have restricted ourselves to calculating limit cycle solutions of the macroscopic
dynamical equations which describe pure sequence reproduction, in view of our main goal:
finding the maximum storage capacityαc. Clearly there will be many alternative solutions,
e.g. those describing motion towards a limit cycle (transients), and so-called non-equilibrium
mixture state solutions (generated upon choosing non-staggered symmetry breaking fields)
whereby at any time the microscopic state vector has a non-zero overlap with two or more
of the stored patterns. A full classification of all possible solutions of the macroscopic
dynamical equations is, if at all possible, beyond the scope of this study.

As a next step one could apply the present formalism to networks which store more
than one periodic pattern sequence. By varying the scaling withN of both the sequence
length and of the number of sequences, one should expect a transition between the behaviour
similar to that of the symmetric Hopfield model (with an effective retarded self-interaction)
and the behaviour observed in the present model (without such a retarded self-interaction).
This will be the subject of a future study.
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