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Abstract
We study a family of diluted attractor neural networks with a finite average
number of (symmetric) connections per neuron. As in finite connectivity spin
glasses, their equilibrium properties are described by order parameter functions,
for which we derive an integral equation in replica symmetric approximation.
A bifurcation analysis of this equation reveals the locations of the paramagnetic
to recall and paramagnetic to spin-glass transition lines in the phase diagram.
The line separating the retrieval phase from the spin-glass phase is calculated
at zero temperature. All phase transitions are found to be continuous.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

Spin models of recurrent neural networks have been studied intensively within equilibrium
and non-equilibrium statistical mechanics, especially after Hopfield [1] emphasized their link
with spin glasses. In Hopfield’s picture, the free energy minima of glassy systems (fixed-point
attractors of the dynamics) are given an information processing interpretation: in recurrent
neural networks they represent stored items of information (‘patterns’), whose locations in
phase space are the result of suitable modification of the neuron interactions (‘learning’). Spin-
glass theory, especially the replica method [2], was shown to be an efficient tool with which
to study the equilibrium properties of Hopfield-type models (or attractor neural networks’)
with full connectivity [3, 4]. It was clear from the start that full connectivity is an undesirable
simplification of biological reality, made only for mathematical convenience. However, it
was also clear that solving neural network models with restricted range interactions in finite
dimensions D was either pointless (no phase transitions for D = 1) or impossible (for D > 1).
This dilemma prompted the study of the so-called diluted models, where for each spin all
but a randomly selected subset of size c of interactions are removed; such can be done either
while preserving interaction symmetry, or asymmetrically (in the latter case detailed balance
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no longer holds). Different regimes for the scaling of c with the system size N were found
to give different physics, and to require different mathematical techniques. The early models
of [3, 4] correspond to c = N . The Hopfield model with the so-called extreme dilution (i.e.
limN→∞ c−1 = limN→∞ c/N = 0, such as c = log N ) was first studied in [5] for the case
of fully asymmetric dilution, and in [6] for the case of symmetric dilution. Mathematical
and numerical analyses of other asymmetrically extremely diluted networks are found in, e.g.,
[7, 8]. Both in fully connected and in symmetrically extremely diluted networks close to
saturation one finds a conventional replica theory in the style of [2], with the familiar replica
order parameter matrix. An alternative route away from full connectivity, which preserves
both the potential for phase transitions and solvability, was followed in [9, 10] (the (1 + ∞)-
dimensional attractor networks). For recent reviews of the equilibrium and non-equilibrium
statistical mechanics of recurrent neural networks, see e.g., [11, 12].

In this paper, we study the as yet unsolved class of symmetrically diluted attractor neural
networks with finite connectivity, where the average number c of bonds per neuron is finite,
independent of the system size N. For bond-disordered spin systems, the finite connectivity
regime (which so far has been addressed mathematically only in the context of spin glasses
[13–16, 18, 19], error correcting codes [20, 21] and satisfiability problems [22–25]) requires
order parameter functions, which generalize the replica matrices of [2]. For finite c the
replica symmetry breaking theory (RSB) is still under development [18, 19, 26–29]. Here
we apply the finite connectivity spin-glass replica techniques to a general family of attractor
neural networks (which includes the Hopfield model, but also the so-called clipped Hebbian
synapses, as in e.g. [30]), within the replica symmetry ansatz (RS). We obtain phase diagrams
in the (α, T ) plane, for arbitrary finite c, where α = p/c (p giving the number of stored
patterns) and T is the temperature. These diagrams contain a paramagnetic phase (P), a recall
phase (R), and a spin-glass phase (SG), all separated by second-order transitions. We also
analyse the RS ground state, and show how for c → ∞ and arbitrary T one recovers the
simpler results of [6]. The most surprising outcome of our calculations is the low values of
the connectivity c, only barely exceeding the percolation threshold, which are required for the
system to operate effectively as an attractor neural network; equivalently, the robustness of
such information processing systems against excessive dilution and/or physical damage.

2. Model definitions

We study Ising spin neural network models, with microscopic states defined by the N-neuron
state vector σ = (σ1, . . . , σN) ∈ {−1, 1}N . Here σi = 1 if neuron i fires, and σi = −1
if it is at rest. Upon imposing standard Glauber-type dynamics, where the spins align
stochastically to local fields of the form hi(σ) = ∑

j �=i Jij σj with symmetric interactions
{Jij }, these systems will evolve to thermodynamic equilibrium, described by the Hamiltonian
H(σ) = −∑N

i<j Jijσiσj and the associated free energy

F = −β−1 log Z Z =
∑
σ

e−βH(σ). (1)

The interactions are defined as a diluted and generalized version (in the spirit of [30]) of the
standard Hebbian recipe, with cij ∈ {0, 1} and cij = cji for all (i, j):

Jij = cij

c
φ


 p∑

µ=1

ξ
µ

i ξ
µ

j


 ξ

µ

i ∈ {−1, 1} for all (i, µ). (2)
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The p vectors ξµ = (
ξ

µ

1 , . . . , ξ
µ

N

) ∈ {−1, 1}N represent patterns to be stored in the system.
The cij ∈ {0, 1} define the connectivity of the network, and act as quenched disorder. They
are drawn randomly and independently from

P(cij ) = c

N
δcij ,1 +

[
1 − c

N

]
δcij ,0. (3)

The average number of connections to any neuron is c. Averages over the realizations of the
{cij } will be denoted as · · ·. The function φ(x) in (2) need not be specified at this stage; for
φ(x) = x one returns to the symmetrically diluted Hopfield model, for φ(x) = √

p sgn(x) one
finds diluted and clipped Hebbian synapses, etc. The relevant and nontrivial scaling regime is
that where limN→∞ p/c = α, with 0 < α < ∞.

Models of type (2) have so far been studied in regimes where limN→∞ c−1 = 0. Here we
study the more complicated scaling regime where c = O(N0). Our objective is to solve the
model by calculating the disorder-averaged free energy per spin in the thermodynamic limit:
f = −limN→∞(βN)−1log Z. The replica identity log Z = limn→0 n−1 log Zn allows us to
write this in the standard manner as

f = − lim
N→∞

lim
n→0

1

βNn
log

∑
σ1...σn

e
β

c

∑
i<j cij φ(ξi · ξj )

∑
α σα

i σ α
j . (4)

Due to c = O(N0), one can expand this expression for N → ∞:

f = − lim
N→∞

lim
n→0

1

βNn
log

∑
σ1...σn

exp


 c

2N

∑
ij

[
e

β

c
φ(ξi ·ξj )

∑
α σα

i σ α
j −1

]
+ O(N0)


 . (5)

In non-diluted disordered spin systems, the sum in the exponent would have been quadratic in
the spin variables; there the free energy can be linearized by a Gaussian transformation, leading
to a single-spin problem with the conventional replica order parameter matrix {qαβ} [2]. In
systems with finite connectivity, in contrast, one finds more complicated order parameters
which encode higher order correlations between replicas [13]. In these models it is more
convenient to use an order parameter function [14–16], describing the distribution of spin
variables in the various replicas, from which all the conventional order parameters can be
derived.

3. Calculation of the free energy

3.1. Replica analysis and sublattice order parameters

To work out (5) we exploit the fact that for c = O(N0), also p = O(N0). This allows us to
use the concept of sublattices [17] (of which there are 2p):

Iξ = {i|ξi = ξ} pξ = |Iξ|/N. (6)

We define σi = (
σ 1

i , . . . , σ n
i

)
, and henceforth abbreviate averages over the sublattices as

〈f (ξ)〉ξ = ∑
ξ pξf (ξ). The trace in (5) can now be written as

∑
σ1...σn

exp


 c

2N

∑
σσ′

∑
ξξ′

[
e

β

c
φ(ξ·ξ′)

∑
α σασ ′

α−1
]∑

i∈Iξ

∑
j∈Iξ′

δσ,σi
δσ′,σj

+ O(N0)


 . (7)

We next introduce a spin distribution Pξ(σ) within each sublattice, with σ = {σ 1, . . . , σ n},
to be isolated upon inserting suitable δ-distributions into (5):

1 =
∫ ∏

ξσ


dPξ(σ)δ


Pξ(σ) − 1

|Iξ|
∑
i∈Iξ

δσ,σi




 . (8)
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From these distributions, one derives the more familiar types of observables such as replicated
sublattice magnetizations mα

ξ and replicated pattern overlaps mµα:

mα
ξ =

∑
σ

Pξ(σ)σ α mµα = 〈
ξµmα

ξ

〉
ξ
. (9)

The introduction of integral representations for the delta functions in (8) generates conjugate
variables P̂ ξ(σ). The trace in (7) is now performed trivially, resulting in an integral to be
evaluated by steepest descent:

f = − lim
N→∞

lim
n→0

1

βNn
log

∫ 
∏

ξσ

dPξ(σ) dP̂ ξ(σ)


 exp

{
iN

∑
σ

〈P̂ ξ(σ)Pξ(σ)〉ξ
}

× exp


cN

2

〈〈∑
σσ′

Pξ(σ)Pξ′(σ′)
[
e

β

c
φ(ξ · ξ′)(σ ·σ′)−1

]〉〉
ξξ′

+ O(N0)




× exp


N

〈
log

[∑
σ

e−iP̂ ξ(σ)

]〉
ξ




= − lim
n→0

1

βn
extr{Pξ(σ),P̂ ξ(σ)}


i
∑
σ

〈P̂ ξ(σ)Pξ(σ)〉ξ +

〈
log

[∑
σ

e−iP̂ ξ(σ)

]〉
ξ

+
1

2
c

〈〈∑
σσ′

Pξ(σ)Pξ′(σ′)
[
e

β

c
φ(ξ·ξ′)(σ·σ′)−1

]〉〉
ξξ′


 . (10)

Variation with respect to {Pξ(σ)} gives an equation with which to eliminate the conjugate
order parameters, resulting in f = limn→0 extr{Pξ(σ)}f [{Pξ(σ)}], where

f [· · ·] = c

2βn

〈〈∑
σσ′

Pξ(σ)Pξ′(σ′)
[
e

β

c
φ(ξ · ξ′)(σ ·σ′)−1

]〉〉
ξξ′

− 1

βn

〈
log

[∑
σ

exp

{
c

〈∑
σ′

Pξ′(σ′)
[
e

β

c
φ(ξ·ξ′)(σ·σ′)−1

]〉
ξ′

}]〉
ξ

. (11)

Further variation, again with respect to Pξ(σ), then leads to the saddle-point equation

Pξ(σ) =
exp

{
c
〈∑

σ′ Pξ′(σ′)
[

e
β

c
φ(ξ·ξ′)(σ·σ′) − 1

]〉
ξ′
}

∑
σ′ exp

{
c
〈∑

σ′′ Pξ′′(σ′′)
[

e
β

c
φ(ξ′′·ξ)(σ′′·σ′) − 1

]〉
ξ′′
} . (12)

When deriving (12) it first appears that one must also allow for adding to {Pξ(σ)} any vector in
the kernel of the 2p+n ×2p+n matrix U(ξ,σ; ξ′,σ′) = exp

[
β

c
φ(ξ · ξ′)(σ ·σ′)

]−1. However,
adding such elements is seen to generate new expressions for {Pξ(σ)} which again solve (12);
hence (12) is always satisfied at the saddle point.

An alternative route for calculating the free energy will turn out to be more convenient
for calculating zero temperature properties, such as ground state energy and entropy. Here we
first vary (10) with respect to P̂ ξ(σ), resulting in f = limn→0 extr{Pξ(σ)}f [{Pξ(σ)}] subject
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to the constraints
∑

σ Pξ(σ) = 1 for all ξ, with

f [· · ·] = − c

2βn

〈〈∑
σσ′

Pξ(σ)Pξ′(σ′)[e β

c
φ(ξ·ξ′)(σ·σ′) − 1

]〉〉
ξξ′

+
1

βn

〈∑
σ

Pξ(σ) log Pξ(σ)

〉
ξ

. (13)

The conjugate order parameter functions P̂ ξ(σ) are now found to act as Lagrange multipliers,
imposing the normalization constraints on the distributions Pξ(σ).

3.2. RS order parameter equations and free energy

In order to take the n → 0 limit we make the replica symmetric (RS) ansatz for the order
parameters. One anticipates RS to be broken in the low temperature phases [1, 6, 13], but to
hold up to the first phase transition away from the paramagnetic phase, as in the Viana–Bray
model [13]. In the present context, RS is equivalent to assuming that the Pξ(σ) are invariant
under permutations of the components of σ, i.e. only depend on the sum

∑
α σα . Upon

defining effective fields [14], namely hi ≡ 1
β

tanh−1
〈
σα

i

〉
β
, our RS order parameter functions

can thus be written [19] as

Pξ(σ) =
∫

dh Wξ(h)
eβh

∑
α σα

[2 cosh(βh)]n
. (14)

Here Wξ(h) � 0 and
∫

dh Wξ(h) = 1. One can write sublattice magnetizations and higher
order observables in terms of the Wξ(h):∑

σ

Pξ(σ)σ ασβ · · · σ r =
∫

dh Wξ(h) tanhr (βh) (α < β < · · · < r). (15)

The pattern overlaps mµα are now independent of α, mµα = mµ, where

mµ =
〈
ξµ

∫
dh Wξ(h) tanh(βh)

〉
ξ

. (16)

We substitute (14) into (12), and isolate the occurrences of
∑

α σα by inserting

1 =
∞∑

m=−∞

∫ 2π

0

dm̂

2π
eim̂(m−∑α σα). (17)

After some mostly straightforward manipulations3 one can then take the n → 0 limit and find
(12) converting into∫

dh Wξ(h) eβhm = exp

{
c

〈∫
dh′ Wξ′(h′)

[
em tanh−1[tanh(βh′) tanh(

β

c
φ(ξ·ξ′))] − 1

]〉
ξ′

}
. (18)

This is to hold for any real m. Provided the various integrals exist, we may now also put
m → im/β and carry out an inverse Fourier transform (following [19]), leading to

Wξ(h) =
∫

dm

2π
e−imh exp

{
c

〈∫
dh′ Wξ′(h′)

[
e

im
β

tanh−1[tanh(βh′) tanh(
β

c
φ(ξ · ξ′))] − 1

]〉
ξ′

}
.

(19)
3 The only technical subtlety is the need to take n → 0 for even n, to avoid in the denominator of (12) tricky terms
such as log cos(m̂) with m̂ < 0. The same issue arises when calculating the RS free energy.
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These are the final equations from which to solve the RS order parameters, i.e. the 2p effective
field distributions Wξ(h).

Upon inserting the RS ansatz (14) into expression (11) for the free energy, one can again
take the limit n → 0 (provided n is even). However, the calculation of f is found to be
easier using the alternative expression (13) (see the appendix for details). The result of the
calculation is

f = c

2β

〈〈∫
dh dh′ Wξ(h)Wξ′(h′) log

[
1 + tanh(βh) tanh(βh′) tanh

(
β

c
φ(ξ · ξ′)

)]〉〉
ξξ′

− c

2β

〈〈
log cosh

[
β

c
φ(ξ · ξ′)

]〉〉
ξξ′

− 1

β

〈∫
dhWξ(h) log[2 cosh(βh)]

〉
ξ

− c

2β

〈〈∫
dhWξ(h) log

[
1 − tanh2(βh) tanh2

(
β

c
φ(ξ · ξ′)

)]〉〉
ξξ′

. (20)

In deriving (20), which is reassuringly similar but not identical to the corresponding expression
derived for the RS free energy of spin glasses with random interactions [15], we have used
Wξ(h) solving (19) and being normalized (for every ξ).

As a simple test of our RS results, one may inspect the limit c → ∞ for φ(x) = x.
Here the interactions are of the Hopfield type, and, since p is finite, one should recover the
equations describing the Hopfield model away from saturation. Expansion of the saddle-point
equation (19) in powers of 1/c, keeping only the O

((
1
c

)0)
terms, results in

Wξ(h) = δ

(
h −

∑
µ

ξµmµ

)
. (21)

Upon using this expression to calculate the overlaps mµ = 〈ξµ
∫

dhWξ(h) tanh(βh)〉ξ one
indeed recovers the saddle-point equations of the Hopfield model away from saturation.
Similarly, (20) reduces to the correct corresponding free energy.

4. Analysis of phase transitions

4.1. Expansion of the saddle-point equations

The paramagnetic state Wξ(h) = δ(h)∀ξ always solves (19). As the temperature is lowered
from T = ∞, we expect other solutions to bifurcate away from the paramagnetic one. In finite
connectivity spin glasses, phase transitions were found upon expanding the RS free energy
in the order parameters (15) near the paramagnetic phase [13]. A similar strategy can be
applied here, following [14]. We assume that, close to the transition,

∫
dhWξ(h)h� = O(ε�)

with 0 < ε � 1, and we expand both sides of (18) in powers of ε. This can be done self-
consistently, for all orders in ε. Identification of the lowest two orders ε and ε2 is then found
to give, respectively∫

dh Wξ(h)h = c

〈∫
dh Wξ′(h)h tanh

[
β

c
φ(ξ · ξ′)

]〉
ξ′

(22)

∫
dh Wξ(h)h2 −

[∫
dh Wξ(h)h

]2

= c

〈∫
dh Wξ′(h)h2 tanh2

[
β

c
φ(ξ · ξ′)

]〉
ξ′

. (23)

There are hence two types of transitions away from the paramagnetic (P) state. The first
corresponds to the lowest order being ε; such transitions are marked by the appearance of
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nonzero solutions of (22). The second type have ε2 as lowest nonzero order; these transitions
are marked by non-trivial solutions of (23) with

∫
dh Wξ(h)h = 0. We conclude that these

transitions are marked by the highest temperature for which the two 2p × 2p matrices Mξξ′

and Qξξ′ , respectively, have an eigenvalue equal to 1:

Mξξ′ = cpξ′ tanh

[
β

c
φ(ξ · ξ′)

]
Qξξ′ = cpξ′ tanh2

[
β

c
φ(ξ · ξ′)

]
(24)

It follows from (16) that bifurcation of M eigenvectors corresponds to a transition towards
a retrieval state (R), with nonzero pattern overlaps, whereas bifurcation of Q eigenvectors
corresponds to a transition towards a spin-glass state (SG).

4.2. Transition temperatures for random patterns

For independently drawn random patterns, where pξ = 2−p for all ξ, both matrices in (24) are
symmetric and can be diagonalized by exploiting symmetries. The desired eigenvectors have
in fact already been calculated in [30] (in a different context). They are found to be universal
for all 2p × 2p symmetric matrices whose entries depend only on ξ · ξ′, i.e. Uξξ′ = U(ξ · ξ′).
With each of the 2p index subsets S ⊆ {1, 2, . . . , p} one can associate an eigenvector vS ,
defined as vS(ξ) = ∏

µ∈S ξµ. The eigenvector corresponding to the empty set is defined as
v∅(ξ) = 1 for all ξ. One easily verifies that this gives all eigenvectors of U, with corresponding
eigenvalues

λS =
∑

ξ

U

(
p∑

ν=1

ξν

)∏
µ∈S

ξµ. (25)

The eigenvalues depend only on the size |S| of the subset. Application of (25) to our matrices
M and Q gives the following eigenvalue spectra:

λM
S = c

〈[∏
µ∈S

ξµ

]
tanh

[
β

c
φ

(∑
ν

ξν

)]〉
ξ

λ
Q
S = c

〈[∏
µ∈S

ξµ

]
tanh2

[
β

c
φ

(∑
ν

ξν

)]〉
ξ

.

Clearly, limβ→0 λM
S = limβ→0 λ

Q
S = 0. For monotonically non-decreasing functions φ(x),

the largest M eigenvalue is found for |S| = 1, whereas the largest Q eigenvalue corresponds
to S = ∅:

λM
max = c

p

〈(∑
µ

ξµ

)
tanh

[
β

c
φ

(∑
ν

ξ ν

)]〉
ξ

(26)

λQ
max = c

〈
tanh2

[
β

c
φ

(∑
µ

ξµ

)]〉
ξ

. (27)

This leads us to the following equations for the P → R and P → SG transition lines:

P → R :
c

p
2−p

p∑
n=0

(
p

n

)
(p − 2n) tanh

[
β

c
φ(p − 2n)

]
= 1 (28)
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P → SG : c 2−p

p∑
n=0

(
p

n

)
tanh2

[
β

c
φ(p − 2n)

]
= 1. (29)

Equations (28) and (29) will generally have to be solved numerically.
We may finally inspect the limit c → ∞, with α = p/c fixed, where we expect to

find a generalization of the results in [6]. The central limit theorem now allows us to replace
p− 1

2
∑p

µ=1 ξµ by a zero-average and unit-variance Gaussian variable, so (26) and (27) simplify

to (provided the limits exist, and with Dy = (2π)−
1
2 e− 1

2 y2
):

lim
p→∞ λM

max = 1

α

∫
Dy y lim

p→∞

{√
p tanh

[
αβ

p
φ(y

√
p )

]}
(30)

lim
p→∞ λQ

max = 1

α

∫
Dy lim

p→∞

{
p tanh2

[
αβ

p
φ(y

√
p )

]}
. (31)

4.3. Application to specific synaptic kernels

We now have to make explicit choices for the kernel φ(x) in our expression for the interaction
matrix, namely Jij = cij

c
φ(ξi · ξj ). We first inspect the finite connectivity Hopfield model

Jij = cij

c
ξi · ξj . Here we have φ(x) = x, and the c → ∞ expressions for the P → R and

P → SG transition temperatures (30) and (31) reduce to TR = 1 and TSG = √
α (in accordance

with the extreme dilution results in [6]). In addition one finds that for c → ∞ the effective
field distributions Wξ(h) become Gaussian, with mean hξ = 〈∫ dh Wξ′ tanh(βh)(ξ · ξ′)〉ξ′ and

variance σ 2 = α〈∫ dhWξ′ tanh2(βh)(ξ · ξ′)〉ξ′ −h
2
ξ, from which one immediately recovers the

RS order parameter equations of [6] (describing states with a single ‘condensed’ pattern, for
the scaling regime c → ∞ with c/N → 0):

m =
∫

Dy tanh[β(m + y
√

αq)] q =
∫

Dy tanh2[β(m + y
√

αq)].

The results of solving (28) and (29) numerically for finite c are shown in figure 1. Note that
α = p/c ∈ {

1
c
, 2

c
, 3

c
, . . .

}
, so only the actual markers in figure 1 correspond to physically

realizable parameter values (the connecting line segments just provide a guide to the eye). We
observe that for c = 100 the transition lines away from the paramagnetic phase are already
nearly identical to those corresponding to c → ∞. For c = 2, the system remains in a
paramagnetic phase up to T = 0 for α = 1. Here, interestingly, for α = 0.5 (i.e. p = 1) there
is a transition to a nonzero retrieval overlap at finite T. This is not what one would find in, e.g.,
a 1 − d Ising chain, in which the connectivity is c = 2, but where there is no phase transition
at finite T; the difference is due to the fact that in our present model the connectivity equals 2
only on average. Note that the value c = 1 corresponds to the percolation transition [14]. We
will turn to the location of the more complicated R → SG transition in a subsequent section.

Our second application is obtained upon choosing a finite connectivity version of the
so-called clipped Hebbian synapses: Jij = cij

c

√
p sgn(ξi · ξj ) (the specific scaling with

√
p

ensures a proper limit c → ∞). Here φ(x) = √
p sgn(x), and the c → ∞ expressions for

the P → R and P → SG transition temperatures (30) and (31) now reduce to TR = √
2/π

and TSG = √
α. The results of solving (28) and (29) numerically for finite c are shown in

figure 2. As before, only the actual markers in figure 2 correspond to physically realizable
parameter values. As was the case for full connectivity [30], also with finite connectivity one
finds, surprisingly from an information processing point of view, that the differences between
Hebbian and clipped Hebbian synapses are only of a quantitative nature; limited largely to a
rescaling of critical temperatures.
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Figure 1. Phase diagram of the finite connectivity Hopfield model, where φ(x) = x. Connected
markers give the P → R and P → SG transition temperatures in the (α, T ) plane (where α = p/c),
for c = 2 (�), c = 3 (♦), c = 10 (+), whereas the c = 100 transition is indicated by a solid line.
The R → SG transition occurs at α = 1. The transition line for c = 100 is nearly indistinguishable
from the corresponding c → ∞ line segments T = 1 (for α < 1) and T = √

α (for α > 1).

Figure 2. Phase diagram of the finite connectivity clipped Hopfield model, where φ(x) =√
p sgn(x). Connected markers give the P → R and P → SG transition temperatures in the (α, T )

plane (where α = p/c), for c = 2 (�), c = 3 (♦), c = 10 (+), whereas the c = 100 transition is
indicated by a solid line. Here the R → SG transitions are found at α = 0.67 (c = 3), α = 0.6
(c = 10) and α ≈ 0.65 (c = 100). The transition line for c = 100 is again nearly indistinguishable
from the corresponding c → ∞ line segments, here given by T = √

2/π (for α <
√

2/π ) and
T = √

α (for α >
√

2/π ).

Our third and final finite connectivity network example is one which interpolates between
Hebbian and clipped Hebbian synapses: φ(x) = x (i.e. Hebbian) for |x| <

√
p, and

φ(x) = √
p sgn(x) (i.e. clipped Hebbian) for |x| � √

p. The value
√

p is found to be
the natural and most interesting scaling for the cut-off point in this definition. The c → ∞
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Figure 3. Phase diagram of a model intermediate between the previous two, with φ(x) = x for
|x| <

√
p and φ(x) = √

p sgn(x) for |x| >
√

p. Connected markers give the P → R and P →
SG transition temperatures in the (α, T ) plane, for c = 2 (�), c = 3 (♦), c = 10 (+), whereas the
c = 100 transition is indicated by a solid line. Here the R → SG transitions are found at α = 1
(c = 3), α = 0.9 (c = 10) and α ≈ 0.90 (c = 100). The transition line for c = 100 is again nearly
indistinguishable from the corresponding c → ∞ line segments, here given by T = Erf(1/

√
2)

(for small α) and T = [α(1 − √
2/πe)]

1
2 (for large α).

expressions for the P → R and P → SG transition temperatures (30) and (31) now reduce
to TR = Erf(1/

√
2) and TSG = [α(1 − √

2/πe)]
1
2 . The results of solving (28) and (29)

numerically for finite c are shown in figure 3. Again only the markers correspond to physically
realizable parameter values. The apparent irregularities in the transition lines are due to the
cut-off in the function φ(x) at |ξ · ξ′| = √

p.
Numerical simulations lend support to our predictions regarding phase diagrams, given

the usual limitations on the validity of RS results at low temperatures. The extremely low
connectivity c in our networks is found to cause very large relaxation times, especially in the
spin-glass region, which limits what is experimentally feasible. In figure 4 we show the results
of standard Glauber dynamics simulations at T = 0.5 of the finite connectivity Hopfield
model, i.e. Jij = cij

c
ξi · ξj . The measurements represent the (pure state) pattern overlap m

after 105 iterations/spin, for p = 1, . . . , 10, shown as a function of α = p/c. Different curves
correspond to different values of c. According to the phase diagram in figure 1 we should in
all cases expect m > 0 (recall) for α < αc and m = 0 (spin glass) for α > αc, where αc ≈ 1
(at T = 0.5). Although it is clear that at t = 105 we do not yet have equilibration in the
spin-glass regime, the curves do collapse nicely and point quite convincingly to a transition
close to α = 1.

5. RS ground state of the finite connectivity Hopfield model

For large α, one expects replica symmetry to break at low temperatures. In contrast to full
connectivity models, for finite connectivity models RSB theory is still under development.
Here we will therefore analyse as yet only the T → 0 limit of our RS equations. We give
exact statements at least for small α, and calculate the RS ground state entropy. This could
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Figure 4. Condensed overlap m as measured after 105 Glauber iterations/per spin in the
finite connectivity Hopfield model with N = 5000 at T = 0.5. Each marker is an average
over six experiments. The four different collapsing curves connect data for connectivities
c = 2, c = 3, c = 4 and c = 5, respectively. For each value of c we have taken p ∈ {1, . . . , 10},
and shown the overlaps as functions of α = p/c. These data support the R → SG transition at
α ≈ 1 as predicted for T = 0.5 by figure 1 (the nonzero value of m for α > 1 reflects insufficient
equilibration in the spin-glass region).

lead for large α to a bound for the location of the RSB transition in the phase diagram, since
the latter must come before the zero entropy line.

5.1. RS order parameters at T = 0

We follow closely the RS ground state analysis carried out for finite connectivity spin glasses
[14, 15]. At T = 0 there are no thermal fluctuations, so the effective fields in (14) are identical
to the true local fields. The latter can take only discrete values, due to the finite number of
connections per spin, hence each Wξ(h) is a sum of delta peaks:

Wξ(h) =
∞∑

�=−∞
Kξ(�)δ

(
h − �

c

)
. (32)

Upon taking the limit β → ∞ in (19), using limβ→∞ β−1 tanh−1[tanh(βx) tanh(βy)] =
1
2 |x + y| − 1

2 |x − y|, one verifies by substitution that (32) is indeed a solution. Insertion into
the right-hand side of (19) gives (with δnm = 1 − δnm):

Wξ(h) =
∫

dy

2π
e−iyh exp

(
c

〈{ |ξ · ξ′|−1∑
�′=1

[
Kξ′(�′) e

iy�′
c

sgn(ξ · ξ′) + Kξ′(−�′) e− iy�′
c

sgn(ξ · ξ′)]

+
∞∑

�′=|ξ · ξ′|

[
Kξ′(�′) e

iy
c
ξ · ξ′

+ Kξ′(−�′) e− iy
c
ξ·ξ′]− [1 − Kξ′(0)]

}
δξ · ξ′,0

〉
ξ′

)
.

(33)
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Upon expanding the exponent on the right-hand side, we would indeed recognize a sum of
delta peaks. Integrating of both sides over an infinitesimally small interval around h = �/c

leads to equations for the factors K±
ξ (�):

Kξ(�) = lim
ε→0

∫
dz

πz
sin(z) e− i�z

cε exp

(
c

〈{|ξ · ξ′|−1∑
�′=1

[
Kξ′(�′) e

iz�′
cε

sgn(ξ · ξ′) + Kξ′(−�′) e− iz�′
cε

sgn(ξ · ξ′)]

+
∞∑

�′=|ξ · ξ′|

[
Kξ′(�′) e

iz
cε

ξ · ξ′
+ Kξ′(−�′) e− iz

cε
ξ · ξ′]− [1 − Kξ′(0)]

}
δξ · ξ′,0

〉
ξ′

)
.

(34)

For ε → 0, the periodic part of the integral (involving z/cε) oscillates rapidly and decouples
from the non-oscillating part. We note that (34) is of the form limε→0

∫
dz
πz

sin(z)f (z/ε),
where f (z + 2π) = f (z). The function f may be written as a Fourier series, f (z/ε) =∑∞

n=−∞ an einz/ε . Consequently,

lim
ε→0

∫
dz

πz
sin(z)f

( z

ε

)
= a0

∫
dz

πz
sin(z) +

∑
n�=0

an lim
ε→0

∫
dz

πz
sin(εz) einz = a0.

Since a0 = (2π)−1
∫ π

−π
dφ f (φ), expression (34) can be simplified to

Kξ(�) = e−c〈[1−Kξ′ (0)]δξ · ξ′ ,0〉ξ′
∫ π

−π

dφ

2π
exp

(
c

〈{ |ξ · ξ′|−1∑
�′=1

[Kξ′(�′) + Kξ′(−�′)] cos(�′φ)

+
∞∑

�′=|ξ · ξ′|
[Kξ′(�′) + Kξ′(−�′)] cos(ξ · ξ′φ)

}
δξ · ξ′,0

〉
ξ′

)

× cos

(
− �φ + c

〈{ |ξ · ξ′|−1∑
�′=1

[Kξ′(�′) − Kξ′(−�′)] sin(�′φ)sgn(ξ · ξ′)

+
∞∑

�′=|ξ · ξ′|
[Kξ′(�′) − Kξ′(−�′)] sin(ξ · ξ′φ)

}
δξ · ξ′,0

〉
ξ′

)
. (35)

Solutions to this set of equations can be found numerically, via iteration.

5.2. RS entropy at T = 0

We next calculate the RS zero temperature entropy per spin s0, by expanding the free energy
per spin up to order T:

f = fT =0 − s0T + O(T 2). (36)

Care is needed in taking the temperature derivative of the free energy, in view of the
normalization constraint on the order parameters Wξ(h). One generally has

df

dT
= ∂f [· · ·]

∂T

∣∣∣∣
saddle

+
∑
ξ′

∫
dh′ δf [· · ·]

δWξ′(h′)

∣∣∣∣∣
saddle

.
∂W


ξ′(h′)

∂T
(37)

where W
 denotes the saddle point of f [· · ·]. In contrast to unconstrained extremization, the
functional derivative on the right-hand side of (37) need not vanish, since extremization of f
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is restricted to the subspace in which
∫

dh Wξ(h) = 1:

δf [· · ·]
δWξ(h)

+
∑
ξ′

λξ′
δ

δWξ(h)

[∫
dh′ Wξ′(h′) − 1

]
= 0. (38)

Here {λξ′ } are Lagrange multipliers. As a consequence, we find δf [· · ·]/δWξ(h) = λξ at the
saddle point (i.e. independent of the field h), and hence

df

dT
= ∂f [· · ·]

∂T

∣∣∣∣
saddle

+
∑
ξ′

λξ′
∂

∂T

∫
dh′ W


ξ′(h
′) = ∂f [· · ·]

∂T

∣∣∣∣
saddle

. (39)

For the purpose of calculating s0, we may thus simply insert the T = 0 saddle point (32) and
(35) into our expression (20) for the free energy, giving

s0 = lim
β→∞

β2 ∂

∂β

〈〈
c

2β

∑
�,�′ �=0

Kξ(�)Kξ′(�′) log

[
1 + tanh

(
β�

c

)
tanh

(
β�′

c

)
tanh

(
β

c
ξ · ξ′

)]

− c

2β

∑
� �=0

Kξ(�)

[
log

[
1 + tanh

(
β�

c

)
tanh

(
β

c
ξ · ξ′

)]

+ log

[
1 − tanh

(
β�

c

)
tanh

(
β

c
ξ · ξ′

)]]

− c

2β
log cosh

(
β

c
ξ · ξ′

)
− 1

β

∑
� �=0

Kξ(�) log

[
2 cosh

(
β�

c

)]〉〉
ξξ′

= c

2
log 2

〈〈|ξ · ξ′|−1∑
�=0

{
Kξ(−|ξ · ξ′|) + Kξ(|ξ · ξ′|)

− [Kξ(�) + Kξ(−�)]

[
1 − 1

2
δ�,0

]}

× [Kξ′(�) + Kξ′(−�)]

[
1 − 1

2
δ�,0

]
δξ · ξ′,0

〉〉
ξξ′

+ log 2〈Kξ(0)〉ξ

+
c

4
[2 log 2 − log 3]〈〈[Kξ(−|ξ · ξ′|) + Kξ(|ξ · ξ′|)]

× [Kξ′(−|ξ · ξ′|) + Kξ′(|ξ · ξ′|)]δξ · ξ′,0〉〉ξξ′ . (40)

This result is reminiscent of the corresponding expression found for spin glasses in [31].

5.3. Zero temperature phase transitions

We next try to solve the coupled equations (35), for randomly drawn patterns, at zero
temperature. We know that in the case of perfect retrieval of a pattern µ, half of the sublattice
magnetizations (the ones with ξµ = 1) must be 1 and the other half must be −1. At T = 0
all spins align with their local fields, so it follows from (32) that Kξ(�) = K(ξµ�) for some
set of non-negative numbers K(�). We will now choose the property Kξ(�) = K(ξµ�) for all
ξ ∈ {−1, 1} and all integer � as an ansatz. Upon restricting ourselves for simplicity to odd
values of p with p � 3, our equations (35) subsequently simplify to

K(�) = e−c[1−K(0)]
∫ π

−π

dφ

2π
ecA(φ,{K}) cos[−�φ + cB(φ, {K})] (41)
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Figure 5. Zero temperature phase diagram of the finite connectivity Hopfield model, in RS
approximation and for odd p � 3 (note: p = αc). Connected diamonds (♦): the R → SG
transition line. Dashed horizontal line: the c → ∞ location for the R → SG line, αc = 2/π , as
known from [6].

with the abbreviations

A(φ, {K}) = 2−(p−1)

p∑
m=(p+1)/2

(
p

m

) 2m−p−1∑
�=1

[K(�) + K(−�)] cos(�φ)

+ 2−p

p∑
m=0

(
p

m

)
cos[(p − 2m)φ]

∞∑
�=|p−2m|

[K(�) + K(−�)] (42)

B(φ, {K}) = 2−p

p∑
m=0

p − 2m

p

(
p

m

)
sin[(p − 2m)φ]

∞∑
�=|p−2m|

[K(�) − K(−�)]. (43)

The result of solving (41) numerically, and subsequently detecting the R → SG transition
(which is found to be of second order) is shown in figure 5 in the (p, α) plane. The R → SG
transition line should for c → ∞ (i.e. p → ∞ with fixed α) approach the value αc = 2/π

(≈0.637), in accordance with [6]; the latter limit is shown in the figure as a horizontal dashed
line, which is indeed seen to be approached by our R → SG line as p → ∞. As usual
for the present type of system, we concentrated on bifurcation points. Due to the extensive
energy barriers between the ergodic sectors in attractor neural networks, on the important time
scales local stability is more important than thermodynamic stability, so the thermodynamic
transition lines (based on comparing values of free energies) are not relevant. Numerical
evaluation of the free energy of the candidate solution in fact reveals that the bifurcation lines
coincide with the thermodynamic transitions.

Figure 5 shows re-entrance phenomena. It should be noted that an increase of p for fixed
α implies a simultaneous increase of the number of stored patterns (with a detrimental effect
on recall quality) and of the connectivity c (expected to have a positive effect on recall quality);
the non-monotonic appearance of the R → SG line reflects the competition of these opposite
tendencies.
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Finally, for the present type of zero temperature solution, our expression for the RS zero
temperature entropy (40) reduces to

s0

log 2
= K(0) + c 2−p

p∑
m=(p+1)/2

(
p

m

){2m−p−1∑
�=0

[
K(2m − p) + K(p − 2m)

− [K(�) + K(−�)]

[
1 − 1

2
δ�,0

]]
[K(�) + K(−�)]

[
1 − 1

2
δ�,0

]}

+ c 2−p

(
1 − log 3

2 log 2

) p∑
m=(p+1)/2

(
p

m

)
[K(2m − p) + K(p − 2m)]2. (44)

Numerical evaluation of this expression reveals that the RS entropy at T = 0 is never zero,
for any combination of α and p. This somewhat surprising result at first sight is in fact in
accordance with a similar observation made recently for finite connectivity spin glasses in
[31]. It does, however, not imply that replica symmetry is not broken at low temperatures
(which we know must happen for c → ∞ [6]).

6. Discussion

In this paper, we have shown how the mathematical framework of finite connectivity spin-glass
replica theory (involving order parameter functions in replica space, rather than matrices) can
be combined with the concept of sublattices in order to solve a large class of finite connectivity
Hopfield-type attractor neural network models near saturation. So far such networks appear
to have been studied only in the two technically simpler regimes of full connectivity and the
so-called extreme dilution, both of which involve a diverging number of bonds per spin c in
the thermodynamic limit. We have restricted ourselves to a replica symmetric (RS) analysis.
The replica symmetric theory is found to lead to 2p coupled integral equations (19), whose
solutions give the effective local field distributions in each of the 2p sublattices of the system.
Here p denotes the number of stored patterns. In the limit c → ∞ our equations are shown to
reduce to the theory of the so-called extremely diluted attractor neural networks, as expected.
For T → 0 and below a certain critical value for α one should expect replica symmetry no
longer to hold (it has been shown for c → ∞ in [6]); going beyond replica symmetry would
require extending the theory to include one or more steps of replica symmetry breaking, similar
to the finite connectivity spin-glass calculations in [18, 19, 26–29].

As is usual for attractor neural networks near saturation, our phase diagrams exhibit three
phases: a paramagnetic phase (P), a retrieval phase (R) and a spin-glass phase (SG). We have
calculated, for arbitrary values of the number of bonds c per spin and a large class of Hebbian
type synaptic kernels, the (second order) P → R and P → SG transition lines in the (α, T )

phase diagram. For the main member of our model class, the finite connectivity Hopfield
model, we have also calculated the (second order) R → SG transition line at T = 0. We find
that the values of the average connectivity c needed for the system to function as an attractor
neural network are surprisingly small, barely exceeding the percolation threshold, even for
clipped Hebbian synapses (where each bond carries only one bit of information). Figures 1 to
3, for instance, underline that already for c = 3 the phase diagrams differ only in a relatively
modest sense from those corresponding to c → ∞. This underlines the robustness of recurrent
neural networks as information processing systems.

Apart from the obvious extension of our present work, the inclusion of RSB solutions of
our saddle-point equations and calculation of AT lines [32], it would also be an interesting
challenge to attempt a dynamical solution. Within the generating functional analysis formalism
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of [33] this would for finite connectivity systems involve an effective single-spin problem,
with order parameters describing single-spin path probabilities and the effect on these path
probabilities of single-spin external field perturbations.

Acknowledgment

One of the authors (BW) gratefully acknowledges helpful discussions with Professor JRL De
Almeida.

Apendix. Calculation of the RS free energy

In this section, we calculate the RS free energy per spin, upon inserting (14) into (13). In
doing so we will use the shorthand notation

γm =
∫ π/2

−π/2

dφ

π
log[cos(φ)]. cos(2mφ) m = 0,±1,±2, . . . .

They obey
∞∑

m=−∞
γm e2am = log cosh(a). (A1)

Taking the limit n → 0 is again found to impose the need to restrict ourselves to even values
of n. One then obtains, after some algebra, for the entropic term in (13):

lim
n→0

1

βn

〈∑
σ

Pξ(σ) log Pξ(σ)

〉
ξ

= lim
n→0

1

βn

∞∑
m=−∞

∫ 2π

0

dm̂

2π
eim̂m

∫
dh eβhm

[
cos(m̂)

cosh(βh)

]n

×
〈
Wξ(h) log

[∫
dh′ Wξ(h

′)
eβh′m

[2 cosh(βh′)]n

]〉
ξ

= 1

β

∞∑
m=−∞

γm

∫
dh

〈
Wξ(h)e2βhm log

[∫
dh′ Wξ(h

′) e2βh′m
]〉

ξ

− 1

β

∫
dh 〈Wξ(h) log[2 cosh(βh)]〉ξ. (A2)

Similarly, for the energetic term U in (13) one finds

− lim
n→0

c

2βn

〈〈∑
σσ′

Pξ(σ)Pξ′(σ′)
[
e

β

c
φ(ξ · ξ′)(σ ·σ′) − 1

]〉〉
ξξ′

= − c

2β

∫
dh dh′

〈〈
Wξ(h)Wξ′(h′) log

[∑
σσ ′

e
β

c
φ(ξ · ξ′)σσ ′+β[hσ+h′σ ′]

]〉〉
ξξ′

+
c

β

∫
dh 〈Wξ(h) log cosh(βh)〉ξ

= − c

2β

∫
dh dh′

〈〈
Wξ(h)Wξ′(h′)

× log

[
1 + tanh(βh) tanh(βh′) tanh

(
β

c
φ(ξ · ξ′)

)]〉〉
ξξ′

− c

2β

〈〈
log cosh

[
β

c
φ(ξ · ξ′)

]〉〉
ξξ′

. (A3)
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We use (18) to simplify the entropic term (A2), and add the latter to the energetic term (A3)
to obtain the following expression for the RS free energy per spin:

fRS = − 1

β

∫
dh 〈Wξ(h) log[2 cosh(βh)]〉ξ − c

2β

〈〈
log cosh

[
β

c
φ(ξ · ξ′)

]〉〉
ξξ′

− c

2β

∫
dh dh′

〈〈
Wξ(h)Wξ′(h′)

× log

[
1 + tanh(βh) tanh(βh′) tanh

(
β

c
φ(ξ · ξ′)

)]〉〉
ξξ′

+
c

β

∞∑
m=−∞

γm

∫
dh dh′〈〈Wξ(h)Wξ′(h′) e2βhm

× [
e2m tanh−1[tanh(βh′) tanh(

β

c
φ(ξ · ξ′))] − 1

]〉〉
ξξ′ .

At this stage we may use relation (A1) to carry out the summation over m. After some further
rearrangement of terms, and application of the simple identity cosh[tanh−1(y)] = (1−y2)−1/2,
one then arrives at the final result (20).

References

[1] Hopfield J J 1982 Proc. Nat. Acad. Sci. USA 79 2554
[2] Mezard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific)
[3] Amit D J, Gutfreund H and Sompolinsky H 1985 Phys. Rev. A 32 1007
[4] Amit D J, Gutfreund H and Sompolinsky H 1985 Phys. Rev. Lett. 55 1530
[5] Derrida B, Gardner E and Zippelius A 1987 Europhys. Lett. 4 167
[6] Watkin T L H and Sherrington D 1991 Europhys. Lett. 14 791
[7] Wong K Y M and Ho C 1994 J. Phys. A: Math. Gen. 27 5167
[8] Arenzon J J and Lemke N 1994 J. Phys. A: Math. Gen. 27 5162
[9] Skantzos N S and Coolen A C C 2000 J. Phys. A: Math. Gen. 33 1841

[10] Skantzos N S and Coolen A C C 2001 J. Phys. A: Math. Gen. 34 929
[11] Coolen A C C 2001 Handbook of Biological Physics vol 4, ed F Moss and S Gielen (Amsterdam: Elsevier)

p 531
[12] Coolen A C C 2001 Handbook of Biological Physics vol 4, ed F Moss and S Gielen (Amsterdam: Elsevier)

p 597
[13] Viana L and Bray A J 1985 J. Phys. C: Solid State Phys. 18 3037
[14] Kanter I and Sompolinsky H 1987 Phys. Rev. Lett. 58 164
[15] Mezard M and Parisi G 1987 Europhys. Lett. 3 1067
[16] Mottishaw P and De Dominicis C 1987 J. Phys. A: Math. Gen. 20 L375
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