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Direct Response Analysis is a general computational tool for quantifying direct functional interactions

between components in cellular signalling systems from experimental perturbations and measure-

ments alone. This paper aims to reveal the biological meaning of the direct response coefficients

obtained upon applying DRA to simple Michaelis–Menten type proteomic and gene regulatory systems.

These systems describe dimer formation and dissociation, protein preduction and decay, and

transcription. We derive explicit formulae for the direct response coefficients in terms of biochemical

reaction rates, and clarify the potential and limitations of the DRA method. We find that response

coefficients are strongly asymmetric, and that they balance persistent characteristics of reactions (e.g.

the ratios of on- and off rates) against the time-scales over which these reactions act; fast reactions give

stronger response coefficients. The direct interactions between protein species, caused by dimer

formation, are effectively negative. We illustrate our results with numerical simulations.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Macroscopic biological complexity often results from non-
linear interaction among microscopic components, the properties
of which appear quite different in context and in isolation. Over
the years, many studies have aimed at understanding how
components of large and complex biological systems are inte-
grated and coordinated into a functioning macroscopic unit.
Nowadays such work is called Systems Biology (Murray, 2001;
Citri and Yarden, 2006; Sorkin and Goh, 2008; Ciaccio et al., 2010).
The systems approach is particularly fruitful in cellular biology,
where the different responses induced in cells (such as prolifera-
tion, survival, and motility) are thought to be regulated by
signalling via complicated cascades of protein reactions, initiated
by ligand binding. Network-level analysis is needed to infer
the signal transduction through changes in the activities and
concentrations of multiple proteins and their complexes; this
information then needs to be mapped to biochemical reaction
equations, in order to understand the signalling dynamics quan-
titatively. Such research typically involves two areas of mathe-
matical analysis (Chen et al., 2009). The first focuses on statistical
and topological properties of the interaction network, and infer-
ence of biologically relevant modules (Casey et al., 2007). The
second on the dynamical analysis of biochemical protein reac-
tions (Murray, 2001; Cornish-Bowden, 2004), usually represented
by coupled ordinary differential equations.
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If we seek to model mathematically the various cellular
biochemical reactions we face serious obstacles. Even if we know
the relevant signalling pathways in full, such models typically
have many parameters that must be measured or estimated, such
as initial protein concentrations and reaction rate constants (e.g.
complex formation and enzymatic reactions Cornish-Bowden,
2004). Moreover, often we do not know the pathways in full,
and need mathematical analysis in conjunction with biological
experiments in order to elucidate the pathway structure of the
system. We then require effective means to incorporate experi-
mental data into the model in a manner that reproduces cell
specific responses while taking into account the uncertainty in
the precise biochemistry of the signalling and the inability of
experiments to measure all relevant processes (Chen et al., 2009;
Aldridge et al., 2006). The purpose of Direct Response Analysis
(DRA) (Kholodenko et al., 1997, 2002; Bruggeman et al., 2002;
Sontag et al., 2004; Cho et al., 2005; Andrec et al., 2005;
Kholodenko, 2007), proposed by Kholodenko and coworkers, is
to achieve this. It is a general protocol with which to extract
information on the direct pairwise influence which components in
a complex dynamical system exert upon each other (as opposed
to influence mediated via other components), from only the
measurement of responses of these variables to controlled system
perturbations. DRA has generally been referred to in literature as
Modular Response Analysis, but we feel that this does not capture
sufficiently the essence of the method, which is its ability to
separate direct interactions between components from those that
are mediated via third parties. However, it is not yet clear what
Kholodenko’s response coefficients represent exactly in terms of
reaction rates and other biophysical parameters of the cellular
signalling system from which they are calculated.

www.elsevier.com/locate/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2012.04.001
dx.doi.org/10.1016/j.jtbi.2012.04.001
dx.doi.org/10.1016/j.jtbi.2012.04.001
mailto:ton.coolen@kcl.ac.uk
dx.doi.org/10.1016/j.jtbi.2012.04.001


N. Shayeghi et al. / Journal of Theoretical Biology 304 (2012) 219–225220
In this paper we aim to clarify the meaning of the direct
response coefficients that emerge from DRA, by applying DRA to
simple models of synthetic proteomic and gene regulation signal-
ling systems. We express the response coefficients explicitly in
terms of biochemical parameters (reaction rates), and thereby
achieve a better understanding of what these coefficients gen-
erally tell us about the underlying biology.
2. Direct Response Analysis

Let us first review briefly the method of Direct Response Analysis
(Kholodenko et al., 1997, 2002). We consider a general dynamical
system, modelled by a closed set of ordinary differential equations
for N dynamical variables x¼ ðx1, . . . ,xNÞ (such as log-concentrations
of proteins and protein complexes, or gene expression levels), and in
which K parameters h¼ ðy1, . . . ,yK Þ represent time-independent
external perturbations (such as RNA interference):

dxi

dt
¼ f iðx; hÞ, i¼ 1 . . .N ð1Þ

The functions fi are assumed to be smooth, so that their partial
derivatives exist. In DRA one assumes also that the system (1)
relaxes to a unique equilibrium state1; the fixed point is written as
xðhÞ ¼ ðx1ðhÞ, . . . ,xNðhÞÞ, and is to be solved from the fixed-point
equations f iðx;hÞ ¼ 0 for all i. We next define direct response
coefficients rij for the unperturbed system, and show how these
can be calculated upon measuring the system’s response to
perturbations:
�

1

reaso

syste

uniq
We first consider the unperturbed system, i.e. h¼ 0, and write
its stationary state simply as xð0Þ ¼ x. We now imagine a
constrained version of (1), where only xi evolves via
dxi=dt¼ f iðx;0Þ, xj is kept at xj ¼ xjþE (with E small) and all
other components are held at their equilibrium values xk ¼ xk.
The new stationary value for xi will be of the form
x 0i ¼ xiþrijEþOðE2Þ; the factor rij measures the direct linear
effect of small perturbations in xj on xi close to the equilibrium
state, and is called the direct response coefficient of the
interaction j-i. Its value is determined by the fixed-point
equation:

f iðx1, . . . ,xi�1,xiþrijEþOðE2Þ,xiþ1, . . . ,xj�1,xjþE,xjþ1, . . . ,xN;0Þ ¼ 0

ð2Þ

Working out this identity, using f iðx,0Þ ¼ 0 and the short-
hands Jij ¼ ð@f iðx,0Þ=@xjÞ9x ¼ x for the elements of the Jacobian
at the fixed-point, gives ðJiirijþ JijÞEþOðE2Þ ¼ 0, and hence

rij ¼�Jij=Jii ð3Þ
�
 Calculation of (3) requires knowing Jij and Jii, i.e. partial
derivatives of the functions f iðx,hÞ in (1). However, we often
do not know these functions. The next step in DRA is there-
fore to construct a protocol for measuring all derivatives fJk‘g

via perturbations. Differentiation of the general fixed-point
f iðxðhÞ,hÞ ¼ 0 of (1) with respect to the perturbations gives

for all ði,jÞ :
XN

k ¼ 1

JikMkjþLij ¼ 0, Mkj ¼
@xkðhÞ

@yj
, Lij ¼

@f iðx,hÞ

@yj

����
xðhÞ

ð4Þ
Evolution to equilibrium is generally thought to be an experimentally

nable assumption (Murray, 2001), although there are certainly proteomic

ms with persistent oscillations (Carlin et al., 2011). The assumption of

ueness is more suspect.

2

equa

pertu
The entries Mkj give the changes in fixed-point values of all
components, resulting from small system perturbations; they
can in principle be measured or estimated experimentally.
The Lij are generally not known; one could limit oneself to
combinations (i,j) for which one expects to have Lij ¼ 0, but
this brings in dangerous and uncontrolled assumptions.
However, if we limit ourselves to perturbations of production
rates,2 i.e. f iðx,hÞ ¼ f iðxÞþyi, then Lij ¼ dij, and we can find the
fJk‘g by solving

for all ði,jÞ :
XN

k ¼ 1

JikMkj ¼�dij ð5Þ

These are N2 equations for N2 unknowns, the solution of
which amounts simply to inverting a matrix.
The strength of DRA is that it requires no prior knowledge of
the forces f iðx,0Þ in the unperturbed system, which allows it to be
used for uncovering these forces. But DRA also has weaknesses.
First, it assumes that our system obeys closed equations, and
(unless we turn to general perturbations h, where we need ad hoc
assumptions on which of the Lij are zero) it demands that we are
able to perturb all production rates of all components indepen-
dently. In a proteomic system we would then have to perturb
production rates of individual complexes independently, for
assuming closed equations demands that complexes are included
in our component list. This cannot be done without violating
chemical conservation laws. Second, DRA requires perturbations
that are infinitesimally small; in cellular signalling systems this is
experimentally very hard. In most applications of DRA so far the
perturbations have been gene knockdowns, so the above formulae
do not apply. One could try to remedy the situation somewhat by
extending the perturbation theory to higher orders, but this has
not yet been done and would still rule out knockdown perturba-
tions. In addition, some of the applicability limitations of DRA can
be lifted if it is applied in a modular framework, with dynamical
variables representing the activity of a module as a whole, as in
e.g. Sontag et al. (2004), Cho et al. (2005), and Yalamanchili et al.
(2006).

Here we are concerned with a different question: even if we
succeed in measuring the response coefficients (3), how do we
interpret the numbers that we find? What do these coefficients
mean in terms of biophysical reaction rates, when we apply DRA
to cellular signalling systems? Answering these questions would
aid our translation of experimental results into practical biologi-
cal knowledge, which is ultimately the objective of studies that
use DRA, such as Santos et al. (2007). To achieve this we calculate
the response coefficients (3) for simple mathematical models of
proteomic reaction equations and gene regulation.
3. Application to simple proteomic reaction networks

3.1. Derivation of explicit formulae for direct response coefficients

Suppose our cellular signalling system is a simple protein
interaction network, described by standard kinetic reaction equa-
tions (see e.g. Murray, 2001). If the reactions taking place are
hetero-dimer formation and dissociation, production, and decay,
and if for simplicity we leave out higher order protein complexes
and post-translational modifications, then such a system with n
If xi is a log-concentration, then in terms of actual concentrations Xi ¼ exi our

tions would be of the form ðd=dtÞXi ¼ FiðX1 , . . . ,XN ÞþyiXi , so production rate

rbations would be proportional to the corresponding concentrations.



Fig. 1. The DRA map for a simple synthetic protein interaction system with N¼5

protein species, described by Eq. (6). All rate constants were drawn randomly from

a truncated Gaussian distribution. Complexes are represented by grey squares and

unbound proteins by red circles. Arrows represent the direct response coefficients

(in direction and magnitude) given in (11); interactions between unbound

proteins are always negative and shown in red, and interactions between unbound

proteins and dimers are always positive and shown in black (thicker and darker

arrows indicate stronger direct responses).
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protein species would be described by equations of the form

d

dt
xi ¼

Xn

j ¼ 1

½k�ij xij�kþij xixj�þWi�gixi,
d

dt
xij ¼ kþij xixj�k�ij xij ð6Þ

Here xi and xij denote the concentrations of unbound protein i,
and the hetero-dimer formed by i and j. The k7

ij are the on/off
rates for the formation and dissociation of the hetero-dimers (if
kþij ¼ 0 such dimers are not forming); Wi and gi represent protein
production and decay rates. We consider only hetero-dimers, so
kþii ¼ xii ¼ 0 for all i. Our Eq. (6) obey the conservation laws
ðd=dtÞ½xiþ

P
jxij� ¼ Wi�gixi for all i. We define xij ¼ xji and

k7
ij ¼ k7

ji for all (i,j). It is trivial to determine the stationary
solution of (6), giving

xi ¼
Wi

gi

, xij ¼
kþij
k�ij

WiWj

gigj

ð7Þ

It is also trivial to calculate the entries of the Jacobian matrix.
Since our components include two distinct groups of dynamical
variables, viz. free protein concentrations labelled by a single
index i, and concentrations of complexes labelled by index pairs
(i,j), it is natural to write the associated forces as
f iðxÞ ¼

Pn
j ¼ 1½k

�

ij xij�kþij xixj�þWi�gixi and f ijðxÞ ¼ kþij xixj�k�ij xij, giv-
ing a Jacobian matrix with a block structure:

Jij ¼
@f iðxÞ

@xj

����
x

¼�kþij xi�dij

X
‘

kþi‘ x‘þgi

 !
, Jk,ij ¼

@f kðxÞ

@xij

����
x

¼ k�ij ðdkiþdkjÞ

ð8Þ

Jij,k ¼
@f ijðxÞ

@xk

����
x

¼ kþij ðxjdkiþxidkjÞ, Jij,k‘ ¼
@f ijðxÞ

@xk‘

����
x

¼�k�ij ðdikdj‘þdi‘djkÞ

ð9Þ

From this, via (3), follow our direct response coefficients of DRA.
They are only defined for distinct pairs of interacting components,
so we have rij with ia j, rk,ij, rij,k, and rij,k‘ with ði,jÞaðk,‘Þ,ð‘,kÞ:

rij ¼�
kþij xiP

‘k
þ

i‘ x‘þgi

, rk,ij ¼
k�ij ðdkiþdkjÞP
‘k
þ

k‘x‘þgk

, rij,k ¼
kþij
k�ij
ðxjdkiþxidkjÞ

rij,k‘ ¼ 0 ð10Þ

Equivalently, with (7) we can eliminate the equilibrium concen-
trations and express the response coefficients fully in terms of
biochemical system parameters:

rij ¼�
kþij Wi=giP

‘k
þ

i‘ W‘=g‘þgi

, rk,ij ¼
k�ij ðdkiþdkjÞP
‘k
þ

k‘W‘=g‘þgk

rij,k ¼
kþij
k�ij

Wj

gj

dkiþ
Wi

gi

dkj

 !
, rij,k‘ ¼ 0 ð11Þ

3.2. Interpretation and illustration

One understands the signs of the above coefficients. Increasing
the amount of an unbound protein ‘, at equilibrium, will increase
the formation rate of all dimers involving ‘, and hence reduce the
amount of unbound protein of all its binding partners (so ri‘o0
for all i with kþi‘ 40), while increasing the dimer concentrations
(so rij,‘40 for all complexes (i,j) that involve protein ‘). Similarly,
increasing the amount of the (i,j) dimer, in equilibrium, increases
the number of (i,j) dissociations and hence the concentrations of
its constituent proteins; since it has no direct effect on other
dimers we should indeed expect rij,k‘ ¼ 0. For further interpreta-
tion it is useful to write our equations and results in terms of the
following quantities: xi ¼ Wi=gi (stationary concentrations of
unbound protein), Gij ¼ kþij =k�ij (which control the equilibrium
balance of bound versus unbound (i,j) dimers), tij ¼ 1=k�ij
(the characteristic timescale of complex formation/dissociation),
and ti ¼ 1=gi (the characteristic timescale of protein decay). This
converts (6) into

d

dt
xi ¼

Xn

j ¼ 1

1

tij
ðxij�GijxixjÞþ

1

ti
ðxi�xiÞ,

d

dt
xij ¼

1

tij
ðGijxixj�xijÞ ð12Þ

and gives for the nonzero direct response coefficients:

rij ¼
�GijxiP

‘Gi‘x‘ðtij=ti‘Þþðtij=tiÞ
, rk,ij ¼

dkiþdkjP
‘Gk‘x‘ðtij=tk‘Þþðtij=tkÞ

rij,k ¼GijðxjdkiþxidkjÞ ð13Þ

We now see more clearly how direct response coefficients balance
the persistent impact of interactions against the timescales over
which the interactions act. For instance, if protein decay is much
slower than dimer formation and dissociation, i.e. tij=tk-0 for all
(i,j,k), then the above coefficients reduce to

rij ¼
�GijxiP

‘Gi‘x‘ðtij=ti‘Þ
, rk,ij ¼

dkiþdkjP
‘Gk‘x‘ðtij=tk‘Þ

, rij,k ¼GijðxjdkiþxidkjÞ

ð14Þ

whereas if protein decay is much faster than dimer formation and
dissociation, i.e. tij=tk-1 for all (i,j,k):

rij ¼ 0, rk,ij ¼ 0, rij,k ¼GijðxjdkiþxidkjÞ ð15Þ

Fig. 1 shows an example of the resulting DRA map for the
above system, in which unbound proteins and complexes corre-
spond to circular and square nodes, respectively, and where
nonzero direct response coefficients are calculated from (11)
and drawn as directed arrows (in shades of red when negative,
and shades of black when positive). Reaction rates in this example
were generated randomly. The figure emphasises very clearly the
general asymmetry of the direct response coefficients, in contrast
to more naive methods for quantifying the mutual interactions in
interaction networks (such as quantifying interactions by correla-
tion between the values of the dynamical variables, which would
always lead to rij ¼ rji for all (i,j)).

To gain further intuition on direct response coefficients in
proteomic systems we next examine equations (11) numerically
for randomly generated network instances, with N¼60 protein
species. We draw the reaction rates for each network from
truncated Gaussian distributions (truncated at zero, to have
nonnegative values only) and we allow all protein species in
principle to form complexes with each other. Our objective is to
find out whether there are statistical relations between



Fig. 2. Values of direct response coefficients between N¼60 unbound protein species, measured upon generating random protein interaction networks with reaction rates

drawn randomly from truncated Gaussian distributions. Top row: A, scatter plot of ðrij ,rjiÞ on a log–log scale, plotted for io j (to prevent artificial symmetries); B, observed

distribution rðrÞ of direct response coefficients; C, scatter plot of ðrij ,k
þ

ij Þ on a log–log scale. Bottom row: D, scatter plot of ðrij=rji ,k
þ

ij =k�ij Þ plotted for io j (to prevent artificial

symmetries); E, scatter plot of ðrji ,yi=giÞ; F, scatter plot of ðrij ,yi=giÞ. Note: for every ratio yi=gi there are N coefficients rij, which is why the points in the last two plots show

linear sub-structure.
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e.g. forward and reverse direct response coefficients rij and rji, or
between direct response coefficients and the type of reaction rate
functions one might expect to dominate their values, and how the
coefficients are distributed. The results are shown in Figs. 2 and 3.
We observe no significant correlation between rij and rji (Pearson
coefficient o0:05), see e.g. Fig. 2A. Fig. 2B shows a histogram
estimator of the distribution rðrÞ ¼N�2P

i,jrNd½r�rij�, which sug-
gests that for the chosen reaction rate statistics the direct
response coefficients are, to good approximation, distributed
according to a power law. We next plot the coefficients rij against
the associated on-rates kþij in Fig. 2C (showing only a modest
positive correlation, as expected from (11)), and the ratios rij=rji

against the corresponding binding ratios kþij =k�ij in Fig. 2D (where
no relation is observed). In Fig. 2E and F we observe a strong
correlation between the rij and the protein synthesis/degradation
ratios yi=gi (Pearson coefficient 0.7), but almost no correlation
between the reverse response coefficient rji and yi=gi, i.e. the
direct response of protein i to perturbation of protein j depends
solely on typical concentration of unbound protein i . In Fig. 3 Left
and Right we detect a weak inverse linear relation between rij,k

and rjk,i, (correlation �0.1). Furthermore, we do observe a roughly
linear relation between ri,jkþrjk,i and kþij =k�ij . Overall we can
deduce that the most important parameters impacting upon
direct response coefficients between unbound proteins are the
on-rates for complex formation and their synthesis/degradation
ratios. The direct responses of free protein concentrations to
perturbations in concentrations of complexes (and vice versa)
are influenced strongly by the binding ratios of the complexes.
The above regularities are preserved if we use different random
initialisations or different distributions of rate constants.

4. Application to a combined proteomic reaction and gene
regulation network

4.1. Construction of closed equations for equilibrating gene

regulation dynamics

If we wish to apply DRA as a tool for uncovering gene regulation
pathways (Yalamanchili et al., 2006; Mettetal et al., 2006; Raingeaud
et al., 1996; Williams et al., 2004; Workman et al., 2006), the
variables to be perturbed and measured are gene expression levels.
Experimental timescales will then have to be sufficiently large for
the transcription system to equilibrate; gene regulation is about
three orders of magnitude slower than protein reactions. In Eq. (6)
the variable Wi can be interpreted as representing the expression
level of gene i, so we now extend (6) with further simple equations
that describe the evolution of the Wi, giving

d

dt
xi ¼

Xn

j ¼ 1

½k�ij xij�kþij xixj�þWi�gixi,
d

dt
xij ¼ kþij xixj�k�ij xij ð16Þ

t d

dt
Wi ¼ FðAiðxÞ,RiðxÞÞ�Wi ð17Þ

AiðxÞ ¼
X

j

Jþij xjþ
X

jk

Jþi,jkxjk, RiðxÞ ¼
X

j

J�ij xjþ
X

jk

J�i,jkxjk ð18Þ



Fig. 3. Values of direct response coefficients between N¼60 unbound protein species and their binary complexes, measured upon generating synthetic protein interaction

networks with reaction rates drawn randomly from truncated Gaussian distributions. Left: scatter plot of ðri,jk ,rjk,iÞ on a log-log scale. Right, scatter plot of ðri,jkþrjk,i ,k
þ

ij =k�ij Þ

on a log–log scale. Note: for every ratio kþij =k�ij there are N combinations of ri,jkþrjk,i , which explains the linear sub-structure on the right.
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Here AiðxÞ and RiðxÞ represent formulae for the cumulative activa-
tion and repression of gene i, in which nonnegative parameters
fJ7ij ,J7i,jkg specify the efficacies of the various proteins j and dimers
(i,j) as activators (þ) or repressors (�) of gene i, and with J7i,jk ¼ J7i,kj

for all (i,j,k). If protein j does not transcribe gene i then Jþij ¼ J�ij ¼ 0,
etc. F(A,R) is a nonnegative nonlinear Hill-type function, with
@F=@AZ0, @F=@Rr0, such as FðA,RÞ ¼ ErfðA�RÞ or FðA,RÞ ¼
1
2 þ

1
2tanhðA�RÞ. The parameter t gives the characteristic timescale

for gene regulation dynamics.
Since the proteomic dynamics is much faster than gene

regulation, we may assume that (16) reaches equilibrium very
fast, and replace the instantaneous values x in (18) by their
equilibrated expressions xð!Þ given in (7). We also choose the
simple form FðA,RÞ ¼ FðA�RÞ for our transcription function. All this
reduces our equations to the following simple set that involves
expression levels only:

t d

dt
Wi ¼ FðUið!ÞÞ�Wi ð19Þ

Uið!Þ ¼
X

j

UijWjþ
X

jk

Ui,jkWjWk, Uij ¼
Jþij �J�ij
gj

, Ui,jk ¼
kþjk
k�jk

Jþi,jk�J�i,jk
gjgk

ð20Þ

The DRA formalism demands that (19) evolves to a unique fixed-
point. Numerical examination, however, reveals that this is not
always the case; the system (19) can evolve into oscillatory
trajectories. To overcome this problem and get meaningful results
from DRA, we have to postulate that, whenever the fixed-points of
(19) are locally unstable, asymptotically the system (19) will
exhibit persistent oscillations close to these fixed-points. This
would allow us to apply DRA after all, in reasonable approxima-
tion. In order to find the unstable fixed points of (19) numerically,
we modify (19) into

d

dt
Wi ¼ Gið!Þ ¼ FðUið!ÞÞ�Wi�

X
‘

ðFðU‘ð!ÞÞ�W‘Þ
@

@Wi
FðU‘ð!ÞÞ ð21Þ

All stationary solutions of (19) are also stationary solutions of
(21). However, in contrast to (19), the modified process (21) is
guaranteed to evolve to a fixed point, i.e. a solution of

8i¼ 1 . . .N :
X
‘

ðFðU‘ð!ÞÞ�W‘Þ
@

@Wi
FðU‘ð!ÞÞ ¼ FðUið!ÞÞ�Wi ð22Þ

since it defines gradient descent on the Lyapunov function

Lð!Þ ¼ 1

2

X
‘

ðW‘�FðU‘ð!ÞÞÞ
2

ð23Þ
Moreover, the global minima of (23), i.e. the dominant solutions
of (22), are indeed the fixed-points of (19).

4.2. Derivation of explicit formulae for direct response coefficients

Since stationary can now be relied upon, we can calculate from
(21) after equilibration the direct response coefficient Rij that
quantifies the impact of expression level j on expression level i:

Rij ¼�
@Gið!Þ=@Wj

@Gið!Þ=@Wi
ð24Þ

with

@

@Wj
Gið!Þ ¼

@

@Wj

X
‘

ðFðU‘!ÞÞ�W‘Þ di‘�
@

@Wi
FðU‘ð!ÞÞ

� �

¼
X
‘

@FðU‘ð!ÞÞ

@Wj
�dj‘

� �
di‘�

@FðU‘ð!ÞÞ

@Wi

� ��

�ðFðU‘ð!ÞÞ�W‘Þ
@2FðU‘ð!ÞÞ

@Wi@Wj

��
ð25Þ

Upon choosing the simple sigmoidal function FðUÞ ¼ 1
2 þ

1
2tanhðUÞ,

with F 0ðUÞ ¼ 1
21�tanh2

ðUÞ�, the remaining partial derivatives come
out to be

@FðU‘ð!ÞÞ

@Wi
¼

1

2
½1�tanh2

ðU‘ð!ÞÞ�
@U‘ð!Þ

@Wi
ð26Þ

@2FðU‘ð!ÞÞ

@Wi@Wj
¼ ½1�tanh2
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in which we have
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X
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We should bear in mind that Eq. (21) will generally have more
than one fixed-point solution; for each such solution we can
calculate corresponding direct response coefficients Rij, and these
will generally differ between fixed-points. Fig. 4 shows an
example of the resulting DRA map for the (modified) gene
regulation system (21), in which genes correspond to circular
nodes, and where nonzero direct response coefficients are calcu-
lated from (24) and drawn as directed arrows (in shades of red
when negative, and shades of black when positive). Transcription
rates in this example were generated randomly. Again we observe
clearly the general asymmetry of the direct response coefficients.



Fig. 4. The DRA map for a simple gene regulation system of the type (21) with

N¼6 genes. All transcription rate constants were drawn randomly from a

truncated Gaussian distribution. Individual genes are shown as red circles. The

dynamics (21) is run following random initialisation with expression levels drawn

from a truncated Gaussian distribution. Arrows represent the direct response

coefficients Rij (in direction and magnitude) given in (24); negative coefficients are

shown in red, positive ones in black (thicker and darker arrows indicate stronger

direct responses). We emphasise that this example serves only as an illustration;

the direct response coefficients found (and hence the DRA diagram) obviously

depend on the chosen rate constants.
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5. Discussion

Direct Response Analysis (DRA) is a versatile computational
tool proposed by Kholodenko (2007, and see references therein)
for quantifying functional interactions between components in
cellular signalling systems from experimental perturbations and
measurements alone. In this paper we sought to understand in
greater depth the potential and limitations of this method when
applied to cellular signalling systems, and the biological meaning
of the direct response coefficients that would result from applica-
tion of DRA to simple Michaelis–Menten type proteomic and gene
regulatory systems by deriving explicit formulae for the direct
response coefficients in terms of biochemical reaction rates.

As with any mathematical formalism, the validity of DRA rests on
various assumptions and conditions. It is hard to see how these can
be satisfied in the context of proteomic signalling systems. For
instance, DRA demands that one perturbs and measures indepen-
dently all dynamical variables of a closed dynamical system. In
proteomic pathways this implies that one has to include the
concentrations of all complexes that can be formed by the proteins
under study. But independent perturbation of concentrations of
individual complexes without perturbing the concentrations of the
constituent proteins is impossible in practice, as it would violate
biochemical conservation laws. Second, DRA is a linear perturbation
theory, and thus demands that all perturbations are infinitesimally
small; yet in practice it is often applied in a context where
perturbations take the form of gene knockdowns—violating the
basis of the method. It is not clear to what extent the outcome of
DRA can be trusted when applied to a situation that fails to meet its
conditions for validity. If DRA is applied to gene regulation pathways
a further complication arises: the typical equations describing the
dynamics of expression levels in gene regulation networks do not
always evolve to equilibrium, in conflict with another assumption of
DRA. One can circumvent the problem via a slightly modified
dynamical process that does go to stationary states, but this requires
further assumption that the gene regulation dynamics stabilises into
oscillatory trajectories close to fixed-points.

We have expressed the direct response coefficients of DRA
explicitly in terms of biochemical rate constants, for simple
models of proteomic and gene regulation systems. This led to
valuable insight into what exactly is measured by these coeffi-
cients. For instance:
1.
 Response coefficients are strongly asymmetric (i.e. direc-
tional). The direct effect of perturbing the concentration of a
protein A on that of another protein B with which it interacts is
not invariant under exchanging the roles of A and B. The same
is true for perturbations of expression levels.
2.
 Response coefficients balance persistent characteristics of
reactions (e.g. the ratios of on- and off rates) against the
time-scales over which these reactions act. The direct response
mediated by a biochemical reaction increases with the impact
of that reaction on steady-state concentrations, but decreases
with the characteristic time scale of this reaction (fast reac-
tions give stronger response coefficients).
3.
 The direct interactions between protein species, caused by
dimer formation, are negative. The intuition is that increasing
the concentration of a protein leads to increased formation of
dimers with its reaction partners; this reduces the amount of
free protein of its partners. This is why oscillatory protein
concentration dynamics can be linked to short loops of odd
length in protein interaction networks (Carlin et al., 2011).

The main reasons for using DRA in the study of real biological
systems have traditionally been to understand the system
responses that are observed experimentally following specific
biological perturbations such as gene knockdown and cell adhe-
sion, and to have a systematic tool for mapping unknown cellular
signalling pathways. Our present work might add to these the
potential for calculating estimates of actual kinetic parameters
from experimental perturbations, either by explicit inversion of
identities such as (11) and (24), or by using these identities in a
Bayesian estimation framework. The main limitation of our
analysis is that it is based on a simplified mathematical repre-
sentation of protein–protein interaction and gene regulation, as
will be any quantitative study. Our results are thus valid to
the extent that this representation captures the dominant signal-
ling events in the cell. More specifically: our model does not
include molecular complexes of order higher than two, post-
translational modifications, stochasticity, or spatial variation of
molecular concentrations, and involves simplified equations for
transcription.

However, we hope that this paper may aid experimentalists
who use the DRA method for uncovering cellular signalling
pathways, in exposing the dangers caused by violation of the
assumptions underlying DRA, and in providing a better under-
standing of the biochemical meaning of the direct response
coefficients which they would be measuring.
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