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We use mathematical methods from the theory of tailored random graphs to study systemati-
cally the effects of sampling on topological features of large biological signalling networks. Our
aim in doing so is to increase our quantitative understanding of the relation between true bio-
logical networks and the imperfect and often biased samples of these networks that are reported
in public data repositories and used by biomedical scientists. We derive exact explicit formulae
for degree distributions and degree correlation kernels of sampled networks, in terms of the
degree distributions and degree correlation kernels of the underlying true network, for a
broad family of sampling protocols that include random and connectivity-dependent node
and/or link undersampling as well as random and connectivity-dependent link oversampling.
Our predictions are in excellent agreement with numerical simulations.
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1. INTRODUCTION

Networks are popular simplified representations of com-
plex biological many-variable systems. The network
representation reduces the complexity of the problem
by retaining only information on which pairs of dynami-
cal variables in a given system interact, leading to a
graph in which the nodes (or vertices) represent the
dynamical variables and the links (or edges) represent
interacting pairs. If all interactions are symmetric
under interchanging the two variables concerned, the
resulting network is non-directed (as e.g. in protein–
protein interaction networks (PPINs)). If some or all
are non-symmetric, the network is directed (as e.g. in
gene regulation networks). Present-day biological
databases contain PPINs and gene regulation networks
of many species, with typically in the order of N !
1032104 nodes each, measured and post-processed by
various different techniques and protocols. However,
in biology, the available experimental techniques do
not sample the complete system, but only a finite frac-
tion; for the human PPIN this fraction is presently
(and inaccurately) estimated to be around 0.5 [1]. Fur-
thermore, the sampling tends to be biased by which
experimental method is used [2]. In order to use the
available data wisely and reliably, it is vital that we
understand in quantitative detail how the topological
characteristics of a real network relate to those of a

finite (biased or unbiased) random sample of this net-
work. If, for instance, we observe that certain modules
appear more often (or less often) than expected in cer-
tain cellular signalling networks, we need to be sure
that this is not simply a consequence of sampling. The
first studies of the effects of false negatives in the detec-
tion of links and/or nodes (i.e. bond and/or node
undersampling) on network topologies focused on the
relation between true and observed degree distri-
butions, either analytically [3,4] or via numerical
simulation [5], and found that undersampling changes
qualitatively the shape of the degree distribution. Sub-
sequent studies [6,7], based on numerical simulation,
revealed the effects of undersampling on topological
features other than the degree distribution, such as clus-
tering coefficients, assortativity and the occurrence
frequencies of local motifs. More recent publications
were devoted to sampling of non-biological networks,
such as the Internet [8] and bipartite networks [9]. So
far all published studies on the effects of sampling
have either been based on numerical simulations, or
been restricted to the effects of sampling on a network’s
degree distribution. Moreover, there are only very few
studies that considered connectivity-dependent
sampling (e.g. [4]), and none that investigate the effects
of false positive (i.e. oversampling). In the present
paper, we use statistical mechanical methods from the
theory of tailored random graphs to study systemati-
cally the effects of sampling on macroscopic
topological features of large networks. We extend pre-
vious work in several ways. Firstly, we investigate the
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effect of sampling on macroscopic observables beyond
the degree distribution, e.g. the joint degree distribu-
tion of connected node pairs from which one calculates
quantities such as the assortativity. Secondly, we do
this for both random and connectivity-dependent
sampling of either nodes, links or both. Thirdly, we
investigate not only network undersampling, but also
the implications of false positives in the detection of
links, i.e. bond oversampling. All our results are
obtained analytically, and formulated in terms of expli-
cit equations that express degree distributions and
degree correlations of observed networks in terms of
those of the underlying true networks. We test our
analytical predictions against numerical simulations
and find excellent agreement.

2. DEFINITIONS

2.1. Networks and sampling protocols

We consider non-directed networks or graphs. Each is
defined by a symmetric matrix c ¼ fcijg, with i,j ¼ 1
. . . N and with cij [ f0,1g for all (i,j). Nodes i and j
are connected if and only if cij ¼ 1. We exclude self-
interactions, i.e. cii ¼ 0 for all i. The degree ki(c) of a
node i is ki(c) ¼Pjcij, the degree distribution of
graph c is p(kjc) ¼ N21P

idk,ki
(c), and we abbre-

viate its degree sequence as k(c) ¼ (k1(c), . . .,kN(c)).
Sampling stochastically an N-node graph c will result
in observation of an N

0
node graph c0. The relation

between c0 and c depends on the details of the sampling
process. We use random variables si [ f0,1g to denote
whether a true node i is observed, and tij [f0,1g
whether a link (i,j) is observed (if nodes i and j
are). In studying oversampling lij [f0,1g will indicate
whether an absent link is falsely reported as
present. Thus:

nodeundersampling : c0ij ¼sisjcij
bondundersampling : c0ij¼ tijcij

nodeandbondundersampling : c0ij ¼sisjtijcij
bondoversampling : c0ij ¼cijþð1$cijÞlij

9
>>=

>>;

ð2:1Þ

In a biological context, node oversampling (e.g.
detecting a non-existent protein) would be less realistic,
so will not be considered in this paper. Note that N0 ¼P

i&N si . We take all sampling variables s ¼ fsig, t ¼
ftijg and l ¼ flijg to be stochastically independent,
with the proviso that tij ¼ tji, lij ¼ lji and lii ¼ 0 (so
sampled networks remain non-directed and without
self-interactions). In random sampling their probabil-
ities are functionally independent of the site indices;
in connectivity-dependent sampling, the probabilities
will depend on the degrees of the nodes involved. We
conclude that the different types of sampling under
equation (2.1) are all special cases of the following
unified process:

c0ij ¼ sisj ½tijcij þ ð1$ cijÞlij ( 8ði , jÞ ð2:2Þ

with

Pðs;t;ljx;y;zÞ¼
Y

i

½xðkiÞdsi ;1þð1$xðkiÞÞdsi ;0(

)
Y

i,j

½yðki;kjÞdtij ;1þð1$yðki;kjÞÞdtij ;0(

)
Y

i,j

zðki;kjÞ
N

dlij ;1

!

þ 1$ zðki;kjÞ
N

" #
dlij ;0

$
: ð2:3Þ

Here x(k)[ [0,1] gives the likelihood that a node with
degree k will be detected, y(k,k 0) [ [0,1] the likelihood
that a link connecting nodes with degrees (k,k 0) will
be detected, and z(k,k 0)/N [ [0,1] the likelihood that
an absent bond will be falsely reported as present (the
latter scales as N21 to retain finite connectivity for
large N). For random sampling, the control parameters
in equation (2.3) would all be degree-independent, i.e.
x(k) ¼ x, y(k,k 0) ¼ y and z(k,k 0) ¼ z. We note that,
since non-existing nodes cannot give false negatives,
we may always choose x(0) ¼ y(0,k) ¼ y(k,0) ¼ 0 for
all k. For connectivity-dependent sampling, plausible
choices for the functional dependence of the control par-
ameters on the local degree would be x(k) ¼ k/kmax
and/or y(k,k 0) ¼ kk 0/kmax

2 and/or z(k,k 0) ¼ kk 0/kmax
2 ,

since high-degree nodes and links connecting high-
degree nodes are more likely to be reported.

2.2. Macroscopic characterization of network
structure

To control analytically the topological properties of the
networks towhich our sampling protocols (2.1) are applied,
we consider the following maximum entropy ensemble,
tailored for large N, to the production of graphs with
prescribed degrees and prescribed degree correlations:

pðcÞ ¼ 1
ZN

Y

i

dki ;kiðcÞ

" #
Y

i,j

k
N

W ðki; kjÞ
pðkiÞpðkjÞ

dcij ;1

!

þ 1$ k
N

W ðki; kjÞ
pðkiÞpðkjÞ

" #
dcij ;0

$
ð2:4Þ

with p(k) ¼ N21 P
idk,ki

and !k ¼
P

kpðkÞk, and with ZN
the appropriate normalization constant. Graphs gener-
ated according to ensemble (2.4) will have k(c) ¼ k,
p(kjc) ¼ p(k) and

P
cp(c)W(k,k 0jc) ¼W(k,k 0), where

W ðk; k0jcÞ ¼ ðNkÞ$1P
ijcijdk;kidk0;kj is the joint degree

distribution of connected node pairs. Apart from the
information in k and W(k,k 0), the ensemble (2.4) is
unbiased; see Annibale et al. [10] for derivations of its
information-theoretic properties, Coolen et al. [11,12]
for Monte Carlo Markov Chain (MCMC) algorithms
via which its graphs can be generated numerically and
for a review on the topic. The remainder of this paper
is devoted to calculate analytically how in large net-
works, with given degree sequences and given degree
correlations (i.e. as those typically generated via ensem-
ble (2.4)), sampling affects the macroscopic topological
characteristics p(k) and W(k,k 0). To be specific, we cal-
culate the average connectivity, the degree distribution
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and the degree correlation function, after sampling from
large graphs drawn from ensemble (2.4), in terms of the
sampling characteristics {x(k),y(k,k 0),z(k,k 0)},1

!kðx; y; zÞ ¼ lim
N!1

X

c

pðcÞ

*P
ijc
0
ijP

i si

+

s;t;l

; ð2:5Þ

pðkjx; y; zÞ ¼ lim
N!1

X

c

pðcÞ
*P

i sidk;
P

j
cij0P

isi

+

s;t;l

ð2:6Þ

and

W ðk; k0jx; y; zÞ ¼ lim
N!1

X

c

pðcÞ

*P
ij c0ijdk;

P
‘

c0i‘
dk0;
P

‘
c0j‘P

ijc
0
ij

+

s;t;l

ð2:7Þ

with c 0ij as defined in equation (2.2) and k . ls,t,l denot-
ing averages over the sampling parameters distribution
(2.3). The denominators are simplified trivially, using
the independence of the sampling variables and the
definition of W(k,k 0jc), since

1
N

X

i

si ¼
1
N

X

i

xðkiÞ þOðN$1=2Þ

¼
X

k

pðkÞxðkÞ þOðN$1=2Þ
ð2:8Þ

and

1
N

X

ij

c0ij ¼
1
N

X

ij

xðkiÞxðkjÞ
zðki; kjÞ

N

!

þcij yðki; kjÞ $
zðki; kjÞ

N

! $$
þOðN$1=2Þ

¼
X

kk0
xðkÞxðk0ÞfpðkÞpðk0Þzðk; k0Þ

þ !kW ðk; k0Þyðk; k0ÞgþOðN$1=2Þ: ð2:9Þ

We may therefore write

!kðx; y; zÞ ¼
P

qq0xðqÞxðq0Þ½ pðqÞpðq0Þzðq; q0Þ þ !kW ðq; q0Þyðq; q0Þ(
P

q pðqÞxðqÞ
;

ð2:10Þ

pðkjx; y; zÞ ¼

limN!1
P

cpðcÞ

*

N$1P
i sidk;

P
j

cij0

+

s;t;lP
q pðqÞxðqÞ

ð2:11Þ

and

W ðk; k0jx; y; zÞ ¼

limN!1
P

c pðcÞ

*

N$1P
ij c0ijdk;

P
‘

c0i‘
dk0;
P

‘
c0j‘

+

s;t;l

!kðx; y; zÞ
P

q pðqÞxðqÞ
:

ð2:12Þ
In the following sections, we will calculate analytically

the observables (2.10), (2.11) and (2.12) and will test our
theoretical results against numerical simulations. To this
purpose, we will sample from reasonably large graphs
(either synthetically generated or real biological
PPINs) and we will measure the degree distribution
and the degree correlations after sampling.2 These will
be compared with the analytically calculated post-
sampling degree distribution and degree correlations
resulting from averages over graph ensembles asymptoti-
cally tailored to the production of graphs with the same
degree sequence and degree correlations as the graph
instances used for numerical simulations. The extent to
which theoretical predictions and numerical simulations
agree will provide an indication of how well, for reason-
ably large graphs, the behaviour of degree distribution
and degree correlations under sampling is captured by
averages of such quantities over the corresponding maxi-
mum entropy ensembles.

3. EFFECTS OF SAMPLING ON DEGREE
DISTRIBUTIONS

3.1. Connection between observed degree
distributions and degree correlations

We note that in the case of connectivity-dependent
sampling, the average degree (2.10) in the observed
graph will generally depend not only on the degree distri-
bution of the original graph, but also on the latter’s
degree correlations. Hence, our decision to use the
graph ensemble (2.4) for the present study. The observed
distributions p(k|x,y,z) and W(k,k 0|x,y,z) in expressions
(2.11) and (2.12) are connected via a simple identity,
as are p(k) and W(k,k 0) in the original graph c:

W ðkjx; y; zÞ ¼
X

k0
W ðk; k0jx; y; zÞ

¼ lim
N!1

k
!kðx; y; zÞ

X

c

pðcÞ

)
*

1
N

X

i

sidk;
P

‘
c0i‘

+

s;t;l

¼ k
!kðx; y; zÞ

pðkjx; y; zÞ: ð3:1Þ

So for large N, we need to calculate, in principle, only
W(k,k 0|x,y,z), as p(k|x,y,z) follows via identity (3.1).
Alternatively, since for random sampling, p(k|x,y,z)
can be found analytically with little effort, the identity
(3.1) can be used for verifying the result of our
calculation of expression (2.12).1One should expect that macroscopic physical observables such as

p(k|c) and W(k,k 0|c) are self-averaging, and can therefore be
calculated, to leading order in N, in terms of their expectation
values (2.5), (2.6) and (2.7) over the ensemble (2.4).

2The software used in this paper for generating and sampling from
networks is available from the authors upon request (in standard C).
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3.2. Degree distribution for random sampling

Calculating p(k|x,y,z) is only straightforward for
random sampling, irrespective of whether the source
graph is generated according to ensemble (2.4), since,
in that case, expression (2.11) can be made to factorize

over the sampling variables by writing the Kronecker-d
in integral form. In order to appreciate the roles played
by the different ingredients of expression (2.11), we
first write it in the form p(kjx,y,z) ¼ limN!1

P
c

p(c)pN(kjx,y,z; c), with

pN ðkjx; y; z; cÞ ¼ 1P
q pðqÞxðqÞ þOðN$1=2Þ

1
N

X

i

*

sidk;
P

j
cij0

+

s;t;l

¼ 1P
q pðqÞxðqÞ

1
N

X

i

ðp

$p

dv
2p

eikv

*

sie
$iv
P

j
sisj ½tij cijþð1$cijÞlij (

+

s;t;l

þOðN$1=2Þ

¼ 1P
q pðqÞxðqÞ

1
N

X

i

xðkiÞ
ðp

$p

dv
2p

eikv
Y

j=i

(

1þ xðkjÞ

*

e$iv½tij cijþð1$cij Þlij (

+

t;l

$ 1

2

4

3

5
)

þO 1ffiffiffiffiffi
N
p
" #

¼ 1P
q pðqÞxðqÞ

1
N

X

i

xðkiÞ
ðp

$p

dv
2p

eikv
Y

j=i

(

1þxðkjÞðe$iv $ 1Þ zðki; kjÞ
N

þcijyðki; kjÞ
! $)

þO 1ffiffiffiffiffi
N
p
" #

¼ 1P
q pðqÞxðqÞ

X

q0
xðq0Þ

ðp

$p

dv
2p

eikvþðe$iv$1Þ
P

k0
pðk0Þxðk0Þzðq0;k0Þ

) 1
N

X

i

dq0;ki exp
X

k0
logf1þ xðk0Þyðq0; k0Þðe$iv $ 1Þg

X
j
dk0;kj cij

' (
þOðN$1=2Þ: ð3:2Þ

For random sampling protocols, where x(k) ¼ x,
y(k,k 0) ¼ y and z(k,k 0) ¼ z, this expression immediately
simplifies to the transparent result

pN ðkjx;y;z;cÞ¼
X

k0
pðk0jcÞ

ðp

$p

dv
2p

eikvþxzðe$iv$1Þ

)f1þxyðe$iv$1Þgk
0
þOðN$1=2Þ

¼
X

k0
pðk0jcÞ

X

n*0

zn

n!

Xk0

m¼0

k0

m

" #
xnþmym

)
ðp

$p

dv
2p

eikvðe$iv$1ÞnþmþOðN$1=2Þ

¼
X

k0
pðk0jcÞ

X

n*0

zn

n!

Xk0

m¼0

k0

m

" #
mþn

k

" #

)xnþmymð$1Þnþm$kI ðk&nþmÞ

þOðN$1=2Þ

¼ xk
X

k0
pðk0jcÞ

X

n*0

zn

n!

Xk0

m¼0

k0

m

" #
mþn

k

" #

)xnþm$kymð$1Þnþm$kI ðk&nþmÞ

þOðN$1=2Þ; ð3:3Þ

in which I(S) is the indicator function (i.e. I(S) ¼ 1 if S
is true, otherwise I(S) ¼ 0). The observed average
degree (2.10) for random sampling is, as expected,

!kðx;y;zÞ¼ xðzþy!kÞ: ð3:4Þ

Formula (3.3) simplifies further for various special
cases. For instance:

— Random bond and/or node undersampling, i.e. z¼ 0:

pðkjx; y; 0Þ ¼ ðxyÞk
X

k0*k

pðk0Þ
k0

k0 $ k

" #
ð1$ xyÞk

0$k

¼ ðxyÞ
k

k!

X

‘*0

pðk þ ‘Þ ðk þ ‘Þ!
‘!

ð1$ xyÞ‘:

ð3:5Þ

This implies that if we sample from a graph with Pois-
sonian degree distribution, i.e. pðkÞ ¼ !kk e$k=k!, then
the degree distribution of the sampled graph will be

pðkjx; y; 0Þ ¼ ðxyÞ
k

k!

X

k0*k

!kk0 e$k

ðk0 $ kÞ!
ð1$ xyÞk

0$k

¼ ð
!kxyÞke$!kxy

k!
; ð3:6Þ

i.e. again a Poissonian distribution, but with a reduced
average degree !kðx; y; 0Þ ¼ xy!k. This recovers earlier
results of Stumpf and co-workers [3,4]. We note also
that equation (3.5) is invariant under exchanging x
and y, so sampling all nodes and a fraction x¼ j of
the bonds is equivalent to sampling all bonds and a frac-
tion y¼ j of the nodes. We show in §4.1 that this
equivalence between bonds and nodes under random
undersampling also holds for the degree correlations.
In figure 1, we show the predicted degree distributions
(3.5) together with the corresponding results of
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numerical simulation of the sampling process, for syn-
thetically generated networks with size N ¼ 3512 and
average connectivity !k ¼ 3:72 (as in the biological
PPIN of Caenorhabditis elegans [13]) and Poissonian
and power-law degree distributions. The agreement
between theory and experiment is perfect.

— Random bond oversampling, i.e. x ¼ y ¼ 1:

pðkj1; 1; zÞ ¼
X

k0
pðk0Þ

X

n*0

zn

n!

Xk0

m¼0

k0

m

" #

)
m þ n

k

" #
ð$1Þnþm$kI ðk & n þmÞ

¼
X

k0
pðk0Þ

X

n*0

ð$zÞn

n!

)
Xn

‘¼0

n
‘

" #
ð$1Þ‘d‘;k$k0

¼
X

k0&k

pðk0Þ
X

s*0

zk$k0þsð$1Þs

s!ðk $ k0Þ!

¼
Xk

‘¼0

pðk $ ‘Þe$zz‘

‘!
: ð3:7Þ

As with random undersampling, we observe that
sampling from a graph with Poissonian degree dis-
tribution, i.e. pðkÞ ¼ !kk e$!k=k! leads to a sampled

graph that is again Poissonian, but now with
average degree !kð1; 1; zÞ ¼ z þ !k:

pðkj1; 1; zÞ ¼ e$z
X

q&k

!kq e$!k

q!

zk$q

ðk $ qÞ!
¼ zke$ð!kþzÞ

k!

)
X

q&k

k!

q!ðk $ qÞ!
!k
z

" #q

¼ zke$ð!kþzÞ

k!
1þ

!k
z

" #k

¼ e$ð!kþzÞð!k þ zÞk

k!
:

ð3:8Þ

Results from numerical simulations applied to Pois-
sonian and preferential attachment networks are
shown in figure 2 together with the corresponding
theoretical predictions. Again the agreement
between theory and experiment is perfect.

3.3. Degree distribution for connectivity-
dependent sampling

In the case of connectivity-dependent sampling, where
x(k), y(k,k 0) and z(k,k 0) are no longer all degree-indepen-
dent, one can no longer evaluate (3.9) without
knowledge of the degree–degree correlations in the
sources graph c. However, the average (3.9) over the
graph ensemble with controlled degree correlations is
still feasible. In appendix A, we calculate the marginal
(A 24) of the expected kernel W(k,k 0jx,y,z) for the

1.1

1.2

1.3(a) (b)

(c) (d)

p(
k)

+1

100%
70%
50%
theory 70%
theory 50%

100%
70%
50%
theory 70%
theory 50%

100%
70%
50%
theory 70%
theory 50%

100%
70%
50%
theory 70%
theory 50%

1.1

1.2

1.3

1.4

10 20
k+1

1.0

1.1

1.2

1.3

p(
k)

+1

10
k+1

1.0

1.1

1.2

1.3

1.4

Figure 1. Effect of random node undersampling (a,b) and bond undersampling (c,d) on the degree distribution of synthetically
generated networks with size N ¼ 3512, average connectivity !k ¼ 3:72 and Poissonian degree distribution (a,c) or power-law dis-
tributed degrees (b,d). Different symbols correspond to different fractions of sampled nodes (0.5, 0.7 and 1 as shown in the legend)
and predicted values (symbols connected by dotted lines) lay on the top of data points from simulations (symbols connected by
dashed lines), obtained by averaging over 50 samples.
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sampled network, from which we obtain p(kjx,y,z) via
the connection (3.1). One always has p(0jx,y,z) ¼ 0,
whereas for k . 0:

pðkjx; y; zÞ ¼
P

qxðqÞpðqÞfaðqÞJ ðkjqÞ þ qbðqÞLðkjqÞg
k
P

qpðqÞxðqÞ
ð3:9Þ

with

J ðkjqÞ ¼ e$aðqÞ
Xminfk$1;qg

n¼0

q
n

" #
ak$1$nðqÞ
ðk $ 1$ nÞ!

bnðqÞ

) ð1$ bðqÞÞq$n; ð3:10Þ

LðkjqÞ ¼ e$aðqÞ
Xminfk$1;q$1g

n¼0

q $ 1

n

" #

) ak$1$nðqÞ
ðk $ 1$ nÞ!

bnðqÞð1$ bðqÞÞq$1$n ð3:11Þ

and

aðqÞ ¼
X

q0*0

pðq0Þxðq0Þzðq; q0Þ;

bðqÞ ¼ k
qpðqÞ

X

q0*0

xðq0Þyðq; q0ÞW ðq; q0Þ: ð3:12Þ

The average connectivity !kðx; y; zÞ, as given in obser-
vables (2.10), is easily obtained from equation (3.9)
using normalization of the conditional probabilities
J(kjq) and L(kjq)

!kðx; y; zÞ ¼
X

k

kpðkjx; y; zÞ

¼
P

q xðqÞpðqÞ½aðqÞ þ qbðqÞ(
P

q pðqÞxðqÞ
: ð3:13Þ

Let us now work out these results for the ‘natural’
types of connectivity-dependent samplings, where the
likelihood of observing nodes or links is proportional
to the degrees of the nodes involved, with a [ [0,1]:

— Connectivity-dependent node undersampling, i.e.
x(k) ¼ ak/kmax, y(k,k 0) ¼ 1, z(k,k 0) ¼ 0:

Here, we have

aðqÞ¼0;

qbðqÞLðkjqÞ¼ k
q
k

" #
bkðqÞð1$bðqÞÞq$kI ðq* kÞ

ð3:14Þ

and

X

q
pðqÞxðqÞ ¼ a!k

kmax
;

bðqÞ ¼ ak
qpðqÞkmax

X

q0.0

q0W ðq; q0Þ: ð3:15Þ

This leads to

pðkja; 1; 0Þ ¼
X

q*k

qpðqÞ
!k

q
k

" #

) ak
qpðqÞkmax

X

q0.0

q0W ðq; q0Þ
 !k

) ak
qpðqÞkmax

X

q0.0

q0W ðq; q0Þ

 !q$k

ð3:16Þ

and

!kða;1;0Þ ¼ a

kmax

X

qq0.0

qq0W ðq; q0Þ ¼ a

kmax

kð3Þ
!k
;

ð3:17Þ

where kð3Þ ¼ N$1P
ijk‘cijc jkck‘ is the average

number of paths of length 3.
— Connectivity-dependent bond undersampling, i.e.

x(k) ¼ 1, y(k,k 0) ¼ a kk 0/kmax
2 , z(k,k 0) ¼ 0:

This choice leads again to equation (3.14), while
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Figure 2. Effect of random bond oversampling on (a) the degree distribution of synthetic Poissonian graphs and (b) synthetic
power-law graphs, both with size N ¼ 3512 and average connectivity !k ¼ 3:72. Different symbols correspond to different fractions
z/N of ‘false positive’ bonds, with z ¼ 0, 2, 5, 10 as shown in the legend. The theoretically predicted values (symbols connected by
dotted lines) are found to lay perfectly on top of the data points from simulations (symbols connected by dashed lines), obtained
by averaging over 100 samples.
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equations (3.15) are now replaced by
X

q
pðqÞxðqÞ ¼ 1;

bðqÞ ¼ ak
pðqÞk2

max

X

q0.0

q0W ðq; q0Þ: ð3:18Þ

Hence, one gets

pðkj1;a;0Þ¼
X

q*k

pðqÞ
q
k

" #
ak

pðqÞk2
max

X

q0.0

q0W ðq;q0Þ

 !k

) ak
pðqÞk2

max

X

q0.0

q0W ðq;q0Þ

 !q$k

ð3:19Þ

and

!kð1;a;0Þ¼ a!k
k2

max

X

qq0.0

qq0W ðq;q0Þ¼ a

k2
max

kð3Þ: ð3:20Þ

— Connectivity-dependent bond oversampling, i.e.
x(k) ¼ y(k,k 0) ¼ 1, z(k,k 0) ¼ a kk 0/kmax

2 :
Here, we have

aðqÞ ¼
X

q0*0

pðq0Þzðq; q0Þ ¼ a!k
k2

max
q; bðqÞ ¼ 1;

X

q
pðqÞxðqÞ ¼ 1; ð3:21Þ

LðkjqÞ ¼ e$aðqÞ a
k$qðqÞ
ðk $ qÞ!

I ðq & kÞ ð3:22Þ

and

J ðkjqÞaðqÞ ¼ e$aðqÞ ak$qðqÞ
ðk $ 1$ qÞ!

I ðq & k $ 1Þ

; ðk $ qÞLðkjqÞ: ð3:23Þ

Substituting into equations (3.9) and (3.13) yields

pðkj1; 1;aÞ ¼
X

q
pðqÞLðkjqÞ

¼
X

q
pðqÞe$qa!k=k2

max
ðqa!k=k2

maxÞ
k$q

ðk $ qÞ!

ð3:24Þ

and

!kð1; 1;aÞ ¼ !k þ a !k2

k2
max

: ð3:25Þ

In figure 3, we show the predicted degree dis-
tribution (3.24) together with the corresponding
results from numerical simulations of the
connectivity-dependent bond oversampling
process.

3.4. Summary

We have seen that the degree distributions of large
sampled networks can be calculated and written expli-
citly in terms of the topological characteristics of the
true network, for random and connectivity-dependent
under- and oversampling. From the resulting equations,
we can draw the following conclusions:

— Sampling generally affects the shape of the degree
distribution of a network, with the exception of a
Poissonian distribution (as for Erdos–Renyi
graphs), where the sampled network will only
have a rescaled average degree compared with
the original. This result is consistent with findings
in Stumpf and co-workers [3,4].

— The degree distribution observed after random node
undersampling of a network is identical to that fol-
lowing random bond undersampling, for any large
graph, if the two (node- or bond-) sampling
probabilities are identical.
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Figure 3. Effect of connectivity-dependent bond oversampling (i.e. x(k) ¼ 1, y(k,k 0) ¼ 1, z(k,k 0) ¼ akk 0/kmax
2 ) on (a) the degree

distribution of synthetic Poissonian graphs and (b) synthetic power-law graphs, both with size N ¼ 3512 and average connectivity
!k ¼ 3:72. Different symbols correspond to different values of z ¼ a !k2

=k2
max ¼ 0; 2; 5; 10, as shown in the legend. Theoretically pre-

dicted values (symbols connected by dotted lines) are found to lay perfectly on top of the data points from simulations (symbols
connected by dashed lines), obtained by averaging over 100 samples.
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— In contrast, connectivity-dependent node undersam-
pling (where the probability of observing a node is
proportional to its degree) generally leads to a net-
work with a degree distribution that is different
from the one that would result from connectivity-
dependent bond undersampling (where the prob-
ability of observing a bond is proportional to the
degrees of the two attached nodes).

4. EFFECTS OF SAMPLING ON DEGREE
CORRELATION FUNCTION

In appendix A, we calculate the degree correlation func-
tion W(k,k 0jx,y,z) of large networks that are sampled
according to the general protocol (2.2), from graphs
generated from ensemble (2.4). The resulting, expressed
in terms of the topological properties p(k) and W(k,k 0)
of the true network, is

W ðk; k0jx; y; zÞ ¼

X
q;q0.0

xðqÞxðq0ÞfpðqÞpðq0Þzðq; q0ÞJ ðkjqÞJ ðk0jq0Þ þ kW ðq; q0Þyðq; q0ÞLðkjqÞLðk0jq0Þg
!kðx; y; zÞ

P
q pðqÞxðqÞ

ð4:1Þ

with kðx; y; zÞ as given in observables (2.10), two con-
ditional distributions J(kjq) and L(kjq) defined in
equations (3.10) and (3.11), and with the short-hands
a(q) and b(q) defined in equation (3.12). We will now
work out this general result for the most common
types of sampling, viz. node undersampling, bond
undersampling and bond oversampling, including both
random- and connectivity-dependent protocols.

4.1. Degree correlations for random sampling

For random sampling protocols where x(q) ¼ x,
y(q,q 0) ¼ y and z(q,q 0) ¼ z, one has a(q) ¼ xz, b(q) ¼
xy and L(kjq) ¼ J(kjq 2 1), so (4.1) simplifies
immediately to

W ðk; k0jx; y; zÞ ¼

X
q;q0.0

fzpðqÞpðq0ÞJ ðkjqÞJ ðk0jq0Þ þ ykW ðq; q0ÞJ ðkjq $ 1ÞJ ðk0jq0 $ 1Þg

z þ y!k
ð4:2Þ

with

J ðkjqÞ ¼ e$xzxk$1
Xminfk$1;qg

n¼0

q
n

" #

) zk$1$nðqÞ
ðk $ 1$ nÞ!

ynð1$ xyÞq$n: ð4:3Þ

Formula (4.2) simplifies further for various special cases:

— Random node and/or bond undersampling, i.e. z ¼
0. Here, we obtain

J ðkjqÞ ¼
q

k $ 1

" #
ðxyÞk$1ð1$ xyÞq$kþ1I ðq * k $ 1Þ

ð4:4Þ

so equation (4.2) reduces to

W ðk;k0jx;y;0Þ ¼
X

q*k

X

q0*k0
W ðq;q0Þ

q$ 1

k$ 1

" #
q0$ 1

k0$ 1

" #

)ðxyÞkþk0$2ð1$ xyÞqþq0$k$k0 : ð4:5Þ

We note that W(x,y,0), like equation (3.5) pre-
viously, is symmetric under exchanging x and y, i.e.
node and bond random undersampling lead to the
same degree correlations. Therefore, the equivalence
between the two samplings is now fully established
for large graphs drawn from ensemble (2.4).

Equation (4.5) clearly shows that sampling from
graphs in which degree correlations are presentwill gen-
erally affect those correlations, even in Poissonian
networks, in spite of the fact that there the degree dis-
tribution is only changed via a reduction of the average
degree. Conversely, if we sample from graphs without
degree correlations, i.e. for which W ðk;k0Þ ¼
W ðkÞW ðk0Þ ¼ pðkÞpðk0Þkk0=k

2
, equation (4.5) reveals

that the degree correlation function in the sampled
graph factorizes in the product of its marginals as
well, i.e. W(k,k 0jx,y,0)¼W(kjx,y,0)W(k 0jx,y,0). This
means that random bond and/or node undersampling
from graphs without degree correlations does not
generate any degree correlations.

In order to observe how sampling protocols affect
degree correlations, we will monitor, instead of
W(k,k 0) itself, the normalized kernel P(k,k 0)¼
W(k,k 0)/W(k)W(k 0), which will by definition equal
unity in the absence of degree correlations. Any devi-
ation from P(k,k 0)¼ 1 will thus signal the presence of
degree correlations. We show the predicted degree cor-
relations in the case of random bond undersampling,
together with the corresponding results of numerical
simulations, for Poissonian and power-law graphs, in
figures 4 and 5, respectively. In figure 6, we show
numerical results and theoretical predictions for
random node undersampling from Poissonian and
power-law graphs. Results for random bond under-
sampling from the real, biological PPIN of C. elegans
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are shown in figure 7 (left panels). The agreement
between theory and experiment is very satisfactory;
deviations are small and consistent with finite size
effects. As explained earlier, this confirms a posteriori
that the performance of the biological network to be
sampled (here C. elegans) is similar to the average be-
haviour of the maximum entropy ensemble (2.4),
where p(k) and W(k,k 0) are the degree distribution
and the degree correlation function of the biological
PPIN, respectively. As a consequence, the biological
network can be realistically approximated by a
member of such ensemble. As an additional test, we
generate synthetically a member of the maximum
entropy ensemble asymptotically tailored to the pro-
duction of graphs with the same degree sequence and

degree correlations as the PPIN of C. elegans by
using the MCMC algorithm proposed in Coolen et al.
[11]. The degree correlations of the resulting graph are
shown in the top right panel of figure 7 and are in
good agreement with the degree correlations of the
PPIN that are being targeted (top left panel). Note
that the Hamming distance between the biological
PPIN and the synthetically generated graph is 0.93,
so similarity in degree correlations is not consequence
of similarity in the connectivity matrices.3 Theoretical
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Figure 4. Normalized degree correlation function P(k,k 0) ¼W(k,k 0)/W(k)W(k 0) of two synthetically generated Poissonian graphs
with N ¼ 3512 and !k ¼ 3:72 and different degree correlations (as shown in panels (a,b) respectively) before (top panels) and after
(middle panels) sampling, a fraction y ¼ 0.7 of the bonds of the original graphs (data result from averaging over 104 samples) and
their respective theoretical predictions (bottom panels).

3The Hamming distance between two graphs c and c 0 of size N and
average degree k̄ is defined as r(c,c 0) ¼ (2Nk̄)21 P

ijjcij 2 cij
0j and

takes values between 0 (cij ¼ cij
0 8i,j) and 1 (cij=cij

0 8i,j).
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and numerical results for random bond undersam-
pling from such randomized counterpart of
C. elegans are shown in figure 7 (middle and bottom
right panels).

— Random bond oversampling, i.e. x ¼ y ¼ 1.
Here, we have

J ðkjqÞ ¼ e$z zk$1$q

ðk $ 1$ qÞ!
I ðk * q þ 1Þ; ð4:6Þ

so using our earlier result from equation (3.7)

pðkj1; 1; zÞ ¼ e$z
Xk

q¼0

pðqÞ ek$q

ðk $ qÞ!
; ð4:7Þ

we may write
X

q*0

pðqÞJ ðkjqÞ ¼ pðk $ 1j1; 1; zÞ; ð4:8Þ
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Figure 5. Normalized degree correlation function P(k,k 0) of two synthetically generated power-law graphs with N ¼ 3512 and
!k ¼ 3:72 and different degree correlations (as shown in panels (a,b) respectively) before (top panels) and after (middle panels)
sampling a fraction y ¼ 0.9 of the bonds of the original graph (data result from averaging over 104 samples) and their theoretical
prediction (bottom panels).

which leads to the transparent expression

W ðk; k0j1; 1; zÞ ¼ z
!k þ z

pðk $ 1j1; 1; zÞpðk0 $ 1j1; 1; zÞþe$2z
!k
z

Xk;k0

q;q0¼1

W ðq; q0Þ zk$q

ðk $ qÞ!
zk0$q0

ðk0 $ q0Þ!

" #

: ð4:9Þ

Effects of sampling on complex networks A. Annibale and A. C. C. Coolen 845

Interface Focus (2011)

 on October 26, 2011rsfs.royalsocietypublishing.orgDownloaded from 

http://rsfs.royalsocietypublishing.org/


We note for later that substituting equation (4.8)
into equation (3.9) and bearing in mind that
L(kjq) ¼ J(kjq 2 1), a(q) ¼ z and b(q) ¼ 1, we have

pðkj1;1;zÞ¼1
k

zpðk$1j1;1;zÞþ
X

q*1

pðqÞqJ ðkjq$1Þ

" #

;

ð4:10Þ

which yields

pðk $ 1j1; 1; zÞ ¼
!k
z

pðkj1; 1; zÞ

$
!k
z

X

q*1

W ðqÞJ ðkjq$1Þ; ð4:11Þ

where W ðkÞ ¼ kpðkÞ=!k.

We now study the effects of oversampling on
graphs without degree correlations. Denoting

SzðkÞ ¼
X

q*1

W ðqÞJ ðkjq $ 1Þ; ð4:12Þ

which is z-dependent via the function J, we may
rewrite (4.9) as

W ðk;k0j1;1;zÞ¼ z
!kþz

"
k
z
pðkj1;1;zÞ$

!k
z
SzðkÞ

" #

) k0

z
pðk0j1;1;zÞ$

!k
z
Szðk0Þ

" #

þ
!k
z

X

q;q0*1

W ðq;q0ÞJ ðkjq$1ÞJ ðk0jq0$1Þ

#

:

ð4:13Þ
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Figure 6. Normalized degree correlation function P(k,k 0) of (a) synthetically generated Poissonian and (b) power-law graphs with
N ¼ 3512 and !k ¼ 3:72 before (top panels) and after (middle panels) sampling a fraction x ¼ 0.9 of the nodes of the original graph
(data result from averaging over 104 samples) and their theoretical prediction (bottom panels).

846 Effects of sampling on complex networks A. Annibale and A. C. C. Coolen

Interface Focus (2011)

 on October 26, 2011rsfs.royalsocietypublishing.orgDownloaded from 

http://rsfs.royalsocietypublishing.org/


60
55
50
45
40
35
30
25
20
15
10
5

1

k¢

1.8

1.5

1.2

0.9

0.6

0.3

0

1.8

1.5

1.2

0.9

0.6

0.3

0

60
55
50
45
40
35
30
25
20
15
10
5

1

k¢

1.8

1.5

1.2

0.9

0.6

0.3

0

1.8

1.5

1.2

0.9

0.6

0.3

0

60
55
50
45
40
35
30
25
20
15
10
5

1 5 1015 20 25 30 35 40 45 50 55 60

k¢

1.8

1.5

1.2

0.9

0.6

0.3

0

1.8

1.5

1.2

0.9

0.6

0.3

0

k
5 1015 20 25 30 35 40 45 50 55 60

k

’ ’

’’

’ ’

(a) (b)

Figure 7. Normalized degree correlation function P(k,k 0) for (a) the biological PPIN of C. elegans and (b) one synthetically gen-
erated member of its corresponding tailored graph ensemble, before (top panels) and after (middle panels) sampling a fraction x ¼
0.9 of the bonds of the original graph and their theoretical prediction (bottom panels). For both networks, N ¼ 3512 and !k ¼ 3:72
and data resulted from averaging over 104 samples.

If the original graph has no degree correlation, i.e.

W ðq; q0Þ ¼W ðqÞW ðq0Þ ¼ pðqÞpðq0Þ qq
0

!k2 ; ð4:14Þ

the sampled graph will have degree correlation

W ðk; k0j1; 1; zÞ ¼ z
!k þ z

k
z

pðkj1; 1; zÞ $
!k
z

SzðkÞ
" #

k0

z
pðk0j1; 1; zÞ$

!k
z

Szðk0Þ
" #

þ
!k
z

SzðkÞSzðk0Þ
! $

¼
!k
z

"
!kþz

!k
W ðkj1; 1; zÞW ðk0j1; 1; zÞþSzðkÞSzðk0Þ $W ðkj1; 1; zÞSzðk0Þ $W ðk0j1; 1; zÞSzðkÞ

#

¼
!k
z
½ðW ðkj1; 1; zÞ $ SzðkÞÞ ðW ðk0j1; 1; zÞ $ Szðk0ÞÞ þ

z
!k

W ðkj1; 1; zÞW ðk0j1; 1; zÞ(

¼W ðkj1; 1; zÞW ðk0j1; 1; zÞ þ
!k
z
ðW ðkj1; 1; zÞ $ SzðkÞÞðW ðk0j1; 1; zÞ $ Szðk0ÞÞ; ð4:15Þ
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where we have used W ðk; k0j1; 1; zÞ ¼ kpðkj1; 1; zÞ=
ð!k þ zÞ, in accordance with identity (3.1) and equation
(3.4). For z ¼ 0, J(kjq) ¼ dk,qþ1 and W(kj0)¼ S0(k) ¼
W(k), so the second term in equation (4.15) vanishes;
however, for z = 0, this will be generally different from
zero: crucially, but not unexpectedly, oversampling
from a graph without degree correlations automatically
introduces degree correlations. Numerical results and
theoretical predictions for random bond oversampling
are shown in figures 8 and 9 for the biological PPIN
of C. Elegans and synthetically generated Poissonian
and power-law counterparts, respectively.

4.2. Degree correlations for connectivity
dependent sampling

Let us now work out equation (4.1) for the types of
biased sampling considered above.

— Connectivity-dependent node undersampling, i.e.
x(k) ¼ ak/kmax, y(k,k 0) ¼ 1, z(k,k 0) ¼ 0

Here, we have

bðqÞ ¼ a!k
kmaxqpðqÞ

X

q0
W ðq; q0Þq0; aðqÞ ¼ 0 ð4:16Þ
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Figure 8. Normalized degree correlation function P(k,k 0) of biological protein interaction network of C. elegans (N ¼ 3512 and
!k ¼ 3:72) (a) before and (b) after adding a fraction z/N of bonds, with z ¼ 1, and (c) its theoretical prediction. Data obtained
by averaging over 104 samples.

so our equations reduce to
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— Connectivity-dependent bond undersampling, i.e.
x(k) ¼ 1, y(k,k 0) ¼ a kk 0/kmax

2 , z(k,k 0) ¼ 0
For this choice, we obtain

bðqÞ ¼ a!k
k2

maxpðqÞ
X

q0
W ðq; q0Þq0; aðqÞ ¼ 0 ð4:19Þ

and
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Figure 9. Normalized degree correlation function P(k,k 0) of (a) synthetically generated Poissonian and (b) power-law graphs with
N ¼ 3512 and !k ¼ 3:72 before (top panels) and after (middle panels) adding a fraction z/N of bonds, with (a) z ¼ 1 (left) and (b)
z ¼ 2, and their respective theoretical predictions (bottom panels). Data obtained by averaging over 104 samples.
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— Connectivity-dependent bond oversampling, i.e.
x(k) ¼ 1, y(k,k 0) ¼ 1, z(k,k 0) ¼ akk 0/kmax

2

Here, we get

aðqÞ ¼ a

k2
max

q!k; bðqÞ ¼ 1; ð4:22Þ
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and
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Hence, we obtain
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Numerical results and theoretical predictions for
connectivity-dependent bond oversampling are
shown in figure 10 for synthetically generated
Poissonian and power-law graphs.

4.3. Summary

As was the case for the degree distribution, also the
degree correlations can for a broad class of sampling
protocols be calculated exactly and in terms of fully
explicit relations. In contrast to the degree distri-
bution, for which the sampling problem had already
been studied partly by other authors, we are not
aware of any analytical results for degree correlations.
Our equations revealed that:

— Sampling will always affect the degree correlations
of networks, even in the random (i.e. connectivity
independent) case, if the original networks had
such degree correlations.

— Uncorrelated networks will remain uncorrelated
after sampling only for random node and/or bond
undersampling. Bond oversampling will in general
introduce degree correlations, even in the connec-
tivity independent case.

— Random node and bond undersampling both modify
the degree correlations (and the degree distribution)
in the same way, so they are equivalent for any
graph with prescribed topological features p(k) and
W(k,k 0), as generated from ensemble (2.4).

— Node and bond undersampling cannot be mapped
onto each other in the case of connectivity-
dependent sampling; their effects are qualitatively
different.

5. DISCUSSION

It iswell known that the presently available data on cellular
signalling networks are incomplete, and often suffer from
serious experimental bias, reflecting the highly non-trivial
nature of the experimental methods available for their col-
lection. Yet, a significant number of research papers
continue to be written in which such data are used to
infer statements on the possible biological relevance of
local network modules or motifs. In addition, the signalling
network data are increasingly used for preprocessing gene
expression data in order to derive more robust disease-
specific prognostic signatures [14–16], and will very soon
impact on actual treatment decisions in medicine (e.g.
will be used to suggest which cancer patients are likely to
benefit from which chemotherapy). Given this situation,
it is vital that we understand quantitatively the data
imperfections, i.e. the relation between the true biological
signalling networks probed and the imperfect network
samples of these networks that are reported in public
data repositories and presently used by biomedical scien-
tists. To do this, we need mathematical tools; the
relevant networks are too large to rely on numerical simu-
lation alone. Moreover, unlike simulations, analytical
results can be used in reverse to infer the most probable
true networks from the imperfect observed samples.

Ensembles of tailored random graphs with controlled
topological properties are a natural and rigorous
language for describing biological networks. They
suggest precise definitions of structural features, they
allow us to classify networks and obtain precise (dis)-
similarity measures, they provide precise ‘null models’
for hypothesis testing, and they can serve as efficient
proxies for real networks in process modelling. In this
paper, we have shown how they can also be used to
study analytically the effects of sampling on macro-
scopic topological properties of large biological
networks, under a much wider range of conditions
than those considered in previous analytical studies
(the latter are recovered as special simple cases). We
have obtained explicit expressions for both degree dis-
tributions and degree correlation kernels of sampled
networks, and have been able to do this for sampling
protocols that involve node and/or link undersampling
as well as for link oversampling. Our predictions are in
excellent agreement with numerical simulations.

As could have been expected, the most dangerous
types of sampling are the connectivity-dependent ones,
where the probability to observe bonds or links depends
on the degrees of the nodes concerned. Unfortunately,
present experimental protocols are quite likely to involve
precisely such sampling. We therefore hope that our new
analytical tools, which take the form of explicit and
transparent equations that connect the topological struc-
ture functions p(k) and W(k,k 0) of the sampled and the
true networks, can prove useful in explaining and decon-
taminating signalling network data.

The authors are grateful to L. Fernandes, F. Fraternali,
J. Kleinjung and E.S. Roberts for stimulating discussions.
A.C.C.C. would like to thank the Engineering and Physical
Sciences Research Council (UK) and the Biotechnology and
Biological Sciences Research Council (UK) for support.
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APPENDIX A. JOINT DEGREE DISTRIBUTION OF CONNECTED NODES

A.1. Path integral representation of W(k,k 0jx,y,z)
Here, we calculate the joint degree distribution of connected nodes (2.12) that will be observed in large net-
works that are sampled, according to protocol (2.2), from typical graphs with prescribed macroscopic
topological features p(k) and W(k,k 0), as generated from ensemble (2.4). With the short-hands
~W ðk; k0jx; y; zÞ ¼W ðk; k0jx; y; zÞ!kðx; y; zÞ

P
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Figure 10. Effects of connectivity-dependent bond oversampling on the normalized degree correlation P(k,k 0) of the synthetically
generated Poissonian and power-law graphs (N ¼ 3512, !k ¼ 3:72) shown in the panels (a,b), respectively. Middle panels show the
result of simulations for (a) a !k2

=k2
max ¼ 1 and (b) a !k2

=k2
max ¼ 0:7 (right) and bottom panels show the corresponding theoretical

predictions. Numerical data result from averaging over 104 samples.
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We next introduce the following order parameters
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This converts equation (A 1) into the following path integral, with the short-hand
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(unless ‘ , 0, in which case the integral is zero). We also note that by definition we always have the normalization
identity

P
k;k0*0 W ðk; k0jx; y; zÞ ¼ 1. So we arrive at:

W ðk; k0jx; y; zÞ ¼ dk;0 dk0;0

X
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and in which, via the steepest descent argument, the order parameters fP; P̂g are the functions that extremize the
kernel (A 5).

A.2. Functional saddle-point equations

Functional variation of equation (A 5) gives the following saddle-point equations for fP; P̂g:
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The integrals over V in equations (A 14) and (A 15) are again of the type (A 8), from which we deriveÐ
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Since we know the marginal of the distribution W(k,k 0) to be
P

k0W ðk; k0Þ ¼ kpðkÞ=k (which follows directly from
its definition), we can immediately read off the solution of equation (A 16):

fðqÞ ¼ lðqÞ ¼ q
k
: ðA 17Þ

Insertion into equation (A 13) and using equation (A 8) gives the solution of equations (A 11) and (A 12) in
explicit form:
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2pqq=q!
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A.3. Final result for the distribution W(k,k 0|x,y,z)

We can now evaluate the various ingredients of equation (A 9). The function Qðq;VÞ becomes
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Hence
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Qk$1ðq;VÞe$Qðq;VÞ: ðA22Þ

Summation over k reveals that
P

k*0 J ðkjqÞ ¼
P

k*0 LðkjqÞ ¼ 1 for all q . 0, which leads to the final result:

W ðk; k0jx; y; zÞ

¼

X
q;q0.0

xðqÞxðq0ÞfpðqÞpðq0Þzðq; q0ÞJ ðkjqÞJ ðk0jq0Þ þ kW ðq; q0Þyðq; q0ÞLðkjqÞLðk0jq0Þg
P

q;q0.0xðqÞxðq0ÞfpðqÞpðq0Þzðq; q0ÞþkW ðq; q0Þyðq; q0Þg

¼

X
q;q0.0

xðqÞxðq0ÞfpðqÞpðq0Þzðq; q0ÞJ ðkjqÞJ ðk0jq0Þ þ kW ðq; q0Þyðq; q0ÞLðkjqÞLðk0jq0Þg
!kðx; y; zÞ

P
q pðqÞxðqÞ

:

ðA 23Þ

with kðx; y; zÞ as given in equation (2.10). The marginals of W(k,k 0jx,y,z) are obtained trivially by summing equation
(A 23) over k 0, giving

W ðkjx; y; zÞ ¼

X
q;q0.0

xðqÞxðq0ÞfpðqÞpðq0Þzðq; q0ÞJ ðkjqÞ þ kW ðq; q0Þyðq; q0ÞLðkjqÞg
!kðx; y; zÞ

P
q pðqÞxðqÞ

: ðA 24Þ

A.4. Explicit expression for the factors J(kjq)
To carry out the integral in equations (A 21) and (A 22), we first write Q(q,V) as Q(q,V) ¼ a(q)+b(q)qe2iV, with

aðqÞ ¼
X

q0*0

pðq0Þxðq0Þzðq; q0Þ and bðqÞ ¼ k
qpðqÞ

X

q0*0

xðq0Þyðq; q0ÞW ðq; q0Þ: ðA 25Þ

We note that, owing to
P

q0W ðq; q0Þ ¼ ðq=kÞpðqÞ, we can be sure that a(q) [ [0,1] and b(q) [ [0,1]. Substitution
into equations (A 21) and (A 22) and integration over V, for q . 0 and k . 0, then leads to

J ðkjqÞ¼ e$aðqÞ q!

qqðk$1Þ!
Xk$1

n¼0

k$1

n

" #
ak$1$nðqÞbnðqÞqn

ðp

$p

dV
2p

eiVðq$nÞþqð1$bðqÞÞe$iV ¼ e$aðqÞ
Xminfk$1;qg

n¼0

q
n

" #
ak$1$nðqÞ
ðk$1$nÞ!

bnðqÞð1$bðqÞÞq$n

ðA26Þ

and, similarly,

LðkjqÞ¼ e$aðqÞ
Xminfk$1;q$1g

n¼0

q$1

n

" #
ak$1$nðqÞ
ðk$1$nÞ!

bnðqÞð1$bðqÞÞq$1$n: ðA27Þ
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Clearly, J ðkjqÞ * 0;LðkjqÞ * 0 for all (k,q). Since the factors (A 21) and (A 22) also satisfy the normalizationP
k*0 J kq ¼ 1;

P
k*0 Lkq ¼ 1 for all q . 0, they can be interpreted as conditional probabilities, as suggested by

our chosen notation.

A.5. Tests

To test our expression (A 23) we set x(k) ¼ x, y(k) ¼ y and z(k,k 0) ¼ z, and try to recover from equation (A 24) via
identity (3.1), our earlier results on the degree distribution for unbiased sampling. We now find a(q) ¼ xz, b(q) ¼ xy
and !kðx; y; zÞ ¼ xðz þ !kyÞ, which implies that

J ðkjqÞ ¼ e$xzxk$1
Xminfq;k$1g

n¼0

q
n

" #
ynð1$ xyÞq$n zk$1$n

ðk $ 1$ nÞ!
ðA 28Þ

and

LðkjqÞ ¼ J ðkjq $ 1Þ: ðA 29Þ

Let us inspect the following cases:

— Perfect sampling, i.e. x ¼ y ¼ 1 and z ¼ 0.
Now there should be no difference between the kernel W(k,k 0) and the observed kernel W(k,k 0|1,1,0) of the
sample. Here, we see that equation (A 19) simplifies to Q(q,V) ¼ qe2i V; hence a(q) ¼ 0 and b(q) ¼ 1 leading to
LðkjqÞ ¼ dq;k and therefore to the correct identity W(k,k 0|x,y,z) ¼W(k,k 0).

— Unbiased node and/or link undersampling, i.e. xy , 1 and z ¼ 0.
Now we have !kðx; y; 0Þ ¼ !kxy and

J ðkjqÞ ¼ xk$1 q
k $ 1

" #
yk$1ð1$ xyÞq$kþ1I ðq * k $ 1Þ; ðA 30Þ

which gives

W ðkjx; y; 0Þ ¼ 1
!k

X

k0*k

pðk0Þk0 k0 $ 1
k $ 1

" #
ðxyÞk$1ð1$ xyÞk

0$k ðA 31Þ

and therefore we recover the correct expression

pðkjx; y; 0Þ ¼
!kxy
k

W ðkjx; y; 0Þ

¼ ðxyÞk
X

k0*k

pðk0Þ
k0

k0 $ k

" #
ð1$ xyÞk

0$k :

ðA 32Þ

— Unbiased bond oversampling, i.e. x ¼ y ¼ 1 and z . 0.
Now !kð1; 1; zÞ ¼ !k þ z and J ðkjqÞ ¼ e$z zk$1$q

ðk$1$qÞ!I ðk * q þ 1Þ, which results in

pðkj1; 1; zÞ ¼
!k
k

W ðkj1; 1; zÞ ¼ 1
k

z
X

q
pðqÞJ ðkjqÞ þ

X

q
pðqÞqJ ðkjq $ 1Þ

( )

¼ e$z

k

Xk$1

q¼0

pðqÞ zk$q

ðk $ 1$ qÞ!
þ
Xk

q¼1

pðqÞq zk$q

ðk $ qÞ!

( )

¼ e$z
Xk

‘¼0

pðk $ ‘Þz‘

‘!
;

ðA 33Þ

which is indeed the correct result identified earlier.

REFERENCES

1 Prasad, T. S. K. et al. 2009 Human protein reference data-
base—2009 update. Nucleic Acids Res. 37, D767–D772.
(doi:10.1093/nar/gkn892)

2 Fernandes, L. P., Annibale, A., Kleinjung, J., Coolen,
A. C. C. & Fraternali, F. 2010 Protein networks reveal
detection bias and species consistency when analysed by
information-theoretic methods. PLoS ONE 5, e12083.
(doi:10.1371/journal.pone.0012083)

3 Stumpf, M. P. H. & Wiuf, C. 2005 Sampling proper-
ties of random graphs: the degree distribution.
Phys. Rev. E 72, 036118. (doi:10.1103/PhysRevE.72.
036118)

4 Stumpf, M. P. H., Wiuf, C. & May, R. M. 2005 Subnets of
scale-free networks are not scale-free: sampling properties
of networks. Proc. Natl Acad. Sci. USA 1.2, 4221–4224.
(doi:10.1073/pnas.0501179102)

5 Han, J. D. J., Dupuy, D., Bertin, N., Cusick, M. E. &
Vidal, M. 2005 Effect of sampling on topology predictions

Effects of sampling on complex networks A. Annibale and A. C. C. Coolen 855

Interface Focus (2011)

 on October 26, 2011rsfs.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/10.1093/nar/gkn892
http://dx.doi.org/10.1371/journal.pone.0012083
http://dx.doi.org/10.1103/PhysRevE.72.036118
http://dx.doi.org/10.1103/PhysRevE.72.036118
http://dx.doi.org/10.1073/pnas.0501179102
http://rsfs.royalsocietypublishing.org/


of protein–protein interaction networks. Nat. Biotechnol.
23, 839–844. (doi:10.1038/nbt1116)

6 Lee, S. H., Kim, P.-J. & Jeong, H. 2006 Statistical proper-
ties of sampled networks. Phys. Rev. E 73, 016102. (doi:10.
1103/PhysRevE.73.016102)

7 De Silva, E., Thorne, T., Ingram, P., Agrafioti, I., Swire, J.,
Wiuf, C. & Stumpf, M. P. H. 2006 The effects of incomplete
protein interaction data on structural and evolutionary
inferences. BMC Biol. 4, 39. (doi:10.1186/1741-7007-4-39)

8 Viger, F., Barrat, A., Dall’ Asta, L., Zhang, C. H. &
Kolaczyk, E. D. 2007 What is the real size of a sampled net-
work? The case of the internet. Phys. Rev. E 75, 056111.
(doi:10.1103/PhysRevE.75.056111)

9 Solokov, I. M. & Eliazar, I. I. 2010 Sampling from scale-free
networks and the matchmaking paradox. Phys. Rev. E 81,
026107. (doi:10.1103/PhysRevE.81.026107)

10 Annibale, A., Coolen, A. C. C., Fernandes, L. P.,
Fraternali, F. & Kleinjung, J. 2009 Tailored graph ensem-
bles as proxies or null models for real networks I: tools for
quantifying structure. J. Phys. A Math. Theor. 42, 485001.
See http://arxiv.org/abs/0908.1759.

11 Coolen, A. C. C., De Martino, A. & Annibale, A. 2009
Constrained Markovian dynamics of random graphs.
J. Stat. Phys. 136, 1035–1067. (doi:10.1007/s10955-009-
9821-2)

12 Coolen, A. C. C., Fraternali, F., Annibale, A., Fernandes,
L. P. & Kleinjung, J. In press. Modelling biological net-
works via tailored random graphs. Handb. Stat. Syst. Biol.

13 Simonis, N. et al. 2009 Empirically controlled mapping of the
Caenorhabditis elegans protein–protein interactome net-
work. Nat. Methods 6, 47–54. (doi:10.1038/nmeth.1279)

14 Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. & Ideker, T.
2007 Network-based classification of breast cancer
metastasis. Mol. Syst. Biol. 3, 1–10. (doi:10.1038/
msb4100180)

15 Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E. &
Vert, J. P. 2007 Classification of microarray data using
gene networks. BMC Bioinf. 8, 35. (doi:10.1186/1471-
2105-8-35)

16 Taylor, I. W. et al. 2009 Dynamic modularity in protein
interaction networks predicts breast cancer outcome. Nat.
Biotechnol. 27, 199–204. (doi:10.1038/nbt.1522)

856 Effects of sampling on complex networks A. Annibale and A. C. C. Coolen

Interface Focus (2011)

 on October 26, 2011rsfs.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/10.1038/nbt1116
http://dx.doi.org/10.1103/PhysRevE.73.016102
http://dx.doi.org/10.1103/PhysRevE.73.016102
http://dx.doi.org/10.1186/1741-7007-4-39
http://dx.doi.org/10.1103/PhysRevE.75.056111
http://dx.doi.org/10.1103/PhysRevE.81.026107
http://arxiv.org/abs/0908.1759
http://dx.doi.org/10.1007/s10955-009-9821-2
http://dx.doi.org/10.1007/s10955-009-9821-2
http://dx.doi.org/10.1038/nmeth.1279
http://dx.doi.org/10.1038/msb4100180
http://dx.doi.org/10.1038/msb4100180
http://dx.doi.org/10.1186/1471-2105-8-35
http://dx.doi.org/10.1186/1471-2105-8-35
http://dx.doi.org/10.1038/nbt.1522
http://rsfs.royalsocietypublishing.org/

	What you see is not what you get: how sampling affects macroscopic features of biological networks
	Introduction
	Definitions
	Networks and sampling protocols
	Macroscopic characterization of network structure

	Effects of sampling on degree distributions
	Connection between observed degree distributions and degree correlations
	Degree distribution for random sampling
	Degree distribution for connectivity-dependent sampling
	Summary

	Effects of sampling on degree correlation function
	Degree correlations for random sampling
	Degree correlations for connectivity dependent sampling
	Summary

	Discussion
	The authors are grateful to L. Fernandes, F. Fraternali, J. Kleinjung and E.S. Roberts for stimulating discussions. A.C.C.C. would like to thank the Engineering and Physical Sciences Research Council (UK) and the Biotechnology and Biological Sciences Research Council (UK) for support.
	Appendix A. Joint degree distribution of connected nodes
	Path integral representation of W(k,k´|x,y,z)
	Functional saddle-point equations
	Final result for the distribution W(k,k´|x,y,z)
	Explicit expression for the factors J(k|q)
	Tests

	References


