
§1. Introduction

Quantum spin systems with randomness are of ac-
tive current interest because the interplay of randomness
and quantum fluctuations often leads to nontrivial be-
haviour.1, 2) However, full exact analysis of such systems
is very difficult, partly due to the randomness and partly
due to non-commutativity of quantum spin operators.
We therefore solve in the present paper a quantum ver-
sion of the Mattis model with infinite-range interactions
to investigate the effects of coexistence of randomness
and quantum fluctuations.

The Mattis model was originally proposed as a sim-
ple spin glass model exhibiting only randomness, but no
frustration.3) It consists of Ising spins interacting via un-
frustrated random exchange interactions. The random-
ness can be gauged away, giving a simple ferromagnetic
Ising model. The model is nevertheless nontrivial under
an external field, in which case the problem reduces to
that of the Ising ferromagnet with random local fields.
In this paper we study the quantum version of the Mat-
tis model in an external field. This is a more complex
problem because, even in the absence of external fields,
one cannot gauge away the randomness in the exchange
interactions without violating the commutation relations
of the quantum spin operators.

There ve been eral investigations of the quantum
Mattis model including the dispersion relation4) and the
symmetry of the ground-state.5) These studies show that
the non-commutativity of spin operators does not nec-
essarily play an important role in the determination of
the qualitative behaviour of the system. However, there
has to date been no explicit solution for the equilibrium
behaviour of the infinite-range model, even without an
external field. The exact solution given in the present
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paper fills this gap; it also shows explicitly that, as was
to be expected from the earlier studies cited above,4, 5)

quantum fluctuations do not affect the structure of the
phase diagram in an essential way. The physical reason
for this fact is that the effective field acting on a spin
is the sum of very many other spins when the range of
interactions is infinite; but the sum of many quantum
spin operators behaves like a classical vector. Hence, as
we show, the problem reduces effectively to that of a
single-site quantum spin in a classical external field.

In spite of this fact, the system exhibits very rich phase
behaviour. There are essentially three ordered phases,
two with collinear spin orientations (parallel or antipar-
allel to the external field), and one with non-collinear
spins. These phases are separated by first or second or-
der transition lines which terminate or meet at critical,
tricritical, three-phase or critical end points. All these
types of phase behaviour can be explicitly and exactly
derived by relatively simple but nevertheless nontrivial
manipulations.

The paper is organized as follows. The model is de-
fined and its variational free energy is derived in §2. Ex-
tremization of the variational free energy gives the exact
solution of the infinite-range model, even for quantum
spins. (In an appendix, we also confirm the variational
result by a direct explicit calculation.) The three special
cases of the Ising, Heisenberg and XY models, which
already exhibit the three types of ordered phases men-
tioned above, are treated in §3. In §4, then, the model
is analysed for general values of the anisotropy parame-
ter in the exchange interaction. While no additional or-
dered phases appear, the resulting phase diagrams now
exhibit new and nontrivial features such as tricritical,
three-phase and critical end points. The final section is
devoted to conclusions.

§2. Model and Free Energy

The system we consider consists of N spin-1/2 quan-
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an expression for the free energy by mathematically rig-
orous techniques. The fact that their result coincides
with our variational calculation is probably the most di-
rect confirmation of its exactness.

In the mean field approach, we start from a trial

tum spins Si. We use the rescaled spins ¾i = (2/h̄)Si,
whose components have eigenvalues σαi = ±1 (α =
x, y, z), to describe the state of the system; this makes
correspondences with Ising dels easier to see.
The Hamiltonian is defined as

H = −
1

N

∑
i<j

ξiξj¾i · J¾j −
∑
i

B · ¾i. (2.1)

Here the sum runs over all pairs of sites, J is a general
3 × 3 coupling matrix, B is an external field, and the
ξi = ±1 are quenched random variables. If only Jzz
and Bz are nonzero, then only the z-components of the
spins, σzi , appear in H. Because the σzi all commute with
each other, the quantum nature of the problem is then
irrelevant, and one recovers the classical Mattis model3)

which is formulated in terms of Ising spins.
It should be noted that the infinite-range model does

not have a lattice structure, and consequently the con-
cept of randomness in ξi does not have its direct signif-
icance. In fact, the present model is identical to a two-
sublattice infinite-range model with all bonds within a
sublattice being ferromagnetic and all bonds between dif-
ferent sublattices antiferromagnetic. Randomness does
not play an explicit role here. Nevertheless, such an
infinite-range model can serve as a mean-field approx-
imation to the Mattis model in finite dimensions with
real randomness. This is clear from the case of the ferro-
magnetic Ising model in a random field, which is equiv-
alent to the classical Mattis model in a uniform field.6)

We therefore retain the terminology of randomness and
disorder in the following.

To solve the model (2.1), it is tempting to try to
gauge away the quenched disorder by the transformation
¾i → ξi¾i. But this is impossible, because the gauged
spins would no longer obey the required commutation
relations

[σαi , σ
β
i ] = 2i

∑
γ

εαβγσ
γ
i , (2.2)

with εαβγ the fully antisymmetric unit tensor. Instead,
we solve the model using a variational mean field the-
ory which treats the spins as uncorrelated with each
other. Because we are dealing with a model with infi-
nite range interactions, this approximation becomes ex-
act in the thermodynamic limit N → ∞; an explicit
self-consistency argument for this fact is given in Ap-
pendix A. A direct solution of a special case given in
Appendix B also confirms the variational result. We
note that Duffield et al.7) have given a unified treatment
of a large class of long-range quantum spin systems with
site disorder (including the one we consider) and derived

classical mo

Hamiltonian

H0 = −
∑
i

hi · ¾i

with the associated variational free energy

F̃ = F0 + 〈H −H0〉0 .

Here 〈. . .〉0 denotes an average over the Boltzmann distri-
bution defined by H0, and F0 is the corresponding free
energy. The fact that mean field theory is exact then
means that the minimum of F̃ with respect to the hi
is not just an upper bound on the true free energy F ,
but in fact equal to it in the thermodynamic limit. One
easily evaluates F̃ as

F̃ = −T
∑
i

ln 2 coshβ|hi|

−
1

N

∑
i<j

ξiξjmi · Jmj −
∑
i

(B − hi) ·mi,

where β = 1/T as usual. The magnetizations are given
by

mi = 〈¾i〉0 = t(βhi),

in terms of the “vector hyperbolic tangent”

t(v) =
v

|v|
tanh(|v|).

Minimizing F̃ with respect to the hi gives the conditions

´i

hi −B − ξi 1

N

∑
j 6=i

ξjJmj

 = 0, (2.3)

where the ´i are the local susceptibility tensors

´i =
∂mi

6=i

¸.60ψ1ψTfγψ0ψ(X)Tjγ/Ffγ9.963ψ0ψ0ψ9.963ψ4 ii
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under B → −B, we generally restrict ourselves to B ≥ 0.
Finally, before proceeding, we note that with the

choice (2.11), the model has a trivial rotational sym-
metry in the xy-plane. We break this symmetry by re-
quiring that my

+ = 0 and mx
+ ≥ 0. Minimization of

(2.6) with respect to rotations of m− implies that the
components of m+ and m− in the xy-plane are antipar-
allel to each other, thus also my

− = 0, and mx
− ≤ 0.

So the minimization in (2.8) only has to be carried out
over the four magnetization components mz

+, mz
−, mx

+,
mx
−, with the latter being respectively non-negative and

non-positive. We also assume throughout that the posi-
tive sublattice I+ contains more spins than the negative
one, ı.e., n+ > n−, and take n− > 0 in order to exclude
the trivial case of an anisotropic quantum ferromagnet
without disorder. Instead of n+ and n−, we will some-
times use the parameter ε, defined by n± = (1 ± ε)/2;
ε → 1 then corresponds to the disorder-free limit, and
our assumptions on n+ and n− translate into 0 < ε < 1.

§3. Ising, Heisenberg and XY Models

3.1 Ising limit (∆→∞)
In the limit ∆ → ∞, the free energy (2.6) is min-

imized when the sublattice magnetizations point along
the z-axis. We thus only have two nonzero order pa-
rameters mz

+ and mz
− to consider, and effectively re-

cover the Mattis model with classical Ising spins. Using
s(m) = s(−m), the free energy simplifies to

f/∆ = −T̃ n+s(m
z
+)− T̃ n−s(m

z
−)

−
1

2
(n+m

z
+ − n−m

z
−)2 − B̃(n+m

z
+ + n−m

z
−),

(3.1)

and the stationarity conditions (2.9) and (2.10) become

mz
+ = tanh[(n+m

z
+ − n−m

z
− + B̃)/T̃ ] (3.2)

mz
− = tanh[(−n+m

z
+ + n−m

z
− + B̃)/T̃ ]. (3.3)

Here we have introduced the rescaled temperature T̃ =
T/∆ and field B̃ = T/∆ which are the relevant control
parameters for ∆→∞.

Considering first the zero temperature limit T̃ → 0,
the only possible solutions of (3.2) and (3.3) are mz

± =
±1, so we only need to compare the four resulting val-
ues of f . For large B̃, one finds in this way that
mz

+ = mz
− = 1. We call this phase A+, to indicate that

both sublattice magnetizations m+ and m− are aligned
along the direction of the field B, with both pointing in
the same direction. At B̃ = n+, there is a first order
transition to mz

+ = 1, mz
− = −1; we denote this new

phase A− because the sublattice magnetizations, while
still aligned with the field, now point in opposite direc-
tions. Finally, at B̃ = 0 we have the conventional first
order transition where both magnetizations change sign,
and then the mirror image of the A+–A− transition oc-

curring at B̃ = −n+. As pointed out earlier, all phase di-
agrams of our model have this symmetry underB → −B,
so we will not mention results for B < 0 in the following.

In the T̃ -B̃ phase diagram, the first order transitions
found above for T̃ = 0 mark the beginnings of two first
order transition lines, both ending in critical points. The

The parameter ∆ here interpolates between three im-

the sublattice magnetizations alone, with the result

f̃(m+,m−)

= −Tn+s(|m+|)− Tn−s(|m−|)

−
1

2
(n+m+ − n−m−) · J(n+m+ − n−m−)

−B · (n+m+ + n−m−), (2.6)

where the entropic contribution is expressed as usual in
terms of the entropy of a binary distribution,

s(m) = −
1 +m

2
ln

1 +m

2
−

1−m

2
ln

1−m

2
. (2.7)

The true free energy per spin is obtained as the minimum
of the variational free energy, hence the final result

f = min
m+,m−

f̃(m+,m−). (2.8)

In the following, because the variational free energy is ex-
act for N →∞, e drop the tilde on f̃ . The requirement
that f(m+,m−) must be stationary with respect to m+

and m− gives two self-consistency equations which can
be written in the compact (and intuitively appealing)
form

m+ = t[(n+Jm+ − n−Jm− +B)/T ] (2.9)

m− = t[(−n+Jm+ + n−Jm− +B)/T ]. (2.10)

We emphasize that the energetic terms in the free en-
ergy (2.6) are exactly of the form that one would expect
if the sublattice spins

¾± =
1

Nn±

∑
i∈I±

¾i,

were classical vectors rather than quantum operators.
Working out commutation relations such as

[σα+, σ
β
+] =

1

N2n2
+

∑
i,j∈I+

[σαi , σ
β
i ]

=
1

N2n2
+

∑
i∈I+

2i
∑
γ

εαβγσ
γ
i

=
2i

Nn+

∑
γ

εαβγσ
γ
+

indeed shows that in the thermodynamic limit N → ∞
the vectors ¾± become classical, with all components
commuting with each other. Note that even though the
m± are classical, the quantum (spin) nature of the prob-
lem is still reflected in the functional form (2.7) of the
entropic contribution to the free energy (2.6).

Having derived the free energy of our model for general
J and B, we specialize from now on to the case

J = diag(1, 1,∆), B = (0, 0, B). (2.11)

w

portant limits: For ∆ = 0 and 1, respectively, we have
the XY and Heisenberg versions of the model, while for
∆ → ∞ the classical (Ising) Mattis model is recovered.
We will analyse these three cases separately first before
studying the richer behaviour obtained for intermediate
values of ∆. Because all phase diagrams are symmetric
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general procedure by which we find such points is out-
lined in Appendix D; after a little algebra, the two rel-
evant conditions (D.2) and (D.5) become

T̃ = n+[1− (mz
+)2] + n−[1− (mz

−)2]

0 = n+m
z
+[1− (mz

+)2]− n−m
z
−[1− (mz

−)2]. (3.4)

These need to be solved along with (3.2) and (3.3). The
critical point that marks the end of the first order transi-
tion line at B̃ = 0 has mz

+ = mz
− = 0 and is thus located

at T̃ = n+ + n− = 1, B̃ = 0. The critical point ter-
minating the A+–A− transition line, on the other hand,
has to be found numerically, along with the location of
that line itself. The resulting phase diagram is shown in
Fig. 1 for ε = 0.01.

Note because of the critical point terminating the
line of first order transitions between A+ and A−, these
two phases can be smoothly transformed into one an-
other by moving along a continuous path in the T̃ -B̃
phase diagram. Along this path, the value of mz

− changes
sign by passing through zero; the points where this hap-
pens obey B̃ = n+ tanh(2B̃/T̃ ), as is easily derived from
(3.2) and (3.3). As in the case of the liquid-gas transi-
tion, this makes the thermodynamic distinction between
the two phases somewhat arbitrary. Unlike the tradi-
tional case, however, the critical point is not due to a
symmetry under sign reversal of the magnetization; the
critical value of mz

− is therefore nonzero (and, by (3.4),
positive). This implies that just below the critical tem-
perature, the A+–A− transition is actually between two
phases with mz

− > 0, rather than two phases with oppo-
site signs of mz

−.
The case of ε = 0 in the Ising limit is worth an atten-

tion although we generally assume ε > 0. When ε = 0,
the system is equivalent to the random-field Ising model
with symmetric distribution of randomness. This prob-
lem has already been solved by the mean-field approx-

that

Fig. 1. Phase diagram for the Ising limit ∆ → ∞, for ε = 0.01.
The dashed lines indicate first order transitions, and end in crit-
ical points. The transition at B/∆ = 0 and T/∆ < 1 is a
conventional one, where all magnetizations change sign; at the
other transition (B/∆ 6= 0), the relative orientation of the sub-
lattice magnetizations changes from antiparallel (A−) to parallel
(A+). The dotted line indicates the points where the A− and
A+ phases transform smoothly into each other as mz− passes
through zero. As the inset shows, the A−–A+ critical point is
not on this line; it has mz− > 0.

imation.8) The phase diagram is similar to Fig. 1 ex-
cept that the smooth crossover between the A+ and A−
phases along the dotted line is now replaced by a second
order transition. This fact can be verified easily, for ex-
ample, in the case of B̃ = 0 by setting n+ = n− = 1/2
in (3.2) and (3.3) and rewriting these equations for the
combination mz

+ −m
z
−.

Finally, we note that the results (3.1), (3.2) and (3.3)
are alid not in the limit ∆→∞, but for all ∆ > 0,
as long as both sublattice magnetizations m+ and m−
point along the z-axis. This means that the properties
of the A+ and A− phases are independent of ∆ when
expressed as functions of B̃ and T̃ . In particular, the
first order A+–A− transition as well as the first order
transition at B̃ = 0, T̃ < 1 will be present in all phase
diagrams unless “masked” by other phases.

v only

3.2 Heisenberg model (∆ = 1)
In the Heisenberg case ∆ = 1, the coupling matrix

(2.11) is isotropic, and the free energy (2.6) can be rewrit-
ten as

f = −Tn+s(m+)− Tn−s(m−) +
1

2
m2

−n2
+m

2
+ − n

2
−m

2
− −Bmz, (3.5)

where m± = |m±|, and m and mz denote the modulus
and z-component, respectively, of the average magneti-
zation

m = n+m+ + n−m−

of all spins. The only dependence on the orientation
of the magnetizations is through the last term, which
takes its minimal value −Bm (remember that we assume
B ≥ 0) when mz = m, i.e., whenm is parallel toB. This
gives the free energy

f = −Tn+s(m+)− Tn−s(m−) +
1

2
m2

−n2
+m

2
+ − n

2
−m

2
− −Bm (3.6)

which needs to be minimized subject to the constraints
|n+m+ − n−m−| ≤ m ≤ n+m+ + n−m−. Note that the
values of m+, m− and m determine the orientations of
the magnetizations uniquely. This is clear geometrically
because n+m+, n−m− and m all lie in the same plane
(the xz-plane, by our assumption that my

+ = my
− = 0)

and form a rigid parallelogram; see Fig. 2. The angle of
a possible rotation of this parallelogram about origin
is fixed by the requirement that m must be parallel to B
(i.e., along the positive z-axis for B > 0). The remaining
indeterminacy with respect to a reflection about the z-
axis is removed by our assumption that mx

+ ≥ 0.
Focussing now on the minimization of (3.6) with re-

spect to m, we note that for B > n−m+ + n−m− this
minimum occurs at the maximum value of m, m =
n+m+ + n−m−. Geometrically, this implies that both
m+ and m− are directed along the positive z-axis, so we
have an A+ phase. The free energy becomes

f = −Tn+s(m+)− Tn−s(m−)−
1

2
(n+m+ − n−m−)2

−B(n+m+ + n−m−),

the
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m+ = tanh(2n+m+/T )

m− = tanh(2n−m−/T ) (3.11)

in which the moduli of the sublattice magnetizations are
decoupled and the field B no longer appears. This may
seem surprising at first, but has a simple explanation:
From (2.9) and (2.10), the effective fields that determine
the sublattice magnetizations are (using J = 1 for ∆ =
1)

h± = ±(n+m+ − n−m−) +B.

But in the R phase, m = B, so that

h± = ±(n+m+ − n−m−) + (n+m+ + n−m−)

= 2n±m±,

and the coupling of the sublattices and dependence on
B disappear, in agreement with (3.11). The geometrical
implication of (3.11) is that only the orientations but not
the moduli of the sublattice magnetizations change as
the R phase is traversed. Figure 2 shows that as m (and
thus B) decreases, m− rotates away from the positive
z-axis and towards the negative z-axis; when it reaches
the latter, a transition to an A− phase ccurs. The
netization of the positive sublattice, m+, first rotates
away from the z-axis and then back towards it; this fol-
lows from the fact that m = n+m+ + n−m− must keep
pointing along the positive z-axis.

Above, the A+–R and R–A− phase boundaries were
given as B = n+m+ ± n−m−, respectively. At T = 0,
where m+ = m− = 1, these reduce to B = n+ + n− = 1
and B = n+−n− = ε; for nonzero temperatures, we have
to find the phase boundaries numerically by solving the
relevant self-consistency equations for m+ and m−. We
then find (see Fig. 3) that there is a line of second order
transitions connecting the zero-temperature A+–R and
R–A− transitions; the R phase only occurs inside the
“loop” formed by this line. The only other feature of the
phase diagram is the first-order transition line at B = 0,
T < 1, which is identical to the one found for the Ising

o mag-

case.

3.3 XY model (∆ = 0)

As the final “simple” case we consider the XY ver-
sion of our model, which is obtained for ∆ = 0. In
this case it is convenient to introduce the mirror im-
age (in the xy-plane) of m− about the z-axis, given
by ~m− = (−mx

−, 0,m
z
−), and the corresponding total

(pseudo-) magnetization ~m = n+m+ +n− ~m−. In these
variables, the free energy (2.6) becomes

f = −Tn+s(m+)− Tn−s(m̃−)−
1

2
m̃2
x −Bm̃z

= −Tn+s(m+)− Tn−s(m̃−)

−
1

2
m̃2 +

1

2
m̃2
z −Bm̃z. (3.12)

Minimizing over the allowed values of m̃z ∈ [−m̃, m̃]
gives m̃z = B as long as B ≤ m̃. The last two
terms in (3.12) then reduce to the constant −B2/2,
and the remainder of the free energy is minimized (for

m− = tanh[(n+m+ + n−m− −B)/T ]. (3.10)

The above results are identical to (3.1), (3.2) and (3.3)
for the Ising case, bearing in mind that ∆ = 1 and
m+ = mz

+ here, and that mz
− = ±m− in the A+ and

A− phases, respectively. This conclusion agrees with
general statement in §3.1 that properties of the A+ and
A− phases are independent of ∆.

For intermediate values of B, finally, the minimum of
the free energy (3.6) occurs at a non-extremal value of
m. In this regime, we have a new, rotated (R) phase
where neither m+ nor m− point along the z-axis. Min-
imization of (3.6) with respect to m gives now m = B,
and thus

f = −Tn+s(m+)− Tn−s(m−)

−n2
+m

2
+ − n

2
−m

2
− −

1

2
B2.

Stationarity with respect to m+ and m− yields the self-
consistency conditions

our

and the sublattice magnetizations therefore obey

m+ = tanh[(n+m+ − n−m− +B)/T ], (3.7)

m− = tanh[(−n+m+ + n−m− +B)/T ]. (3.8)

For small fields obeying B < n+m+ − n−m−, on the
other hand, f is minimized at the minimum value of m,
m = n+m+ − n−m−. With m− now pointing along the
negative z-axis, we have an A− phase with free energy

f = −Tn+s(m+)− Tn−s(m−)−
1

2
(n+m+ + n−m−)2

−B(n+m+ − n−m−),

and corresponding self-consistency equations

m+ = tanh[(n+m+ + n−m− +B)/T ], (3.9)

Fig. 2. Geometry of the magnetizations for the Heisenberg
model. Shown are (in the xy-plane) the total magnetizationm =
n+m+ + n−m− and the sublattice magnetizations scaled by
the fractions of spins in the two sublattices, n+m+ and n−m−.
The moduli of the sublattice magnetizations m+ = |m+| and

m− = |m−| are kept constant while m = |m| is decreased from
left to right. For the maximum value of m, we have an A+

phase (left), then we obtain an R phase, with m− rotating from
the positive (upward) towards the negative (downward) z-axis.
Finally, when m assumes its minimal value (right), we obtain
an A− phase. This kind of sequence is observed when pass-
ing through the R phase in the Heisenberg phase diagram by
decreasing the field B at constant T ; the moduli of the sublat-
tice magnetizations remain constant, and they rotate in such a
way as to keep m pointing along the direction of the field (the
z-direction).
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trivial for the XY model: Combining m̃ = tanh(m̃/T )
and B = m̃ gives B = tanh(B/T ). It follows in particu-
lar that in the XY limit, the phase diagram is actually
independent of the amount of disorder (as specified by
ε).

It may appear strange that the disorder has no effect
on phase behaviour in the XY limit ∆ = 0. But there is
in fact again a very simple explanation for this. In the
model (2.1), make a gauge transformation only on the x
and y-components of the spins, σxi → ξiσ

x
i , σyi → ξiσ

y
i .

This leaves the commutation relations (2.2) unaffected;
indeed, it is just a rotation by π around the z-axis of
the spins with ξ = −1. But this transformation actu-
ally gauges away the disorder completely, so all results
must be independent of ε, in agreement with our findings
above. Note that this argument relies on the fact that
only the x- and y-components of the spins appear in the
disordered (interaction) part of the Hamiltonian (2.1),
and is therefore restricted to ∆ = 0.

§4. Phase Behaviour for General ¢

We now turn to the study of our model (2.1) for gen-
eral values of ∆. The differences in the phase diagrams
for the three cases studied above (∆ = 0, 1 and ∞)
already suggest that nontrivial phase behaviour may oc-
cur for intermediate values of ∆. To orient ourselves, we
consider first the zero temperature limit, using ∆ and B
as the axes of our phase diagram (and considering ε as
fixed).

For large ∆, we expect essentially Ising behaviour,
with an A+ phase for large B, a first order transition to
A− at B = n+∆, and the conventional first order transi-
tion at B = 0 where all magnetizations change sign. In
fact, as explained in §3.1, this will be the zero tempera-
ture phase behaviour for general ∆ unless other phases
intervene. We therefore study next the limits of stabil-
ity (i.e., the spinodals) of the A+ and A− phases with
respect to a transition to the R phase. This is easiest if
we write the sublattice magnetizations as

˜ ˜given m+ and m−) when m takes its maximum value
m̃ = n+m+ + n−m̃−. Geometrically, this means that
m+, ~m− and ~m are all parallel to each other. The free
energy is

f = −Tn+s(m+)− Tn−s(m̃−)

−
1

2
(n+m+ + n−m̃−)2 −

1

2
B2,

while the stationarity conditions

m+ = tanh[(n+m+ + n−m̃−)/T ]

m̃− = tanh[(n+m+ + n−m̃−)/T ]

show that m+ = m̃−, hence also m̃ = m+ = m̃−
with m̃ = tanh(m̃/T ). The three vectors m+, ~m− and
~m− are therefore not just parallel, but in fact identical;
their orientation in the xz-plane is given by the ratio of
m̃z = B and m̃. Reverting to the original vectors, we
have that m+ and m− are rotated away from the z-axis
and are mirror images of each other under a reflection
about this axis; we therefore have an R phase. The av-
erage magnetization m always points along the positive
z-axis. Starting from B = 0, m− and m+ are directed
along the negative and positive x-axes, respectively (this
follows from m̃z = 0 and mx

+ ≥ 0). As B is increased,
both sublattice magnetizations rotate towards the z-axis
which they reach at the point where B = m̃.

For larger B, we have an A+ phase. In this phase,
m̃z = m̃; inserting this into (3.12), the minimum with
respect to m̃ is again reached for m̃ = n+m+ + n−m̃−,
giving

f = −Tn+s(m+)− Tn−s(m̃−)−B(n+m+ + n−m̃−),

and thus m+ = m̃− = m̃ = tanh(B/T ). All vectors m+,
~m− and ~m− are again identical to each other; because
they are now oriented along the z-axis, the same is true of
the original magnetizations m+, m− and m. In Fig. 4,
we show the resulting phase diagram; as expected, there
is a line of second order transitions between the R and
A+ phases. Note that obtaining this line numerically is

Fig. 3. Phase diagram for the Heisenberg case ∆ = ε = .4.
The dashed line shows the conventional first order transition at
B = 0, where all magnetizations change sign; the solid line is a
line of second order transitions between aligned (A+ or A−) and
rotated (R) phases. The sublattice magnetization m− passes
smoothly through zero on the dotted line.

Fig. 4. Phase diagram for the XY case ∆ = 0. The solid line
indicates the second order transition between the rotated (R)
and the aligned (A+) phases. Note that this phase diagram is
independent of ε, i.e., of the amount of disorder.

for1, 0
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finds for the spinodal of the A+ phase the condition

B2 −B + ε2(∆−∆2) = 0, (4.4)

while for the A− phase (φ+ = 0, φ− = π) the corre-
sponding result is

−B2 + Bε+ ∆2 −∆ = 0. (4.5)

The signs of the expressions on the l.h.s. have been cho-
sen such that they are positive when the phases are sta-
ble. Also, because of the symmetry of the free energy
(4.3) under φ+ → −φ+ and φ− → −φ− or φ− → 2π−φ−,
these spinodals automatically satisfy the critical point
criterion (D.5) and so are in fact critical points. Fig-
ure 5 shows a plot of the spinodals lines (4.4) and (4.5)
for ε = 0.4. We see that the A+ phase is stable for large
fields, but destabilizes as B is lowered; the A− phase, on
the other hand, tends to be stable for smaller values of
B, and large ∆. Nontrivially, however, the A− spinodal
shows re-entrance: For ∆ ∈ [∆re, 1], with

∆re =
1

2
(1 +

√
1− ε2),

eq. (4.5) has two physical solutions for B, so the A−
phase is unstable at zero field, becomes stable at in-
termediate values of B, and destabilizes again as B is
increased further.

In Fig. 5, the first order A+–A− transition line B =
n+∆ is also shown. Moving along this transition line
from large to small ∆, the first spinodal which one crosses
is that of the A+ phase, at the value of ∆ given by

∆Ising = 2
2ε+ 1

3ε+ 1
.

For large values of ∆, the instabilities of the A+ and
A− phases are therefore pre-empted by the first order
A+–A− transition. In this regime, we expect pure Ising
behaviour even at non-zero temperature, and this is in-
deed what we find (see below).

Now consider a value of ∆ just below ∆Ising. The
A− phase is stable for B = 0, and remains so until
at B = n+∆ the free energy of the A+ phase becomes

m+ = m+(sinφ+, 0, cosφ+) (4.1)

m− = m−(− sinφ−, 0, cosφ−). (4.2)

Here φ± are the angles (in the xz-plane) that m+ and
m− make with the z-axis; the signs of the angles were
chosen such that our conventions mx

+ ≥ 0 and mx
− ≤ 0

always imply non-negative angles. Using that m+ =
m− = 1 at T = 0, the free energy (2.6) thus simplifies
to

f = −
1

2
(n+ sinφ+ + n− sinφ−)2

−
1

2
∆(n+ cosφ+ − n− cosφ−)2

−B(n+ cosφ+ + n− cosφ−). (4.3)

With only two order parameters (φ+ and φ−) remaining,
it is straightforward to find the matrix of second deriva-
tives of f . The criterion (D.2) implies that a spinodal
instability occurs when the determinant of this matrix
vanishes. Evaluating the latter for φ+ = φ− = 0, one

order parameters mz
+, mz

−, mx
+ andmx

−). We then solved
these numerically, along with the self-consistency equa-
tions (2.9). First order transitions were located as usual
by comparing the free energies of the relevant phases.
All results were obtained from double-precision routines
for solving nonlinear simultaneous equations, and cross-
checked using a symbolic manipulation software package
with “arbitrary precision” floating point operations. We
can distinguish a total of seven different phase diagram
topologies, depending on the value of ∆:

lower. The latter is still unstable, however, because we
are below the A+ spinodal. There must therefore be
a stable phase with lower free energy. This phase can
only be an R phase (it is neither A+ nor A−), and a
first order transition to this phase must actually occur
at B < n+∆. This implies that there is a line of first or-
der A−–R transitions extending to the left of the point
∆ = ∆Ising, B = n+∆Ising. Where this line meets the
A− spinodal (i.e., the line of second order transitions
between − and R), will be a tricritical point. Ap-
plying the criterion (D.6) to the free energy (4.3), one
finds after some algebra that this point obeys, in addi-
tion to (4.5),

B2 = ∆(∆− 1)(4∆− 3).

It can be shown that, as ε varies between 0 and 1, this
tricritical point moves smoothly from ∆ = 1, B = 0 to
∆ = 3/2, B = 3/2. In particular, if e call ∆tri the value
of ∆ at the tricritical point, we have 1 < ∆tri < 3/2 <
∆Ising < 2 for all ε.

A there

w

Fig. 5. Zero temperature phase diagram for ε = .4. The transi-
tions between the three phases A+, A− and R are indicated by
bold lines (solid for second order, dashed for first order). Dot-
ted lines show the continuations of the phase boundaries into
metastable or unstable regimes. Note that the A−–R transition
is re-entrant for ∆re < ∆ < 1. Also, for ∆tri < ∆ < ∆Ising, the
first order A+–A− transition is—because of the instability of

the A+ phase—pre-empted by a first order transition from A−
to R. Below ∆tri, this transition is second order, implying that
at ∆ = tri there is a tricritical point (marked by the circle).

0

∆

Having clarified the structure of the zero temperature
phase diagram, we can now move on to the finite tem-
perature case. The numerical results we show were ob-
tained as follows: For spinodals and tricritical points, we
derived analytically the form of the relevant conditions
(D.2) and (D.6) (for our free energy (2.6) with the four
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Regime 1: XY -like behaviour (0 ≤ ∆ < ∆re). For
small values of ∆, the phase diagram has essentially the
same features as for the XY limit ∆ → 0; an example
is shown in Fig. 6. It is clear that this behaviour cannot
persist up to ∆ = 1, however: From the zero tempera-
ture phase diagram, we know that for ∆re < ∆ < 1, there
must be re-entrant behaviour. Correspondingly, the sec-
ond order R–A+ transition line must develop a “dent”—
as if someone was pushing against it from the positive
T -direction—as ∆ increases; this dent will reach T = 0
exactly at ∆ = ∆re. Before this happens, re-entrance will
already be visible for nonzero T ; Fig. 6 confirms this. In
principle, one could use the appearance of re-entrance
at nonzero T to further divide this regime into two sub-
regimes, but we choose not to do so because the overall
topology of the phase diagram remains unchanged.

To clarify the physical nature of the observed re-
entrance, we show in Fig. 7 the B-dependence of the
angles φ± which the sublattice magnetizations m+ and
m− make with the z-axis. The two sets of curves corre-
spond to vertical cuts through Fig. 6 (bottom), at tem-

enough temperatures, the sequence of phases observed as
B is increased from 0 is therefore R–A−–R–A+. As the
Heisenberg case ∆ = 1 is approached, the R–A− transi-
tion line (a loop, if we bear in mind its mirror image for
negative B) moves closer to the horizontal axis B = 0
and at ∆ = 1 collapses into the first order transition line
of Fig. 3. The latter exists for all ∆ ≥ 1 (extending up
to T̃ = 1, i.e., T = ∆, as expected from our discussion
of the Ising case) and will not be mentioned explicitly in
the following.

Regime 3: Heisenberg-like (1 ≤ ∆ < ∆tri). To make
the eventual connection with the Ising limit ∆ → ∞
more apparent, we will use the rescaled variables T̃ =
T/∆ and B̃ = B/∆ as the axes of all phase diagrams
from now on. In the numerical examples, we also switch
from ε = 0.4 to ε = 0.01, where the intermediate regimes

peratures just below and just above the appearance of
the re-entrance. Bearing in mind the definitions (4.1),
(4.2) of φ±, we see that m+ and m− start off at B = 0
by pointing along the positive and negative x-axis, re-
spectively. As B is increased, they both rotate counter-
clockwise at first. Below the re-entrance, this rotation
stops efore either of the two magnetizations reaches the
z-axis, and reverses. Eventually, both m+ and m− then
rotate towards the positive z-axis, reaching it at the R–
A+ transition. The behaviour above the re-entrance is
now recognized as a more extreme form of this, where the
initial counter-clockwise rotation of the two magnetiza-
tions continues until m+ and m− point along the pos-
itive and negative z-directions, respectively. This gives
the R–A− transition; when the reversal of the counter-
clockwise motion sets in, both m+ and m− eventually
‘detach’ again from the z-axis, marking the transition
back to the R phase. The behaviour as B is increased
further then resembles that below the re-entrance, re-
sulting in the final R–A+ transition.

Regime 2: Between XY and Heisenberg (∆re < ∆ <
1). At ∆ = ∆re, the R–A+ transition line “pinches off”
at the B-axis; for larger ∆, we therefore have two sep-
arate transition lines of this kind (see Fig. 8). For low

b

Fig. 7. The dependence of the angles φ± of the sublattice mag-
netizations on the field B, at constant temperature T . The pa-
rameters ε = .4, ∆ = .95 are as in Fig. 6 (bottom). Two sets of
curves are shown, for T = .45 and 0.5; these correspond to ver-
tical cuts through Fig. 6 (bottom) just below and just above the
temperature where re-entrance at constant T is first observed.

0 0
0

Fig. 6. Phase diagrams in regime 1 (∆ < ∆re) for ε = 0.4. The
solid lines mark second order transitions between the phases. As
in Fig. 1, the dotted lines show where the A− and A+ phases
transform smoothly into each other (mz− = For small ∆ (top,
∆ = 0.9), the phase diagram resembles qualitatively that of the
XY model (Fig. 4). In the bottom graph, ∆ = 0.95 is close to
∆re = 0.958 . . ., and re-entrant behaviour appears at nonzero
temperature. This is a precursor of the transition to regime 2.

0).
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explained below are somewhat easier to visualize. In the
regime 1 ≤ ∆ < ∆tri, the phase diagram has qualita-
tively the same shape as for the Heisenberg case ∆ = 1:
A loop of second order transitions between R and A+

or A−, respectively, beginning and ending on the B̃-axis
(see Fig. 9). At ∆ = ∆tri, the tricritical point that we
found earlier appears on the T̃ = 0 axis, marking the
transition to the next regime.

Regime 4: Tricritical (∆tri < ∆ < ∆3). As ∆ in-
creases, the tricritical point moves out to larger T̃ . To
the left of it, the A−–R transition is now first order (see
Fig. 9). One might naively expect that as ∆ is increased
further towards the Ising limit of large ∆, the “loop”
of transitions between R and A− or A+ would simply
collapse at ∆Ising onto the Ising first order A+–A− tran-
sition line. In fact, two other regimes appear first.

Regime 5: Tricritical plus three-phase (∆3 < ∆ <
∆CEP). It turns out that the R–A transition loop with
the tricritical point on it does not just shrink along the B̃
direction, but also moves towards smaller values of T̃ as
∆ is increased. Eventually, at some ∆3, the Ising A+–A−

transition line therefore “pokes” through the loop. This
must happen at a point where the transition is first or-
der; at a point with a second order transition this would
be impossible, as it would imply a first order transition
between two phases which are actually identical, being
both in critical coexistence with the same third phase.
This means that one has a point where three phase tran-
sition lines meet, i.e., a three-phase point; see Fig. 10.
There is still a tricritical point where the R–A+ phase
transition changes from second to first order. Note that
this regime generally corresponds to only a very small
range of ∆; for ε = 0.01, we estimate ∆3 ≈ 1.39 and
∆CEP ≈ 1.41.

Regime 6: Critical end point (∆CEP < ∆ < ∆Ising).
The relative positions of the tricritical and three-phase
points in the previous regime change as ∆ increases, un-
til at some ∆CEP they coincide. From there onwards,
the tricritical point is no longer accessible (it is in a
metastable or unstable part of the phase diagram). In-
stead, as shown in Fig. 11, one now has a line of second
order A+–R transitions that meets a line of first order
transitions (between − and R for small T̃ , and between
A− and A+ for large T̃ ) at a critical end point. As ∆

A

Fig. 10. Detail of a phase diagram in regime 5 (∆ = 1.4, ε =
0.01). Solid and dashed lines mark second and first order tran-
sitions, respectively; circles indicate tricritical points. There is a
three-phase point where the three first order lines meet.

Fig. 11. Detail of a phase diagram in regime 6 (∆ = 1.5, ε =
0.01). Solid and dashed lines mark second and first order tran-
sitions, respectively. There is a critical end point where the line
of second order transitions meets the first order line.

Fig. 9. Phase diagrams in regimes 3–7 (∆ = 1, 1.2, 1.4, 1.5, 2
from the outside to the inside), for ε = 0.01. Solid and dashed
lines mark second and first order transitions, respectively; the
circle indicates a tricritical point. See following figures for de-
tails.

Fig. 8. Phase diagram in regime 2 (∆re < ∆ < 1), for ε = 0.4

(where ∆re = 0.958 . . .) and ∆ = 0.96. The lines have the same
meaning as in Fig. 6. Re-entrant behaviour now occurs even at
zero temperature.
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quantum effects are usually most important at low rather
than high temperatures. An interesting manifestation of
finite-temperature quantum effects is seen in the equa-
tions of state (3.8) to (3.10) of the Heisenberg model in
the A+ and A− phases. These equations of state have
exactly the same form as for the Ising case (3.2) and
(3.3), which would not be the case if the spins in the
Heisenberg model were classical vectors. The transverse
(i.e. x and y) components of the spin-1/2 operator have
disappeared and only the z component comes into play,
as would be expected for a single quantum spin in a clas-
sical field.

We stress that, even though the quantum nature of
the individual spins in the model does manifest itself at
finite temperatures, this does not produce any qualita-
tively new ordered phases beyond those already found
at T = 0. The possible types of ordering are thus de-
termined by the classical considerations for the ground
state; quantum effects only control how these ordered
phases and the boundaries between them are arranged
in the finite temperature phase diagrams.

Finally, a natural question that arises is how our re-
sults would change in the more physically realistic case of
finite range interactions (corresponding to finite dimen-
sionality of the system). While we cannot give a definite
answer to this question at this point, existing investiga-
tions of finite-dimensional quantum Mattis model4, 5) do
suggest that the classical picture gives reasonable pre-
dictions for some features of the model. On the basis of
these results, we conjecture that our observations for the
infinite-range model should give an at least qualitatively
reliable guide to the finite-dimensional problem. Future
work is obviously needed to clarify this point.
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Appendix A: Self-Consistency of Mean Field
Approximation

In this appendix, we show mean field theory gives
exact results for the generalized Mattis model (2.1). The
intuitive reason for this is clear: The field that each spin
experiences is an average of O(N) other spins and there-
fore becomes nonfluctuating (and classical) in the ther-
modynamic limit.

To see more explicitly why the mean field approxima-
tion, which assumes that all spins are uncorrelated with
each other, becomes self-consistent for N →∞, we con-
sider a generalization of our original Hamiltonian (2.1)
to site-dependent fields:

H = −
1

N

∑
i<j

ξiξj¾i · J¾j −
∑
i

Bi · ¾i.

The fluctuation-dissipation theorem then relates the sus-
ceptibility matrix to the spin-spin correlations according
to

that

and eventually disappears at ∆ = ∆Ising. Figure 12 illus-
trates the transition between regimes 5 and 6 by showing
the curve traversed by the tricritical point as ∆ is varied,
together with the Ising A+–A− transition line. The value
of ∆ where these two curves meet (i.e., where the tricrit-
ical point “collides” with the A+–A− transition and thus
turns into a critical end point) defines ∆CEP.

Regime 7: Ising-like (∆ ≥ ∆Ising). Finally, for large
values of ∆, one has pure Ising behaviour, with a ∆-
independent phase diagram (when represented in terms
of B̃ and T̃ ) exhibiting the by now familiar line of first
order A+–A− transitions (see Fig. 1).

§5. Conclusion

We have solved the infinite-range quantum Mattis
model by a variational method that gives the exact so-
lution in the thermodynamic limit. The model has var-
ious interesting aspects such as randomness (although
without frustration), quantum effects and competition
between exchange interaction and external field. We
found three ordered phases, two of which have spin states
collinear with the external field and the remaining one
with non-collinear rotated spin states. The phase dia-
gram has a very rich structure depending upon the var-
ious parameters, in particular the anisotropy of the in-
teraction.

We now ask how important quantum effects are in pro-
ducing the intricate macroscopic behaviour of the sys-
tem. The form of the entropy term in the free energy
(2.6) is a direct consequence of the spin-1/2 character-
istics of a single quantum spin. The energy term, on
the other hand, is of the form one would expect classi-
cally. Thus it is clear that the T = 0 properties do not
reflect quantum effects. Finite-temperature behaviour,
on the other hand, could be affected by quantum fluc-
tuations. This fact is somewhat counter-intuitive since

increases, this point shifts towards lower temperatures

Fig. 12. The transition between regimes 5 and 6, for ε = 0.01.
The dashed line shows the Ising A+–A− transition line (which,
when plotted in terms of B̃ = B/∆ and T̃ = T/∆ as done here,
is independent of ∆). The solid line shows the curve traversed
by the tricritical point as ∆ is varied, moving from right to left
with increasing ∆. The crossing two curves (i.e., the value
of ∆ for which the tricritical point meets the A+–A− transition
and thus turns into a critical end point) defines ∆CEP. Note
that for lower values of ∆ than shown here, the tricritical point
would first continue to move right, but eventually swing back
towards the B̃-axis, meeting the latter at ∆ = tri.

theof

∆
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case j ∈ I− can be treated in exactly the same fash-
ion). We read off that these entries are of O(1) only
for i = j, while all off-diagonal terms are O(1/N). The
fluctuation-dissipation theorem (A.1) then implies that
all correlations 〈∆¾i∆¾j〉 between different spins i 6= j
are O(1/N); in the thermodynamic limit, mean field the-
ory therefore becomes exact.

Appendix B: Direct Solution for a Special Case

It is possible in some cases to derive the variational
free energy (2.6) directly from the Hamiltonian (2.1). We
consider the example of the Heisenberg model (∆ = 1)
here to confirm the variational calculations.

´−1
+ δm1 −

(
n+ −

1

N

)
Jδm2 + n−Jδm− = δB

−
1

N
Jδm1 +

[
´−1

+ −

(
n+ −

2

N

)
J

]
δm2 + n−Jδm− = 0

1

N
Jδm1 +

(
n+ −

1

N

)
Jδm2 +

[
´−1
− −

(
n− −

1

N

)
J

]
δm− = 0.

h1 = B + δB + J

[
1

N
m1 +

(
n+ −

1

N

)
m2

]
−Jn−m− −

1

N
Jm1

h2 = B + J

[
1

N
m1 +

(
n+ −

1

N

)
m2

]
−Jn−m− −

1

N
Jm2

h− = B − J

[
1

N
m1 +

(
n+ −

1

N

)
m2

]
+J

(
n− −

1

N

)
m−.

Subtracting the corresponding equations for δB = 0
gives relations between the deviations of the fields (δh1

etc.) and magnetizations (δm1 etc.) from their values
for site-independent fields:

δh1 = δB +

(
n+ −

1

N

)
Jδm2 − n−Jδm−

δh2 =
1

N
Jδm1 +

(
n+ −

2

N

)
Jδm2 − n−Jδm−

δh− = −
1

N
Jδm1 −

(
n+ −

1

N

)
Jδm2

+

(
n− −

1

N

)
Jδm−.

For small δB, we can linearize these using

δm1 = ´+δh1, δm2 = ´+δh2, δm− = ´−δh−,

where ´+ and ´− are the local susceptibility tensors
(2.4) of spins in the two sublattices; because these
are evaluated for the unperturbed solution (with site-
independent fields B), there is no need to distinguish
between ´1 and ´2. We thus obtain

sublattice I− still have the same fields h− and magne-
tizations m−. In I+, on the other hand, we have to
distinguish between the field and magnetization of the
chosen spin (h1 and m1) and those of all other spins in
the sublattice; we denote the latter by h2 andm2. Using
that the average magnetization sublattice is now

m+ =
1

Nn+
[m1 + (Nn+ − 1)m2]

=
1

Nn+
m1 +

(
1−

1

Nn+

)
m2,

the mean field equations (A.2) then take the form

thisof

∂ 〈¾i〉

∂Bj
= −

∂F

∂Bi∂Bj

= β 〈∆¾i∆¾j〉 , ∆¾i = ¾i −〈 ¾i〉 . (A.1)

For given i and j, this is an equality between 3×3 tensors,
whose components are written explicitly as ∂ 〈σαi 〉 /∂B

γ
j

= β
〈
∆σαi ∆σγj

〉
. We can thus verify that mean field the-

ory is self-consistent by working out the susceptibility
matrix and using it to show that correlations between
different spins vanish for N →∞.

To obtain the susceptibility matrix, we start from the
mean field equations. By a direct generalization of (2.5),
these are

hi = Bi + ξiJ(n+m+ − n−m−)−
1

N
Jmi. (A.2)

For the case of site-independent fields Bi = B, they re-
duce to (2.5), with the fields hi and magnetizations mi

being the same for all spins in each of the two sublat-
tices I± (in the thermodynamic limit). We now add a
small perturbation δB to the field of one of the spins;
without loss of generality, this spin can be taken as ¾1.
For definiteness, we also assume that ¾1 is in the posi-
tive sublattice I+; the calculation for the opposite case
is completely analogous. The solution to the mean field
equations (A.2) will then be such that all spins in the

The 3 × 3 tensors multiplying δB on the r.h.s. give the
entries of the susceptibility matrix ∂mi/∂Bj (for the
case j = 1 ∈ I+ considered here; as stated above, the

These equations can solved explicitly for the changes
in the magnetizations; keeping only the leading order
terms for N →∞, one finds

δm1 = ´+δB

δm2 =
1

N
´+J

[
1− n+´+J − n−´−J

]−1
´+δB

δm− = −
1

N
´−J

[
1− n+´+J − n−´−J

]−1
´+δB.



2000) Phase Behaviour of the Quantum Mattis Model 3211

s++s−∑
s=|s+−s−|

e−
2β
N s(s+1)+(2s+1)L

= eL
∫

dz
√

2π
e−

1
2 z

2

s++s−∑
s=|s+−s−|

e2s(L−β/N−iz
√
β/N)

= eL
∫

dz
√

2π
e−

1
2 z

2

×

[
e2|s+−s−|(L−β/N−iz

√
β/N) − e2(s++s−+1)(L−β/N−iz

√
β/N)

1− e2(L−β/N−iz
√
β/N)

]
Rescaling the integration variable by

√
βN , we thus have

s++s−∑
s=|s+−s−|

e−
2β
N s(s+1)

[
e(2s+1)βB − e−(2s+1)βB

]

=

(
βN

2π

) 1
2
∫

dz e−
1
2βNz

2

{
e2β|s+−s−|(B−1/N−iz) − e2β(s++s−+1)(B−1/N−iz)

e−βB − eβ(B−2/N−2iz)

−
e2β|s+−s−|(−B−1/N−iz) − e2β(s++s−+1)(−B−1/N−iz)

eβB − eβ(−B−2/N−2iz)

}
.

Setting h̄ = 1, the Hamiltonian (2.1) can be written in
terms of total spin operators as

H = −
4

N

(
S2

+ + S2
− −

1

2
S2

)
− 2BSz,

where we have ignored a trivial constant term. The spin
operators are defined by

S± =
1

2

∑
i∈I±

¾i, S = S+ + S−.

Because the quartet {S2
+,S

2
−,S

2, Sz} form a set of
mutually commuting operators, the Hilbert space of
the N -particle system is spanned by their simultaneous
eigenspaces |s+, s−; s,m〉. The free energy per spin fN
is therefore

fN = −
T

N
ln
∑
s+,s−

d
s+
N+
d
s−
N−

e
4β
N [s+(s++1)+s−(s−+1)]

×

s++s−∑
s=|s+−s−|

e−
2β
N s(s+1)

s∑
m=−s

e2mβB (B.1)

The thermodynamic limit of the free energy is then ex-
pressed as

f = − lim
N→∞

T

N
ln

∫
dz e−

1
2βNz

2

×
∑
s+,s−

d
s+
N+
d
s−
N−

e
4β
N [s+(s++1)+s−(s−+1)]

×

{
e2β|s+−s−|(B−iz) − e2β(s++s−+1)(B−iz)

e−βB − eβ(B−2iz)

−
e2β|s+−s−|(−B−iz) − e2β(s++s−+1)(−B−iz)

eβB − eβ(−B−2iz)

}
.

The sum over s± can be replaced by an integral in the
thermodynamic limit:

s± =
1

2
n±m±N,

∑
s±

→
1

2
n±N

∫ 1

0

dm±.

Also, for large N the expression (B.2) for the combina-
torial terms dnN can be simplified to

1

N
ln d

s±
N±

=
1

N
ln

{
N±!

[N±( 1
2−m±)]![N±( 1

2 +m±)]!

×
2N±m±+1

N±( 1
2 +m±)+1

}
= n±s(m±) +O(1/N).

The free energy thus becomes

Here the sums over s± run from 0 (or 1/2 if N± is odd) to
N±/2 (= n±N/2). The symbol dnM denotes the number
of multiplets of total spin n in a system of M spin-1

2
particles. We show in Appendix C that dnM is given
explicitly by

dnM =

(
M − 1

1
2M + n− 1

)
−

(
M − 1

1
2M + n+ 1

)
=

(2n+ 1)M !

( 1
2M − n)!( 1

2M + n+ 1)!
. (B.2)

To evaluate the free energy (B.1), we first carry out
the sum over m,

s∑
m=−s

e2mβB =
e(2s+1)βB − e−(2s+1)βB

eβB − e−βB
.

Setting L = ±βB, we therefore need to evaluate the
following sum over s:
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It is straightforward to verify from eqs. (B.3), (B.4) and
(B.5) that the free energy in each phase agrees with that
given in §3.2.

Appendix C: Degeneracy Factor dnM

We derive here the expression (B.2) for the number
of multiplets of total spin n in a system of M spin-1

2
particles. In other words, dnM is the degeneracy of the
state |n, nz〉, where n is the total spin quantum number
and nz is any of the allowed values (−n, −n+ 1, . . . , n)
of the z-component of the total spin.

We proceed by induction over M . For M = 1, we have
dnM = 1 for n = 1/2 and dnM = 0 otherwise. Now con-
sider a multiplet of spin n in an M -spin system. When

one spin-1/2 particle is added, this multiplet splits into
exactly one n + 1

2 and one n − 1
2 multiplet. The excep-

tion is n = 0, where only a single n = 1
2 multiplet is

generated. We therefore have

dnM+1 = d
n− 1

2

M + d
n+ 1

2

M (C.1)

with the boundary condition

dnM = 0 (n ≤ −
1

2
). (C.2)

Now consider an unbiased random walk with sites num-
bered by the integers l = 2n + 1 and discrete time
t = M − 1. The recursion (C.1) then tells us that

B < |n+m+ − n−m−| : z = −|n+m+ − n−m−|

|n+m+ − n−m−| < B < n+m+ + n−m− : z = −B

B > n+m+ + n−m− : z = −(n+m+ + n−m−)

. (B.4)

Elimination of the variable z using the above result leads us to a reduced free energy minimization problem involving
m± only, with

(a) Phase A− : B < |n+m+ − n−m−|
(b) Phase R : |n+m+ − n−m−| < B < n+m+ + n−m−
(c) Phase A+ : B > n+m+ + n−m−

(B.5)

Because n+m+ + n−m− ≥ |n+m+ − n−m−|, the first
term inside the curly kets ecomes negligible for z >
−B; conversely, for z < −B, the second term can be
discarded. We are then left with

f(z,m+,m−)

= −
1

2
z2 − n2

+m
2
+ − n

2
−m

2
−

− Tn+s(m+)− Tn−s(m−)

− (z +B)×

{
n+m+ + n−m− (z > −B)

|n+m+ − n−m−| (z < −B)
.

(B.3)

brac b
Taking the derivative of f with respect to z subsequently
gives the equations z = −(n+m+ + n−m−) if z > −B
and z = −|n+m+ − n−m−| if z < −B. In addition we
have a local maximum at z = −B if the z-derivative of f
is negative for z > −B and positive for z < −B, which
translates into the extra solution z = −B appearing for
|n+m+−n−m−| < B < n+m+ +n−m−. In combination
the full picture now becomes:

f = − lim
N→∞

T

N
ln

∫ ∞
−∞

dz

∫ 1

0

dm+

∫ 1

0

dm− e−βNf(z,m+,m−)

with

f(z,m+,m−) =
1

2
z2 − n2

+m
2
+ − n

2
−m

2
− − Tn+s(m+)− Tn−s(m−)

− lim
N→∞

T

N
ln

{
eβN|n+m+−n−m−|(−iz+B)

sinh[β(iz−B)]
−

eβN(n+m++n−m−)(−iz+B)

sinh[β(iz−B)]

−
eβN|n+m+−n−m−|(−iz−B)

sinh[β(iz+B)]
+

eβN(n+m++n−m−)(−iz−B)

sinh[β(iz+B)]

}
.

For N →∞, the third and fourth terms in the curly brackets become exponentially small compared to the first and
second terms, respectively, and can therefore be discarded (remember that we assume B > 0). If we also make the
change of variable z → iz (which implies that the free energy is to be maximized with respect to z), we have

f(z,m+,m−) = −
1

2
z2 − n2

+m
2
+ − n

2
−m

2
− − Tn+s(m+)− Tn−s(m−)

− lim
K→∞

1

K
ln

{
eK|n+m+−n−m−|(z+B)

sinh[−β(z+B)]
+

eK(n+m++n−m−)(z+B)

sinh[β(z+B)]

}
.
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correspond to (local) minima of f(ˆ) and therefore obey
the stationary condition ∇f(ˆ) = 0. At a spinodal
point, there is in addition an instability direction δˆ
along which the free energy has zero curvature, implying
that the gradient of f remains zero to first order:

(δˆ · ∇)∇f(ˆ) = 0 (spinodal). (D.1)

The condition for such a δˆ to exist is

|M | = 0, M = ∇∇f(ˆ). (D.2)

At a critical point, the separation between two neigh-
bouring (in the ˆ-space) stable phases becomes infinites-
imal. These phases are separated by an unstable phase (a
saddle point of f). Constructing a curve ˆ(s) through
these three phases (with ˆ(0) = ˆ, the state we are
interested in), we see that (the vector-valued function)
∇f(ˆ(s)) vanishes at three infinitesimally separated val-
ues of s. At the critical point, located at s = 0, these
three zeros of ∇f(ˆ(s)) coincide, so

∇f(ˆ(s)) = O(s3).

Similarly, at a tricritical point we have three stable
phases coming together, with two unstable phases be-
tween them, so the corresponding criterion is

∇f(ˆ(s)) = O(s5).

Noting that the spinodal criterion (D.1) can be written

2−(M−1)dnM = pt(l), (C.3)

where pt(l) is the site occupation probability at time t
of a random walk starting from initial position l0 = 2 at
t = 0. The boundary condition (C.2) simply corresponds
to an absorbing wall at l = 0. Without this absorbing
wall, one would have

pt(l) = 2−t

 t

1
2

(l − l0 + t)

 ;

in the presence of the wall, one simply subtracts the re-
flected solution in the usual way to get

pt(l) = 2−t

 t

1
2

(l − l0 + t)

−
 t

1
2

(l + l0 + t)

 .
Inserting this into (C.3) immediately gives the desired
result (B.2). In writing the above formulae, we use the
convention that the binomial coefficient

(
n
k

)
is zero when-

ever k is non-integer or outside the range 0 . . . n.

Appendix D: Criteria for Spinodals, Critical
and Tricritical Points

In this appendix, we set out the general criteria that
we use to find spinodals, critical points and tricritical
points. Rather than the traditional determinant condi-
tions due to Gibbs,9) we use a formulation due to Bran-
nock10) which is more convenient, especially for tricritical
points.

Let us assume the free energy per spin is given by
f(ˆ), where ˆ = (ψ1 . . . ψn) is a vector of n (non-
conserved) order parameters. Thermodynamic phases

1) R. N. Bhatt: Spin Glasses and Random Fields, ed. A. P.
Young (World Scientific, Singapore, 1998) p. 225.

2) H. Nishimori and Y. Nonomura: J. Phys. Soc. Jpn. 65 (1996)
3780.

3) D. C. Mattis: Phys. Lett. A 56 (1976) 421.
4) D. Sherrington: J. Phys. C 10 (1977) L7.
5) H. Nishimori: J. Stat. Phys. 26 (1981) 839.
6) T. Nattermann: Spin Glasses and Random Fields, ed. A. P.

Young (World Scientific, Singapore, 1998) p. 277.

7) N. G. Duffield and R. Kühn: J. Phys. A 22 (1989) 4643.
8) A. Aharony: Phys. Rev. B 18 (1978) 3318.
9) J. W. Gibbs: The Collected Works of J. Willard Gibbs; The

Scientific Papers of J. Willard Gibbs, reprinted (Dover, New
York, 1960).

10) G. R. Brannock, J. Chem. Phys. 95 (1991) 612.

(Mδˆ = 0 from (D.1)), the inverse of M in (D.6) is
well defined: From (D.5), we have δˆ · v = 0, so that
v is orthogonal to the corresponding eigenspace. Note
that while the first term on the l.h.s. of (D.6) is what one
might have expected naively, the second term cannot be
neglected: It accounts for the fact that the curve ˆ(s)
passing through the three (infinitesimally separated) sta-
ble phases is generally curved rather than straight.

We finally note that (D.6) is derived from (D.4) for
k = 3. In principle, the equation for k = 4 gives an
additional condition that tricritical points must obey.
Because of symmetries present in our problem, however,
this condition is always satisfied in the cases we consider,
and so we do not give its explicit form.

as ∇f(ˆ(s)) = O(s2) for the curve ˆ(s) = ˆ + sδˆ, we
can summarize all three criteria as follows: If there exists
a curve ˆ(s) through the point ˆ (with ˆ(0) = ˆ) such
that

∇f(ˆ(s)) = O(sl), (D.3)

then for l = 2, 3, 5 respectively ˆ is a spinodal, critical
and tricritical point.

To evaluate the criterion (D.3) in practice, we write it
as(

d

ds

)k
∇f(ˆ(s))

∣∣∣∣∣
s=0

= 0 for k = 1 . . . l − 1. (D.4)

For the spinodal criterion, this reduces to (D.1) if we
identify δˆ and ˆ′(0). For critical points (l = 3) one
obtains the additional equation

∇(δˆ · ∇)2f(ˆ) +∇(ˆ′′(0) · ∇)f(ˆ) = 0.

Taking the scalar product δˆ and using (D.1) elim-
inates the second term, showing that the criterion for
critical points is

(δˆ · ∇)3f(ˆ) = 0 (D.5)

together with (D.1). Following a similar procedure, one
finds that tricritical points obey the additional condi-
tion

(δˆ · ∇)4f(ˆ)− 3v ·M−1v = 0 (D.6)

where

v = ∇(δˆ · ∇)2f(ˆ).

Even though the matrix M has a zero eigenvalue

with


