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Abstract
Pattern-diluted associative networks were recently introduced as models for the
immune system, with nodes representing T-lymphocytes and stored patterns
representing signalling protocols between T- and B-lymphocytes. It was
shown earlier that in the regime of extreme pattern dilution, a system with
NT T-lymphocytes can manage a number NB = O(Nδ

T ) of B-lymphocytes
simultaneously, with δ < 1. Here we study this model in the extensive load
regime NB = αNT , with a high degree of pattern dilution, in agreement
with immunological findings. We use graph theory and statistical mechanical
analysis based on replica methods to show that in the finite-connectivity regime,
where each T-lymphocyte interacts with a finite number of B-lymphocytes as
NT → ∞, the T-lymphocytes can coordinate effective immune responses to an
extensive number of distinct antigen invasions in parallel. As α increases, the
system eventually undergoes a second order transition to a phase with clonal
cross-talk interference, where the system’s performance degrades gracefully.
Mathematically, the model is equivalent to a spin system on a finitely connected
graph with many short loops, so one would expect the available analytical
methods, which all assume locally tree-like graphs, to fail. Yet it turns out to
be solvable. Our results are supported by numerical simulations.
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1. Introduction

After a long period of dormancy since the pioneering paper [1], we have in recent years
seen a renewed interest in statistical mechanical models of the immune system [2–10]. These
complement the standard approaches to immune system modelling, which are formulated in
terms of dynamical systems [11–14]. However, to make further progress, we need quantitative
tools that are able to handle the complexity of the immune system’s intricate signalling
patterns. Fortunately, over the past few decades a powerful arsenal of statistical mechanical
techniques has been developed in the disordered system community to deal with heterogeneous
many-variable systems on complex topologies [15–19]. In the present paper we exploit these
new techniques to model the multitasking capabilities of the (adaptive) immune network,
where effector branches (B-cells) and coordinator branches (T-cells) interact via (eliciting and
suppressive) signalling proteins called cytokines. From a theoretical physics perspective, a
network of interacting B- and T-cells resembles a bi-partite spin-glass. It was recently shown
that such a bi-partite spin-glass is thermodynamically equivalent to a Hopfield-like neural
network with effective Hebbian interactions [20, 21].
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The analogy between immune and neural networks was already noted decades ago:
both networks are able to learn (e.g. how to fight new antigens), memorize (e.g. previously
encountered antigens) and ‘think’ (e.g. select the best strategy to cope with pathogens).
However, their architectures are very different. Models with fully connected topology,
mathematically convenient simplifications of biological reality, are tolerable for neural
networks, where each neuron is known to have a huge number of connections with others
[22]. In immune networks, however, interactions among lymphocytes are much more specific
and signalled via chemical messengers, leading to network topologies that display finite
connectivity. This difference is not purely formal, but also plays a crucial operational role.
Neural networks are designed to perform high-resolution serial information processing, with
neurons interacting with many others to collectively retrieve a single pattern at a time.
The immune system, in contrast, must simultaneously recall multiple patterns (i.e. defense
strategies), since many antigens will normally attack the host at the same time. Remarkably,
diluting interactions in the underlying bi-partite spin-glass causes a switch from serial to
parallel processing (i.e. to simultaneous pattern recall) of the thermodynamically equivalent
Hopfield network8 [23, 24].

The inextricable link between retrieval and the topological features of such systems
requires a combination of techniques from statistical mechanics and graph theory, which will
be the focus of the present paper. The paper is organized as follows. In section 2 we describe
a minimal biological scenario for the immune system, based on the analogy with neural
networks, and define our model. Section 3 gives a comprehensive analysis of the topological
properties of the network in the finite-connectivity and high load regime, which is the one
assumed throughout our paper. Section 4 is dedicated to the statistical mechanical analysis
of the system, focusing on simultaneous pattern recall of the network. In section 5 we use a
population dynamics algorithm to numerically inspect different regions of the phase diagram.
We finish with a summary of our main findings.

2. Statistical mechanical modelling of the adaptive immune system

2.1. The underlying biology

All mammals have an innate (broad range) immunity, managed by macrophages, neutrophils,
etc, and an adaptive immune response. We refer the reader to the excellent books [29, 30] for
comprehensive reviews of the immune system, and to a selection of papers [2–4, 23, 24, 31]
for theoretical modelling inspired by biological reality. Our prime interest is in B-cells and in
T-cells; in particular, among T-cells, in the subgroups of so-called helpers and suppressors.
B-cells produce antibodies which are able to recognize and bind pathogens, and those that
produce the same antibody are said to form a clone. The human immune repertoire consists of
O(108–109) clones. The size of a clone, i.e. the number of identical B-cells, may vary strongly.
A clone at rest may contain some O(103–104) cells, but when it undergoes clonal expansion
its size may increase by several orders of magnitude, up to O(106–107). Beyond this size the
state of the immune system would be pathological, and is referred to as lymphocytosis.

When an antigen enters the body, several antibodies produced by different clones may
be able to bind to it, making it chemically inert and biologically inoffensive. In this case,
conditional on authorization by T-helpers (mediated via cytokines), the binding clones undergo
clonal expansion and start releasing high quantities of soluble antibodies to inhibit the
enemy. After the antigen has been deleted, B-cells are instructed by T-suppressors, again

8 In contrast, diluting the bonds in a Hopfield network does not affect pattern retrieval qualitatively [17, 18, 25–28]:
the system would still recall only one pattern at a time, but simply have a lower storage capacity.
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via cytokines, to stop producing antibodies and undergo apoptosis. In this way the clones
reduce their sizes, and order is restored. Thus, two signals are required within a small time
interval for B-cells to start clonal expansion: the first is binding to antigen, the second is a
‘consensus’ signal, in the form of an eliciting cytokine [32, 33] secreted by T-helpers. This
mechanism, known as the ‘two-signal model’ [34–37], prevents abnormal reactions, such
as autoimmune manifestations9. The focus of this study is to understand, from a statistical
mechanics perspective, the ability of helpers and suppressors to coordinate and manage an
extensive ensemble of B-clones simultaneously.

2.2. A minimal model

We consider an immune repertoire of NB different clones, labelled µ ∈ {1, . . . , NB}. The size
of clone µ is bµ. In the absence of interactions with helpers, we take the clone sizes to be
Gaussian distributed; without loss of generality we may take the mean to be zero and unit
width, so bµ ∼ N (0, 1). A value bµ & 1 now implies that clone µ has expanded (relative to
the typical clonal size), while bµ ' 1 implies inhibition. The Gaussian clone size distribution
is supported both by experiments and by theoretical arguments [4]. Similarly, we imagine
having NT helper cells, labelled i ∈ {1, . . . , NT }. The state of helper cell i is denoted by σi. For
simplicity, helpers are assumed to be in only two possible states: secreting cytokines (σi = +1)
or quiescent (σi = −1). Both the clone sizes bµ and the helper states σi are dynamical variables.
We will abbreviate σ = (σ1, . . . , σNT ) ∈ {−1, 1}NT , and b = (b1, . . . , bNB ) ∈ RNB .

The interaction between the helpers and the B-clones is implemented by cytokines.
These are taken to be frozen (quenched) discrete variables. The effect of a cytokine secreted
by helper i and detected by clone µ can be nonexistent (ξµ

i = 0), excitatory (ξµ
i = 1),

or inhibitory (ξµ
i = −1). To achieve a Hamiltonian formulation of the system, and thereby

enable equilibrium statistical mechanical analysis, we have to impose symmetry of the cytokine
interactions. So, in addition to the B-clones being influenced by cytokine signals from helpers,
the helpers will similarly feel a signal from the B-clones. This symmetry assumption can be
viewed as a necessary first step, to be relaxed in future investigations, similar in spirit to the
early formulation of symmetric spin-glass models for neural networks [41, 42]. We are then
led to a Hamiltonian Ĥ(b, σ|ξ ) for the combined system of the following form (modulo trivial
multiplicative factors):

Ĥ(b, σ|ξ ) = −
NT∑

i=1

NB∑

µ=1

ξµ
i σibµ + 1

2
√

β

NB∑

µ=1

b2
µ. (1)

In the language of disordered systems, this is a bi-partite spin-glass. We can integrate out
the variables bµ, and map our system to a model with helper–helper interactions only. The
partition function ZNT (β, ξ ), at inverse clone size noise level

√
β (which is the level consistent

with our assumption bµ ∼ N (0, 1)) follows straightforwardly, and reveals the mathematical
equivalence with an associative attractor network:

ZNT (β, ξ ) =
∑

σ

∫
db1 . . . dbNB exp[−

√
βĤ(b, σ|ξ )]

=
∑

σ

exp[−βH(σ|ξ )], (2)

9 Through a phenomenon called ‘cross-linking’, a B-cell can also have the ability to bind a self-peptide, and may
accidentally start duplication and antibody release, which is a dangerous unwanted outcome.
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Figure 1. Left: the bi-partite spin-glass which models the interaction between B- and T-cells
through cytokines. Green (red) links represent stimulatory (inhibitory) cytokines. Note that the
network is diluted. Right: the equivalent associative multitasking network consisting of T-cells
only, obtained by integrating out the B-cells. This network is also diluted, with links given by the
Hebbian prescription.

in which, apart from an irrelevant additive constant,

H(σ|ξ ) = − 1
2

NT∑

i j=1

σiJi jσ j, Ji j =
NB∑

µ=1

ξ
µ
i ξ

µ
j . (3)

Thus, the system with Hamiltonian Ĥ(b, σ|ξ ), where helpers and B-clones interact
stochastically through cytokines, is thermodynamically equivalent to a Hopfield-type
associative network represented by H(σ|ξ ), in which helpers mutually interact through an
effective Hebbian coupling (see figure 1). Learning a pattern in this model means adding a
new B-clone with an associated string of new cytokine variables.

If all {ξµ
i } are nonzero, the system characterized by (3) is well-known in the information

processing systems community. It is able to retrieve each of the NB ‘patterns’ (ξµ
1 , . . . , ξµ

NT
),

provided these are sufficiently uncorrelated, and both the ratio α = NB/NT and the noise level
1/β are sufficiently small [4, 26, 43, 46]. Retrieval quality can be quantified by introducing
NB suitable order parameters, the so-called Mattis magnetizations mµ(σ) = N−1

T

∑
i ξ

µ
i σi, in

terms of which we can write (3) as

H(σ|ξ ) = −NT

2

NB∑

µ=1

m2
µ(σ). (4)

If α is sufficiently small, the minimum energy configurations of the system are those where
mµ(σ) = 1 for some µ (‘pure states’), which implies that σ = (ξ

µ
1 , . . . , ξ

µ
NT

) and pattern
µ is said to be retrieved perfectly. In our immunological context this means the following.
If mµ(σ) = 1, all the helpers are ‘aligned’ with their coupled cytokines: those i that inhibit
clone µ (i.e. secrete ξ

µ
i = −1) will be quiescent (σi = −1), and those i that excite clone µ

(i.e. secrete ξµ
i = 1) will be active (σi = 1) and release the eliciting cytokine. As a result

the B-clone µ receives the strongest possible positive signal (i.e. the random environment
becomes a ‘staggered magnetic field’), hence it is forced to expand (see figure 2). Conversely,
for mµ(σ) = −1, clone µ receives the strongest possible negative signal and it is forced to
contract. However, in this scenario of ξµ

i ∈ {−1, 1} for all (i, µ) (where the bi-partite network
is fully connected) only one B-clone at a time can expand (apart from minor spurious mixture
states). This would be a disaster for the immune system.

We need the dilution in the bi-partite B–H network that is caused by also having ξµ
i = 0

(i.e. no signalling between helper i and clone µ), to enable multiple clonal expansions. In this
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Figure 2. The specific T-cell configuration that would give the strongest possible positive signal to
the first clone. Upward arrows indicate cytokine-secreting T-cells; downward arrows indicate
quiescent ones. Eliciting and suppressive cytokines are represented by green and red links,
respectively.

case, the network (3) stores patterns that also have blank entries, and retrieving a pattern no
longer employs all spins σi: those corresponding to null entries can be used to recall other
patterns. This is energetically favourable since the energy is quadratic in the magnetizations
mµ(σ). Conceptually, this is only a redefinition of the network’s recall task: no theoretical
bound for information content is violated, and global retrieval is still performed through NB

bits. However, the perspective is shifted: the system no longer requires a sharp resolution in
information exchange between a helper clone and a B-clone.10 It suffices that a B-clone receives
an attack signal, which could be encoded even by a single bit. In a diluted bi-partite B–H system
the associative capabilities of the helper network are distributed, in order to simultaneously
manage the whole ensemble of B-cells. The analysis of these immunologically relevant pattern-
diluted versions of associative networks has so far been carried out in the low storage case
NB ∼ log NT [23, 24] and the medium storage case NB ∼ Nδ

T , 0 < δ < 1, where the system
indeed performs as a multitasking associative memory [38]. The focus of this paper is to
analyse the ability of the network to simultaneously retrieve an extensive number of patterns,
i.e. NB = αNT with α > 0 fixed and NT → ∞, while in addition implementing a higher
degree of dilution for the B–H system, in agreement with immunological findings [29, 30].

3. Topological properties of the emergent network

3.1. Definitions

The system composed of NT T-lymphocytes, that interact with NB B-lymphocytes via cytokines,
can be described as a bi-partite graph B, in which the nodes, belonging to the sets VT and VB,
of cardinality |VT | = NT and |VB| = NB, respectively, are pairwise connected via undirected
links. We assign to the link between T-lymphocyte i and B-lymphocyte µ a variable ξµ

i , which
takes values 1 if the cytokines produced by T-lymphocyte i triggers expansion of B-clone µ,
−1 if it triggers contraction and 0 if i and µ do not interact. We assume that the {ξµ

i } are
identically and independently distributed random variables, drawn from

P(ξµ
i |d) = 1 − d

2
δξ

µ
i −1,0 + 1 − d

2
δξ

µ
i +1,0 + d δξ

µ
i ,0, (5)

where δx,0 is the Kronecker delta symbol. P(ξµ
i |d) implicitly accounts for bond dilution within

the graph B.

10 In fact, the high-resolution analysis is performed in the antigenic recognition on the B-cell surface, which is based
on a sharp key-and-lock mechanism [2].
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It is experimentally well established that although helpers are much more numerous than
B-cells, their relative sizes are still comparable in a statistical mechanical sense, hence we will
assume

NB = αNT , 0 < α < 1. (6)

We have shown in the previous section how the signalling process of the B- and T-cells on this
bi-partite graph can be mapped to a thermodynamically equivalent process on a new graph, G,
built only of the NT nodes in VT , and occupied by spins σi that interact pairwise through the
coupling matrix

Ji j =
NB∑

µ=1

ξµ
i ξµ

j . (7)

The topology of the (weighted, monopartite) graph G can range from fully connected to
sparse, as d is tuned [47, 48]. Our interest is in the ability of this system to perform as a
multitasking associative memory such that the maximum number of pathogens can be fought
simultaneously. A recent study [38] suggested that in order to bypass the spin-glass structure
of phase space at the load level (6), a finite-connectivity topology is required:

d = 1 − c/NT . (8)

Remarkably, the finite-connectivity topology is also in agreement with the biological picture
of highly-selective touch-interactions among B- and T-cells.

3.2. Simple characteristics of graph B

Let us now describe in more detail the topology of the graph B under condition (8). We denote
with ki the degree of node i ∈ VT (the number of links stemming from i), and with κµ the
degree of node µ ∈ VB (the number of links stemming from µ):

ki =
∑

µ∈VB

|ξµ
i | ∈ [0, NB], κµ =

∑

i∈VT

|ξµ
i | ∈ [0, NT ]. (9)

Since links in B are independently and identically drawn, k and κ both follow a binomial
distribution

PT (k|d, NB) =
(

NB

k

)
(1 − d)kdNB−k, PB(κ|d, NT ) =

(
NT

κ

)
(1 − d)κdNT −κ , (10)

hence we have ET (k) ≡
∑

k PT (k|d, NB)k = (1 − d)NB = cα, ET (k2) − [ET (k)]2 =
(1 − d)dNB = cα(1 − c/NT ), and EB(κ ) ≡

∑
κ PB(κ|d, NT )κ = (1 − d)NT = c,

EB(κ2) − [EB(κ )]2 = (1 − d)dNT = c(1 − c/NT ).
Due to the finite connectivity, we expect an extensive fraction of nodes i ∈ VT and µ ∈ VB

to be isolated. In the thermodynamic limit, the fraction of isolated nodes in VT and VB is
dNB = (1 − c/NT )αNT → e−c α and dNT = (1 − c/NT )NT → e−c, respectively. In order to
have a low number of non-signalled B-cells, one should therefore choose a relatively large
value of c. Moreover, as will be shown below, by reducing α and/or c we can break B into
small components, each yielding, upon marginalization (2), a distinct component within G
(see figure 3). This fragmentation is crucial to allow parallel pattern retrieval. In general, a
macroscopic component emerges when the link probability (1 − d) exceeds the percolation
threshold 1/

√
NT NB [38, 45], which, recalling equations (6) and (8), can be translated into

c > 1/
√

α. (11)
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Figure 3. Examples showing how different components within B are mapped into G upon
marginalization. Left: any star Sn inB with a node inVB at its centre and n leaves i1, i2, . . . , in ∈ VT
corresponds in G to a complete graph Kn, where each link Ji j has unit magnitude. Middle: two stars
Sn and Sm in B that share a leaf correspond to two connected complete graphs in G, Kn and Km
respectively, that have a common node. Again, each link Ji j has unit weight. Right: when a loop of
length 4 is present in the bi-partite graph B, the corresponding nodes in G may be connected by a
link with weight larger (in modulus) than 1.

3.3. Analysis of graph G

Due to the finite connectivity of B, we expect also that G will have a macroscopic fraction
f (α, c) of isolated nodes, which will be larger than e−c α (the fraction of nodes that are isolated
in B). In fact, a node i ∈ VT , which in B has a number of neighbours µ ∈ VB, but does not
share any of these with any other node j ∈ VT , remains isolated upon marginalization. Put
differently, whenever i is the centre of a star Sn inB, with n = 0, 1, . . . , NB, it will be isolated in
G. We recall that a star Sn is a tree with a central node and n leaves; this includes isolated nodes
(n = 0), dimers (n = 1), etc. The larger n, the less likely the occurrence of the component Sn

in B and the smaller the related contribution fn(α, c) to f (α, c). On average, one will have

fn(α, c) = (1 − d)ndNB−n
(

NB

n

)
, (12)

so that, overall, the fraction of isolated nodes in G is roughly e−cα + cα e−cα . In the following
subsections we will inspect the architecture of G in more detail.

3.3.1. Coupling distribution. Let us introduce the probability distribution P(J|NB, NT , c)

that an arbitrary link Ji j, as given by (7), has weight J. The average link probability is
then 1 − P(J = 0|NB, NT , c) ≡ 1 − p. This distribution P(J|NB, NT , c) can be viewed as
the probability distribution for the end-to-end distance of a one-dimensional random walk
endowed with a waiting probability pw, which corresponds to the probability that a term ξµ

i ξµ
j

is null, and equal probabilities pl = pr of moving left or right, respectively:

pw = d(2 − d) = 1 −
(

c
NT

)2

, (13)

pl = pr = 1 − pw

2
= 1

2
(1 − d)2 = 1

2

(
c

NT

)2

. (14)

Therefore, we can write

P(J|NB, NT , c) =
NB−J∑

S=0

′ NB!

S!
(NB−S−J

2

)
!
(NB−S+J

2

)
!

pS
w p(NB−S+J)/2

r p(NB−S−J)/2
l , (15)

where the primed sum means that only values of S with the same parity as (NB ± J) are taken
into account. The distribution (15) can easily be generalized to the case of a biased random
walk, i.e. biased distribution for weights [44]. The couplings among links have (in the limit of
large NT ) the following average values [38]

〈J〉 = 0 (16)

8
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〈J2〉 = αc2/NT , (17)

and for J = 0 one has

P(0|NB, NT , c) =
NB∑

S=0

′ NB!

S!
[(NB−S

2

)]2 pS
w p(NB−S)

r =
NB∑

S=0

′
(

NB

S

) 


NB − S
NB − S

2



 pS
w pNB−S

r , (18)

where now S must have the same parity as NB. Assuming NB even, we can write

P(0|NB, NT , c) = pNB
r

(
NB

NB/2

)
2F1

(
−NB

2
,−NB

2
,

1
2
,

p2
w

4p2
r

)
(19)

≈
(

cα
NB

)2NB

√
2

πNB
2F1



−NB

2
,−NB

2
,

1
2
,

[(
NB

cα

)2

− 1

]2


 , (20)

where in the last step we used NB & 1. Hence, upon expanding the hypergeometric function
we get

P(0|NB, NT , c) ≈
[

1 −
(

c
NT

)2
]αNT [

1 + O
(
N−2

T

)]
∼ e−c2α/NT . (21)

Following a mean-field approach, we can estimate the degree distribution PMF(z|NB, NT , c) in
G by means of a binomial, in which the link probability is simply p ≡ 1−P(J = 0|NB, NT , c),
namely

PMF(z|NB, NT , c) =
(

NT

z

)
(1 − p)z pNT −z, (22)

in which the average degree and the variance are

〈z〉MF = (1 − p)NT ∼ (1 − e−c2α/NT )NT ∼ c2α, (23)

〈z2〉MF − 〈z〉2
MF = (1 − p)pNT ∼ c2α. (24)

Due to the homogeneity assumption intrinsic to the mean-field approach, we expect our
estimate to be accurate only for the first moment, while fluctuations are underestimated [38].
In order to account for the topological inhomogeneity characteristic of G we need to return to
analysis of B.

In the bi-partite graph, given two nodes i, j ∈ VT , with ki and k j the nearest neighbours
respectively, the number ) of shared nearest neighbours corresponds to the number of non-null
matchings between the related strings, (ξ 1

i , . . . , ξNB
i ) and (ξ 1

j , . . . , ξ
NB
j ), which is distributed

according to

P()|ki, k j, NB) = NB!
(NB + ) − ki − k j)!(ki − ))!(k j − ))!)!

[(
NB

ki

) (
NB

k j

)]−1

. (25)

Note that the number ) also provides an upper bound for Ji j. From (25) the average 〈)〉ki,k j is
found to be

〈)〉ki,k j = kik j/NB. (26)

We evaluate the typical environment for node i by averaging P()|ki, k j, NB) over PT (k j, c, NB),
as given by (10), and get

P()|ki, c, NB) =
NB∑

k j=0

(
NB

k j

)(
c

NT

)k j
(

1 − c
NT

)NB−k j

P()|ki, k j, NB) = dki−)(1 − d))ki!
)!(ki − ))!

.

(27)
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Figure 4. Average degree 〈z〉 (left) and its fluctuations S2 = 〈z2〉 − 〈z2〉 (right) in the bi-partite
graphB, as a function of c and for different values of α as shown in the legend. Data from numerical
simulations (symbols) performed on systems of fixed size NT = 1.5 × 103 are compared with the
analytical predictions (solid lines) given by (29) and (30).

In particular, the probability for i to be connected to an arbitrary node j can be estimated as
pki ≡ 1 − P() = 0|ki, c, NB), with which the average degree of node i can be written as

〈z〉ki = pki NT = (1 − dki )NT . (28)

Upon averaging 〈z〉ki and 〈z〉2
ki

over PT (ki|c, NB), we get estimates for the average degree and
its variance:

〈z〉 = {1 − [d(2 − d)]NB}NT ∼ (1 − eαc2/NT )NT ∼ αc2, (29)

〈z2〉 − 〈z〉2 = {1 − 2[d(2 − d)]NB + dNB (1 + d − d2)NB − [1 − (d(2 − d))NB ]2}N2
T ∼ αc3,

(30)

where the last approximation holds when c/NT is small. As expected, we indeed recover the
average degree predicted by the mean-field approach (23), while the fluctuations display an
additional factor c (see (24)). The analytical results (29) and (30) are compared with numerical
data in figure 4. The agreement is very good, especially for large c where the number of bonds
is larger and hence the statistics are more sound.

3.3.2. Growth and robustness. As anticipated, the point where αc2 = 1 defines the
percolation threshold for the bi-partite graph B: when c < 1/

√
α, the graph is fragmented into

a number of components with sub-extensive size, while for c > 1/
√

α a giant (i.e. extensive)
component emerges. This phenomenology is mirrored in the monopartite graphG. In particular,
we will show that for c < 1/

√
α there is a large number of disconnected components in G

with finite size and a high degree of modularity, while for c > 1/
√

α bridges appear between
these components, modularity progressively decays, and again a giant component emerges
(see figure 5). The transition across the percolation threshold is rather smooth, as it stems from
a main component which encompasses, as αc2 is increased, more and more isolated nodes
and small-sized components. This contrasts sharply with the situation in explosive percolation

10
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Figure 5. Examples of typical graphs G obtained for different values of c, while γ = 1, δ = 1,
NT = 5.103 and α = 0.1 are kept fixed. Left: the under-percolated regime. Middle: the percolation
threshold. Right: the over-percolated regime. Isolated nodes, amounting to 4229, 3664 and 3243,
respectively, are not shown here. As expected, although many short loops are already present for
low connectivity, non-trivial (longer) loops start to occur at the percolation threshold αc2 = 1.

Figure 6. Main plot: algebraic connectivity λ versus c2α, measured on the largest components of
graphs of size NT = 5000, with different values of α (see legend). Similar results for ER graphs
are shown for comparison; here λ is plotted versus the link probability times NT , which represents
the mean coordination number over the whole network. Inset: size s of the largest component
versus αc2.

processes [39], where a number of components develop and their merging at the percolation
threshold gives rise to a steep growth in the size s of the largest component. Here s grows
smoothly and, even at relatively large values of c2α, a significant fraction of nodes remain
isolated or form small-size components (see figure 6, inset).

Moreover, the largest component exhibits high levels of modularity and clustering (see
[38] for more details). This can be understood. For α < 1, any set Cµ such that all nodes
i ∈ Cµ ⊆ VT share at least one neighbour µ ∈ VB will, upon marginalization, result in a clique
in G. Hence, G is relatively compact and redundant and, due to its smooth growth, will remain
so even around αc2 = 1. One can check this by measuring the algebraic connectivity, i.e. the

11
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spectral gap λ of the largest component; results are shown in figure 6 (main plot)11. A graph
with a small λ has a relatively clean bisection, while large λ values characterize non-structured
networks, in which a simple clear-cut separation into subgraphs is not possible. As shown in
figure 6, the minimum of λ provides a consistent signature of percolation, since the possible
coalescence of different components is likely to yield the formation of bridges. Moreover, by
comparing data for G and for an Erdös–Rényi (ER) graph we see that when αc2 ≈ 1, where
the related largest-size components are comparable, the former displays a larger λ and is hence
more structured.

3.3.3. Component size distribution and retrieval. We next analyse the structure of the small
components in G, as they are strongly related to retrieval properties, starting with the under-
percolated regime. Here the typical components in B are stars Sn centred in a node µ ∈ VB

(because NT > NB), possibly with arms of length larger than 1, or a combination of stars. In
all these cases, two nodes i, j ∈ VT share at most one neighbour µ ∈ VB, so the spins σi and
σ j can communicate non-conflicting signals to µ. More precisely, such components allow for
spin configurations with nonzero Mattis magnetizations for all the patterns involved in the
component (see figure 3). This scenario is therefore compatible with parallel retrieval.

Parallel retrieval can be jeopardized by loops in B, which can create disruptive feed-
back mechanisms between spins, which prevent the complete and simultaneous retrieval of
all patterns within the component (see the image on the right in figure 3). We can estimate
the probability that a loop involving two nodes i, j ∈ VT occurs in B: since the graph is bi-
partite, the minimum length for loops is 4, which requires that i and j share a number ) ! 2 of
neighbours inB. We can write P() < 2|ki, k j, NB) = P() = 0|ki, k j, NB)+P() = 1|ki, k j, NB).
By replacing ) = 0 and ) = 1 in (25), we get, respectively,

P() = 0|ki, k j, NB) =
(

NB − ki

k j

) (
NB

k j

)−1

, (31)

P() = 1|ki, k j, NB) = k j

(
NB − ki

k j − 1

) (
NB

k j

)−1

. (32)

By averaging over the distribution P(k j|d, NB) (10) of k j, we obtain the typical behaviour for
an arbitrary node i

P() < 2|ki, d, NB) = dki + dki−1(1 − d)ki =
(

1 − c
NT

)ki
(

1 + c
NT

ki

)
∼ 1 −

(
cki

NT

)2

,

(33)

where in the last step we used ki ' NT . In particular, when c is relatively large (cα > 1),
the approximation ki ≈ 〈k〉 is valid, and we see that the number of node pairs sharing at
least two neighbours in B scales as (αc2)2. Hence, in the under-percolated regime αc2 < 1,
the graph B is devoid of loops, which is a necessary condition for straightforward error-free
parallel retrieval. As mentioned before, in this regime the typical components in B are stars Sn

centred in a node µ ∈ VB, possibly presenting arms of length larger than 1, or a combination of
stars. Upon marginalization, these arrangements give rise to complete graphs Kn, with nodes
possibly linked to small trees, or combinations of complete graphs, respectively (see figure 5,

11 The algebraic connectivity λ, or the ‘spectral gap’, i.e. the second smallest eigenvalue of the Laplacian matrix
of a graph, is regarded as a useful quantifier in the analysis of various robustness-related problems. For instance, λ
is a lower bound on both the node and the link connectivity. More precisely, a small algebraic connectivity means
that it is relatively easy to disconnect the graph, i.e. to cut it into independent components. This means that there
exist ‘bottle-necks’, i.e. one can identify subgraphs that are connected only via a small number of ‘bridges’. A small
algebraic connectivity is also known to influence transport processes on the graph itself and to favour instability of
synchronized states (synchronizability) [40].

12
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Figure 7. Size distribution of the connected components in G for α = 0.1 and different values of
c (see legend). Data are obtained from numerical simulations of systems with NT = 3

2 .103. For
c < 1/

√
α (in the under-percolated regime, ◦, !) the decay is exponential with a finite cut-off,

for c = 1/
√

α (♦) the exponential decay broadens, while for c > 1/
√

α (in the over-percolated
regime, #,$) large components appear.

left panel). Hence, in the under-percolated regime the typical components in G are of finite
size, and form cliques. The typical size of these cliques decays exponentially with s, as shown
in figure 7 (see also [38]).

At the percolation threshold, larger loops start to appear in B. For the graphs G this implies
that two cliques can share not only nodes, but even links, and that two nodes i, j can display
a coupling |Ji j| ! 2 (see figure 5, middle panel). As a result, the simultaneous retrieval of all
patterns within the same component is no longer ensured, and the distribution of component
sizes will broaden.

In the over-percolated regime, a giant component of size O(NT ) emerges, while many
isolated nodes and finite-size components will still remain. Now the average coordination
number in the whole graph G is approximately c2α (see (29)), but will be larger on the giant
component. It is worth focusing on the macroscopic component to find out how it is organized,
and how it compares to a random structure such as the ER graph. We note that even for the
giant component the distribution P(J|NB, NT , c) has a finite variance, and is concentrated on
small values of J. To see this we calculate from (15) P(J = 1|NB, NT , c), P(J = 2|NB, NT , c)

and infer the asymptotic behaviour for P(J|NB, NT , c). From (15) we get

P(J = 1|NB, NT , c) =
NB−1∑

S=1

′ NB!

S!
(NB−S+1

2

)
!
(NB−S−1

2

)
!

pS
w pNB−S

r

=
(NB − 1

2 )!
√

π (NB − 1)!

(cα
N

)2NB−2

×
[

1 −
(cα

N

)2
]

2F1



−NB

2
, 1 − NB

2
,

3
2
,

(
cα
NB

)4
[

1 −
(

cα
NB

)2
]2





≈ NB

(
cα
NB

)2
[

1 −
(

cα
NB

)2
]NB−1

∼
(

c2α2

NB

)
e−c2α2/NB, (34)
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(a)

(b)

(c)

Figure 8. These plots show the average probability for an arbitrary link in G to have weight J = 1,
J = 2 or J > 2, respectively, as a function of c, for several values of α (being α = 0.1, α = 0.3
and α = 0.5, with markers as in the legend of figure 4). Numerical simulations (symbols) were
carried out for systems with NT = 3

2 .103 nodes, and are compared with the analytical estimates
provided by (34), (35) and for arbitrary J (see formula below (35)).

where the prime restricts the sum to values of S with different parity from NB (here assumed
even), and where we used the isotropy (pr = pl) of the random walk. The asymptotic form
obtained in the last step applies to NB & 1. Similarly, for the case J = 2 we find

P(J = 2|NB, NT , c) =
NB−2∑

S=0

′ NB!

S!
(NB−S+2

2

)
!
(NB−S−2

2

)
!

pS
w pNB−S

r

=
( cα

NB

)
NB!

(NB
2 + 1

)
!
(NB

2 − 1
)
!2NB

× 2F1



−1 − NB

2
, 1 − NB

2
,

1
2
,

(
NB

cα

)4
[

1 −
(

cα
NB

)2
]2





≈
(

c2α2

NB

)2
[

1 −
(

cα
NB

)2
]NB−2 √

1 − 2
N

1
8

∼
(

c2α2

NB

)2

e−c2α2/NB . (35)

Hence we expect the leading terms to scale as P(J) ≈ (c2α2/NB)J[1 − (cα/NB)2]NB−J . These
results are confirmed by numerical simulations, with different choices for the parameters c
and α; see figure 8.

4. Equilibrium analysis in the regime of high storage and finite connectivity

4.1. Definitions

We now turn to a statistical mechanics analysis and consider the effective network consisting
solely of T-cells, with effective interactions described by the following Hamiltonian (rescaled

14
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by a factor c relative to (3)):

H(σ|ξ ) = − 1
2c

NT∑

i, j

NB∑

µ

ξµ
i ξµ

j σiσ j. (36)

It is not a priori obvious that solving this model analytically will be possible. Most methods
for spins systems on finitely connected heterogeneous graphs rely (explicitly or implicitly) on
these being locally tree-like; due to the pattern dilution, the underlying topology of the system
(36) is a heterogeneous graph with many short loops. From now on we will write NT simply
as N, with NB = αN and N → ∞. The cytokine components ξµ

i ∈ {−1, 0, 1} are quenched
random variables, identically and independently distributed according to

P(ξµ
i = 1) = P(ξµ

i = −1) = c
2N

, P(ξµ
i = 0) = 1 − c

N
, (37)

with c finite. The Hamiltonian is normalized correctly: since the term
∑N

i=1 ξµ
i σi is O(1) both

for condensed and non-condensed patterns [38], (36) is indeed extensive in N. The aim of this
section is to compute the disorder-averaged free energy f , at inverse temperature β = T −1,
where · · · denotes averaging over the αN2 variables {ξµ

i } and

f = − lim
N→∞

1
βN

log ZN (β, ξ ), (38)

where ZN (β, ξ ) is the partition function

ZN (β, ξ ) =
∑

σ∈{−1,1}N

e
β
2c

∑αN
µ=1(

∑N
i=1 ξ

µ
i σi)

2
. (39)

The state of the system can be characterized in terms of the αN (non-normalized) Mattis
magnetizations, i.e. the overlaps between the system configuration and each cytokine pattern

Mµ(σ) =
N∑

i=1

ξ
µ
i σi. (40)

However, since in the high load regime the number of overlaps is extensive, it is more
convenient to work with the overlap distribution

P(M|σ) = 1
αN

αN∑

µ=1

δMµ(σ),M. (41)

Although Mµ(σ) can take (discrete) values in the whole range {−N,−N + 1, . . . , N}, we
expect that, due to dilution, the number of values that the Mµ(σ) assume remains effectively
finite for large N, so that (41) represents an effective finite number of order parameters. In
order to probe responses of the system to selected perturbations or triggering of clones we
introduce external fields {ψµ} coupled to the overlaps {Mµ(σ)}, so we consider the extended
Hamiltonian

H(σ, ξ ) = − 1
2c

N∑

i, j

αN∑

µ

ξµ
i ξµ

j σiσ j −
αN∑

µ=1

ψµMµ(σ). (42)

We also define the field distribution P(ψ ) and the joint distribution P(M,ψ |σ) of
magnetizations and fields, which is the most informative observable from a biological point
of view (and of which P(ψ ) is a marginal):

P(ψ ) = 1
αN

αN∑

µ=1

δ(ψ − ψµ), P(M,ψ |σ) = 1
αN

αN∑

µ=1

δM,Mµ(σ)δ(ψ − ψµ). (43)
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4.2. The free energy

The free energy per spin (38) for the Hamiltonian (42) can be written as

f = − lim
N→∞

1
βN

log
∑

σ

e
β
2c

∑αN
µ=1 M2

µ(σ)+β
∑αN

µ=1 ψµMµ(σ). (44)

We insert the following integrals of delta-functions written in Fourier representation

1 =
∏

M

∏

ψ

∫
dP(M,ψ )δ

[

P(M,ψ) − 1
αN

αN∑

µ=1

δM,Mµ(σ)δ(ψ − ψµ)

]

=
∏

M

∏

ψ

∫
dP(M,ψ )dP̂(M,ψ )

2π/-N
eiN-P̂(M,ψ )[P(M,ψ )− 1

αN

∑αN
µ=1 δM,Mµ(σ)δ(ψ−ψµ)]. (45)

In the limit - → 0 we use -
∑

ψ . . . →
∫

dψ . . ., and we define the path integral measure
{dP dP̂} = lim-→0 dP(M,ψ ) dP̂(M,ψ )-N/2π . This gives us

1 =
∫

{dP dP̂} eiN
∫

dψ
∑

M P̂(M,ψ )P(M,ψ )− i
α

∑αN
µ=1 P̂(Mµ(σ),ψµ). (46)

Insertion into (44) leads us to an expression for f involving the density of states .[P̂]:

f = − lim
N→∞

1
βN

log
∫

{dP dP̂} eN{i
∫

dψ
∑

M P(M,ψ )P̂(M,ψ )+βα
∫

dψ
∑

M P(M,ψ )( M2
2c +Mψ )+.[P̂]}

(47)

.[P̂] = lim
N→∞

1
N

log
∑

σ

e− i
α

∑
µ P̂(Mµ(σ),ψµ). (48)

Hence via steepest descent integration for N → ∞, and after avering the result over the
disorder, we obtain:

f = − 1
β

extr{P,P̂}

{

i
∫

dψ
∑

M

P(M,ψ )P̂(M,ψ )

+βα

∫
dψ

∑

M

P(M,ψ )

(
M2

2c
+ Mψ

)

+ .[P̂]

}

, (49)

with

.[P̂] = lim
N→∞

1
N

log
∑

σ

e− i
α

∑
µ P̂(Mµ(σ),ψµ). (50)

Working out the functional saddle-point equations that define the extremum in (49) gives

P̂(M,ψ ) = iαβ

(
M2

2c
+ Mψ

)
, P(M,ψ ) = i

δ.[P̂]

δP̂(M,ψ )
, (51)

and inserting the first of these equations into (49) leads us to

f = − 1
β

.[P̂]
∣∣∣∣
P̂(M,ψ )=iαβ( M2

2c +Mψ )

. (52)

Hence, calculating the disorder-averaged free energy boils down to calculating (50). This can
be done using the replica method, which is based on the identity log Z = limn→0 n−1 log Zn,
yielding

.[P̂] = lim
N→∞

lim
n→0

1
Nn

log
∑

σ1...σn

e− i
α

∑n
α=1

∑αN
µ=1 P̂(Mµ(σα ),ψµ). (53)
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The free energy (52) could also have been calculated directly from (44), by taking the average
over disorder and using the replica identity. The advantage of working with the log-density of
states is that, working out .[P̂] first for arbitrary functions P̂ gives us via (51) a formula for
the distribution P(M,ψ ), from which we can obtain useful information on the system retrieval
phases and response to external perturbations. Finally we set P̂(M,ψ ) = iαβχ (M,ψ ) with a
real-valued function χ , to compactify our equations, with which we can write our problem as
follows

f = f [χ ]
∣∣∣∣
χ (M,ψ )= M2

2c +Mψ

f [χ ] = − lim
N→∞

lim
n→0

1
βNn

log
∑

σ1...σn

eβ
∑n

α=1
∑αN

µ=1 χ (Mµ(σα ),ψµ),

(54)

P(M,ψ ) = − 1
α

δ f [χ ]
δχ

∣∣∣∣
χ (M,ψ )= M2

2c +Mψ

. (55)

For simple tests of (54) and (55) in special limits see appendix A.

4.3. Derivation of saddle-point equations

From now on, unless indicated otherwise, all summations and products over α, i, and µ will
be understood to imply α = 1 . . . n, i = 1 . . . N, and µ = 1 . . . αN, respectively. We next
need to introduce order parameters that allow us to carry out the disorder average in (54). The
simplest choice is to isolate the overlaps themselves by inserting

1 =
∏

αµ

[
N∑

Mαµ=−N

δMαµ,
∑

i ξ
µ
i σα

i

]

=
∏

αµ

[
N∑

Mαµ=−N

∫ π

−π

dωαµ

2π
eiωαµ(Mαµ−

∑
i ξ

µ
i σα

i )

]

. (56)

This gives

f [χ ] = − lim
N→∞

lim
n→0

1
βNn

log

{
∏

αµ

[ ∞∑

Mαµ=−∞

∫ π

−π

dωαµ

2π

]

ei
∑

αµ ωαµMαµ+
∑

αµ βχ (Mα
µ,ψµ)

×
∑

σ1...σn

e−i
∑

i
∑

αµ ωαµξ
µ
i σα

i

}

. (57)

We can carry out the disorder average

e−i
∑

i
∑

αµ ωαµξ
µ
i σα

i =
∏

iµ

{
1 − c

N
+ c

2N
(ei

∑
α ωαµσα

i + e−i
∑

α ωαµσα
i )

}

= e
c
N

∑
iµ[cos(

∑
α ωαµσα

i )−1]+O(N0 ), (58)

which leads us to

f [χ ] = − lim
n→0

lim
N→∞

1
βNn

log

{
∏

αµ

[
∑

Mαµ

∫ π

−π

dωαµ

2π

]

· ei
∑

αµ ωαµMαµ+
∑

αµ βχ (Mα
µ,ψµ)

×
[

∑

σ1...σn

e
c
N

∑
µ[cos(

∑
α ωαµσα )−1]

]N}

(59)

where we have also interchanged the limits n → 0 and N → ∞, as is usually done
to progress in the calculation by using the saddle-point method. We next introduce n-
dimensional vectors: σ = (σ1, . . . , σn) ∈ {−1, 1}n, Mµ = (M1µ, . . . , Mnµ) ∈ Zn and
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ωµ = (ω1µ, . . . ,ωnµ) ∈ [−π ,π ]n. This allows us to write (59) as

f [χ ] = − lim
n→0

lim
N→∞

1
βNn

log

{
∏

µ

[
∑

Mµ

∫ π

−π

dωµ

(2π )n

]

· ei
∑

µ ωµ·Mµ+
∑

µ βχ (Mµ,ψµ)

×
[

∑

σ

e
c
N

∑
µ[cos(ωµ·σ)−1]

]N}

. (60)

This last expression invites us to introduce the distribution P(ω) = (αN)−1 ∑
µ δ(ω − ωµ),

for ω ∈ [−π ,π]n, via path integrals. We therefore insert

1 =
∏

ω

∫
dP(ω)δ

[

P(ω) − 1
αN

∑

µ

δ(ω − ωµ)

]

=
∏

ω

∫
dP(ω)dP̂(ω)

2π/-N
eiN-P̂(ω)[P(ω)− 1

αN

∑
µ δ(ω−ωµ)]. (61)

In the limit - → 0 we use -
∑

ω . . . →
∫

dω . . ., and we define the usual path integral
measure {dPdP̂} = lim-→0 dP(ω) dP̂(ω)-N/2π . This converts the above to

1 =
∫

{dP dP̂} eiN
∫

dωP̂(ω)P(ω)−(i/α)
∑

µ P̂(ωµ). (62)

and upon insertion into (60) we get

f [χ ] = − lim
n→0

lim
N→∞

1
βNn

log
∫

{dPdP̂}eiN
∫ π

−π dωP̂(ω)P(ω)

[
∑

σ

eαc
∫

dωP(ω)[cos(ω·σ)−1]

]N

×
αN∏

µ=1

(
∑

M

∫ π

−π

dω

(2π )n
eiω·M+

∑
α βχ (Mα ,ψµ)− i

α
P̂(ω)

)

. (63)

In the limit N → ∞, evaluation of the integrals by steepest descent leads to

f [χ ] = − lim
n→0

1
βn

extr{P,P̂}0n[{P, P̂}], (64)

0n[{P, P̂}] = i
∫ π

−π

dωP̂(ω)P(ω) + α

〈

log

(
∑

M

∫ π

−π

dω

(2π )n
eiω·M+

∑
α βχ (Mα ,ψ )− i

α
P̂(ω)

)〉

ψ

+ log

(
∑

σ

eαc
∫ π

−π
dωP(ω)[cos(ω·σ)−1]

)

, (65)

in which 〈. . .〉ψ =
∫

dψ P(ψ ) . . .. We mostly write 〈. . .〉 in what follows, when there is no
risk of ambiguities. The saddle-point equations are found by functional variation of 0n with
respect to P and P̂, leading to

P̂(ω) = icα
∑

σ[cos(ω · σ) − 1] eαc
∫ π

−π
dω′P(ω′)[cos(ω′·σ)−1]

∑
σ eαc

∫ π

−π dω′P(ω′)[cos(ω′·σ)−1]
, (66)

P(ω) =
〈 ∑

M eiω·M+
∑

α βχ (Mα ,ψ )− i
α

P̂(ω)

∑
M

∫ π

−π
dω′eiω′·M+

∑
α βχ (Mα ,ψ )− i

α
P̂(ω′)

〉

. (67)

The joint distribution of fields and magnetizations now follows directly from (55) and (64),
(65), and is seen to require only knowledge of the conjugate order parameters P̂(ω):

P(M,ψ )

P(ψ )
= lim

n→0

∑
M

( 1
n

∑
γ δM,Mγ

) ∫ π

−π
dω eiω·M+β

∑
α χ (Mα ,ψ )− i

α
P̂(ω)

∑
M

∫ π

−π
dω eiω·M+β

∑
α χ (Mα ,ψ )− i

α
P̂(ω)

∣∣∣∣
χ= M2

2c +ψM
. (68)
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Thus the right-hand side (RHS) is an expression for P(M|ψ ). A last simple transformation
F(ω) = − i

cα P̂(ω) + 1 converts the saddle-point equations into

F(ω) =
∑

σ cos(ω · σ)eαc
∫ π

−π
dω′P(ω′) cos(ω′·σ)

∑
σ eαc

∫ π

−π
dω′P(ω′) cos(ω′·σ)

, (69)

P(ω) =
〈

ecF(ω)
∏

α Dψ (ωα|β)∫ π

−π
dω′ecF(ω′)

∏
α Dψ (ωα|β)

〉

, (70)

where we have introduced

Dψ (ω|β) = 1
2π

∑

M∈Z
eiωM+βχ (M,ψ ). (71)

Similarly, (68) and (64) can now be expressed, respectively, as

P(M|ψ ) = lim
n→0

∑
M

( 1
n

∑
γ δM,Mγ

) ∫ π

−π
dω eiω·M+β

∑
α χ (Mα ,ψ )+cF(ω)

∑
M

∫ π

−π
dω eiω·M+β

∑
α χ (Mα ,ψ )+cF(ω)

∣∣∣∣∣
χ=M2/2c+Mψ

, (72)

and

f [χ ] = − lim
n→0

1
βn

{
− cα

∫ π

−π

dωF(ω)P(ω) + log
( ∑

σ

eαc
∫ π

−π dωP(ω)[cos(ω·σ)−1]
)

+α

〈
log

( ∑

M

∫ π

−π

dω

(2π )n
eiω·M+

∑
α βχ (Mα ,ψ )+cF(ω)

)〉}
. (73)

We note that the saddle-point equations guarantee that P(ω) is normalized correctly on
[−π ,π]n, while for F(ω) we have (see appendix B)

∫ π

−π

dωF(ω) = 0. (74)

We observe that in the absence of external fields, i.e. for ψ = 0, the function (71) is real and
symmetric:

D0(ω|β) = 1
2π

∑

M∈Z
eiωM+ β

2c M2 ∈ R, ∀ ω ∈ [−π ,π ] : D0(−ω|β) = D0(ω|β). (75)

The introduction of external fields breaks the symmetry of Dψ (ω|β) under the transformation
ω → −ω.

4.4. The RS ansatz—route I

To solve the saddle-point equations for n → 0 we need to make an ansatz on the form of
the order parameter functions P(ω) and F(ω). Since the conditioned overlap distribution (72)
depends on F(ω) only, a first route to proceed is by eliminating the order function P(ω) from
our equations and making a replica-symmetric (RS) ansatz for F(ω). Since ω ∈ [−π ,π]n is
continuous, the RS ansatz for F(ω) reads:

F(ω) =
∫

{dπ}W [{π}]
n∏

α=1

π (ωα ), (76)

where W [. . .] is a measure over functions, normalized according to
∫
{dπ}W [{π}] = 1 and

nonzero (in view of (74)) only for functions π (. . .) that are real and obey
∫ π

−π
dωπ (ω) = 0.
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The RS ansatz (76) is to be inserted into the saddle-point equations. Insertion into (70) gives,
with a normalization factor Cn(ψ ),

P(ω) =
〈
C−1

n (ψ )
∏

α

Dψ (ωα|β) ec
∫
{dπ}W [{π}]

∏
α π (ωα )

〉

=
〈
C−1

n (ψ )
∏

α

Dψ (ωα|β)
∑

k%0

ck

k!

[ ∫
{dπ}W [{π}]

∏

α

π (ωα )

]k〉

=
〈
C−1

n (ψ )
∑

k%0

ck

k!

∫ k∏

)=1

[{dπ)}W [{π)}]]
∏

α

Rk(ωα )

〉
, (77)

with

Rk(ω) = Dψ (ω|β)

k∏

)=1

π)(ω). (78)

Next we turn to (69). We first work out for σ ∈ {−1, 1}n the quantity

L(σ) = αc
∫ π

−π

dωP(ω) cos(ω · σ)

= αc
〈
C−1

n (ψ )
∑

k%0

ck

k!

∫ k∏

)=1

[{dπ)}W [{π)}]]

×
[

1
2

∏

α

∫ π

−π

dωαRk(ωα ) eiωασα + 1
2

∏

α

∫ π

−π

dωαRk(ωα ) e−iωασα

]〉
, (79)

with
∫ π

−π
dω P(ω) = 1 requiring L(0) = αc. For Ising spins one can use the general identity

R̃k(σ ) =
∫ π

−π

dωRk(ω) eiωσ = B({Rk}) eiA({Rk})σ , (80)

where B and A are, respectively, the absolute value and the argument of the complex function
R̃k evaluated at the point 1, R̃k(1) = |R̃k(1)| eiφR̃(1) , i.e.

B({Rk}) = |R̃k(1)|, A({Rk}) = φR̃(1) = arctan

(
Im[R̃k(1)]

Re[R̃k(1)]

)

. (81)

This simplifies (79) to

L(σ) = αc
〈
C−1

n (ψ )
∑

k%0

ck

k!

∫ k∏

)=1

[{dπ)}W ({π)})]Bn({Rk}) cos
[

A({Rk})
∑

α

σα

]〉
. (82)

In order to have L(0) = αc in the limit n → 0, one must have C0(ψ ) = ec∀ψ . Inserting L(σ)

into (69) gives

KnF(ω) =
∑

σ

cos(ω · σ) ecα〈C−1
n (ψ )

∑
k!0

ck
k!

∫ ∏k
)=1[{dπ)}W [{π)}]]Bn({Rk}) cos[A({Rk})

∑
α σα]〉, (83)

with

Kn =
∑

σ

ecα〈C−1
n (ψ )

∑
k!0

ck
k!

∫ ∏k
)=1[{dπ)}W [{π)}]]Bn({Rk}) cos[A({Rk})

∑
α σα]〉. (84)
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Upon isolating the term
∑

α σα via
∑

m

∫ π

−π
dθ
2π

eimθ−iθ
∑

α σα = 1 we obtain

KnF(ω) =
∑

m

∫ π

−π

dθ

2π
eimθ+cα〈C−1

n (ψ )
∑

k!0
ck
k!

∫ ∏k
)=1[{dπ)}W [{π)}]]Bn({Rk}) cos[A({Rk})m]〉

×
∑

σ

e−iθ
∑

α σα

(
1
2

ei
∑

α σαωα + 1
2

e−i
∑

α σαωα

)

= 2n−1
∑

m

∫ π

−π

dθ

2π
eimθ+cα〈C−1

n (ψ )
∑

k!0
ck
k!

∫ ∏k
)=1[{dπ)}W [{π)}]]Bn({Rk}) cos[A({Rk})m]〉

×
[ ∏

α

cos(ωα − θ ) +
∏

α

cos(ωα + θ )

]
. (85)

The two terms inside the square brackets in the last line yield identical contributions to the
θ -integral, so

KnF(ω) = 2n
∑

m

∫ π

−π

dθ

2π
eimθ+cα〈C−1

n (ψ )
∑

k!0
ck
k!

∫ ∏k
)=1[{dπ)}W [{π)}]]Bn({Rk}) cos[A({Rk})m]〉

×
∏

α

cos(ωα − θ ), (86)

with K0 simply following from the demand F(ω = 0) = 1, as required by (69). Next we insert

1 =
∫

{dπ}
∏

ω

δ[π (θ ) − cos(ω − θ )], (87)

where we have used the symbolic notation
∏

ω δ[π (ω) − f (ω)] for the functional version
of the δ-distribution, as defined by the identity

∫
{dπ} G[{π}]

∏
ω δ[π (ω) − f (ω)] = G[{ f }].

This leads us to

KnF(ω) = 2n
∑

m

∫ π

−π

dθ

2π
eimθ+cα〈C−1

n (ψ )
∑

k!0
ck
k!

∫ ∏k
)=1[{dπ)}W [{π)}]]Bn({Rk}) cos[A({Rk})m]〉

×
∫

{dπ}
∏

ω

δ[π (θ ) − cos(ω − θ )]
∏

α

π (ωα ). (88)

Substituting (76) for F(ω) in the left-hand side of this last equation shows that in the replica
limit n → 0, our RS ansatz indeed generates a saddle point if

W [{π}] =
∫ π

−π

dθ

2π
λ(θ |W )

∏

ω

δ[π (ω) − cos(ω − θ )], (89)

with the short-hand

λ(θ |W ) = K−1
0

∑

m∈Z
eimθ+cα

∑
k!0

cke−c
k! 〈

∫ ∏k
)=1[{dπ)}W [{π)}]] cos[A({Rk})m]〉. (90)

The constant K0 follows simply from normalization, which now takes the form∫ π

−π
dθ
2π

λ(θ |W ) = 1, giving

K0 =
∫

dθ

2π

∑

m∈Z
eimθ+cα

∑
k!0

cke−c
k! 〈

∫ ∏k
)=1[{dπ)}W [{π)}]] cos[A({Rk})m]〉

=
∑

m∈Z
δm,0 ecα

∑
k!0

cke−c
k! 〈

∫ ∏k
)=1[{dπ)}W [{π)}]] cos[A({Rk})m]〉 = ecα. (91)

We then arrive at

λ(θ |W ) =
∑

m∈Z
eimθ+cα

∑
k!0

cke−c
k! 〈

∫ ∏k
)=1[{dπ)}W [{π)}]][cos[A({Rk})m]−1]〉. (92)
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It is convenient to write D(ω|β) = D′(ω|β) + iD′′(ω|β), with D′(ω|β) = Re[D(ω|β)] and
D′′(ω|β) = Im[D(ω|β)]. Similarly, we write Rk(ω) = R′

k(ω) + iR′′
k (ω). We note that for

χ (M,ψ ) = M2/2c + Mψ the function Dψ (ω|β) defined in (71) has several useful properties,
e.g.

∀ ω ∈ [−π ,π] : D′
ψ (−ω|β) = D′

ψ (ω|β), D′′
ψ (−ω|x) = −D′′

ψ (ω|x), (93)

∫ π

−π

dωDψ (ω|β) =
∑

M∈Z
eβχ (M,ψ )

∫ π

−π

dω

2π
eiωM =

∑

M∈Z
eβχ (M,ψ )δM,0 = 1, (94)

Dψ (ω|0) = 1
2π

∑

M∈Z
eiωM = δ(ω) for ω ∈ [−π ,π ]. (95)

From (81) we have

A({Rk}) = arctan

[
Im[R̃k(1)]

Re[R̃k(1)]

]

= arctan

[∫ π

−π
dω[R′

k(ω) sin ω + R′′
k (ω) cos ω]

∫ π

−π
dω[R′

k(ω) cos ω − R′′
k (ω) sin ω]

]

, (96)

and insertion in (92) gives

λ(θ |W ) =
∑

m∈Z
eimθ+cα

∑
k!0

cke−c
k!

∫ ∏k
)=1[{dπ)}W [{π)}]]{cos[m arctan fk({π1,...,πk})]−1}, (97)

with

fk({π1, . . . ,πk}) =
∫ π

−π
dω[D′(ω|β) sin ω + D′′(ω|β) cos ω]

∏k
)=1 π)(ω)

∫ π

−π
dω[D′(ω|β) cos ω − D′′(ω|β) sin ω]

∏k
)=1 π)(ω)

. (98)

For high temperatures D′(ω|0) = δ(ω) and D′′(ω|0) = 0, so fk({π1, . . . ,πk}) = 0 and
λ(θ |W ) = δ(θ ). Hence

β = 0 : W [{π}] =
∏

ω

δ[π (ω) − cos(ω)]. (99)

We note that for any symmetric set of functions {π1, . . . ,πk} one has, from (98),
fk({π1, . . . ,πk}) = 0 due to the symmetry properties (93) of Dψ , and thus λ(θ |W ) = δ(θ ).
Hence, (99) is a solution of (89) for all temperatures, and the only solution at infinite
temperature.

4.5. Conditioned distribution of overlaps

In order to give a physical interpretation to the RS solution (76), (99), we consider the
conditioned overlap distribution (72). Insertion of (99) into (76) gives

F(ω) =
∫

{dπ}W [{π}]
∏

α

π (ωα ) =
∏

α

cos(ωα ),

and subsequent insertion into (72) leads to, with Cn and C̃n representing the normalization
constants,

P(M|ψ ) = lim
n→0

C−1
n

∑

M

(
1
n

n∑

γ=1

δM,Mγ

) ∫ π

−π

dω eiω·M+β
∑

α χ (Mα ,ψ )
∑

k%0

ck

k!

∏

α

cosk(ωα )

= lim
n→0

C̃−1
n

n

∑

k%0

ck

k!

∫ π

−π

dω
∏

α

cosk(ωα )

∫ π

−π

dλeiλM
n∑

γ=1

∑

Mγ ∈Z
ei(ωγ −λ)Mγ +χ (Mγ ,ψ )
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×
∏

α 2=γ

∑

Mα

eiωαMα+χ (Mα ,ψ )

= lim
n→0

C−1
n

n

∑

k%0

ck

k!

∫ π

−π

dλ eiλM
n∑

γ=1

∫ π

−π

dωγ cosk(ωγ )Dψ (ωγ − λ|β)

×
∏

α 2=γ

∫ π

−π

dωα cosk(ωα )Dψ (ωα|β)

= lim
n→0

C−1
n

∑

k%0

ck

k!

∫ π

−π

dλ eiλMIk(λ,β)In−1
k (0,β), (100)

with

Ik(λ,β) =
∫ π

−π

dω cosk(ω)Dψ (ω − λ|β)

= 1
2k

k∑

n=0

(
k
n

)∫ π

−π

dω e−iω(k−2n)
∑

m∈Z
ei(ω−λ)m+βχ (m,ψ )

= 1
2k

k∑

n=0

(
k
n

)
e−iλ(k−2n)+βχ (k−2n,ψ )

= 1
2k

k∑

m=−k




k

k − m
2



 e−iλm+βχ (m,ψ ). (101)

We can now work out
∫ π

−π

dλ eiλMIk(λ,β) =
{

2−k
(( k

(k−M)/2

))
eβχ (M,ψ ) if |M| " k

0 if |M| > k,
(102)

and obtain our desired formula for P(M|ψ ) corresponding to the saddle point (99), in which
the normalization constant comes out as C0 = ec. The result then is

P(M|ψ ) =
∑

k%|M|
e−c ck

k!

( k
(k−M)/2

)
eβχ (M,ψ )

∑k
m=−k

( k
(k−m)/2

)
eβχ (m,ψ )

. (103)

We can rewrite this result, with the short-hand pc(k) = e−cck/k!, in the more intuitive form

P(M|ψ ) =
∑

k%0

pc(k)P(M|k,ψ ), (104)

P(M|k,ψ ) = θ

(
k − |M| + 1

2

) ( k
(k−M)/2

)
eβχ (M,ψ )

∑k
m=−k

( k
(k−m)/2

)
eβχ (m,ψ )

. (105)

We recognize that pc(k) is the asymptotic probability that any cytokine pattern
(
ξµ

1 , . . . , ξµ
N

)

has k nonzero entries; since each pattern has N independent entries with probability c/N to
be nonzero, k will for N → ∞ indeed be a Poissonian random variable with average c.
Hence, P(M|k,ψ ) is the conditional probability of having an overlap of value M, given that
the cytokine pattern concerned has k nonzero entries and is triggered by an external field ψ .
We have apparently mapped the neural network with N neurons and NB = αN diluted stored
patterns to a system of k neurons with a single undiluted binary pattern. We will see that this is
due to the fact that in the regime where RS theory holds one is always able, as a consequence

23



J. Phys. A: Math. Theor. 46 (2013) 415003 E Agliari et al

of the dilution, to decompose the original system into an extensive number of independent
finite-size subsystems, each recalling one particular pattern.

The solution (99), leading to (105), is a saddle point for any temperature. At infinite
temperatures it is the only solution, and simplifies further. For β = 0 expression (105) gives

P(M|k,ψ ) = 2−k
(

k
(k − M)/2

)
θ

(
k − |M| + 1

2

)
, (106)

which is the probability that a system of k spins has an overlap M with an undiluted stored
pattern, if each spin behaves completely randomly. This describes, as expected, an immune
network behaving as a paramagnet, i.e. unable to retrieve the stored strategies. For the
distribution of overlaps we find

P(M) = e−c
∑

k%|M|

( 1
2 c)k

k!

(
k

(k − M)/2

)
. (107)

In the limit β → ∞, the sum in the denominator of (105) is dominated by the value of m
which maximizes χ (m,ψ ) = m2/2c + ψm, being m = ksgn(ψ ) if ψ 2= 0 and m = ±k for
ψ = 0. In either case we obtain

k∑

m=−k

(
k

(k − m)/2

)
eβχ (m,ψ ) ∼

{
eβ(k2/2c+k|ψ |) ψ 2= 0
2eβk2/2c ψ = 0, k 2= 0.

(108)

Substitution into (105) and (104) subsequently gives

lim
β→∞

P(M|ψ )

= lim
β→∞






e−c ∑
k%|M|

ck

k!

((
k

(k−M)/2

))
e−β(k2−M2 )/2c−β|ψ |(k−sgn(ψ )M) if ψ 2= 0

1
2

e−c ∑
k%|M|

ck

k!

((
k

(k−M)/2

))
e−β(k2−M2)/2c if ψ = 0, M 2= 0

=






e−c if M = 0

θ (Mψ ) e−cc|M|/|M|! if ψ 2= 0, M 2= 0
1
2

e−cc|M|/|M|! if ψ = 0, M 2= 0.

(109)

Similarly we have

ψ 2= 0 : P(M|k,ψ ) = δ|M|,k(δM,0 + θ (ψM)(1 − δM,0)), (110)

ψ = 0 : P(M|k,ψ ) = δ|M|,k
(
δM,0 + 1

2 (1 − δM,0)
)
. (111)

For k > 0 this describes the error-free activation or inhibition of a stored strategy with k
nonzero entries.

For intermediate temperatures a plot of (105) shows that without external fields, P(M|0)

acquires two symmetric peaks at large overlaps (in absolute value), as β is increased from
β = 0; see figure 9 (top left panel). Unlike typical magnetic systems in the thermodynamic
limit, there is no spontaneous ergodicity breaking at ψ = 0; the system acts effectively as an
extensive number of independent finite subsystems, each devoted to a single B-clone. Each
size-k subsystem oscillates randomly between the two peaks in P(M|0), with a characteristic
switching timescale tk ∼ eβk2/2c, which grows with the size k of the subsystem and remains
finite at finite temperature.

Introducing a field ψ reduces the overlap peak at M values opposite in sign to the field;
this peak will eventually disappear for sufficiently strong fields (figure 9, top right panel). The
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Figure 9. Conditioned overlap distribution P(M|k, ψ ) corresponding to the state (76), (99), as given
by formula (105). The top panels refer to k = c = 3. Left: β = 0, 1, 3 and ψ = 0; Right: β = 3
and ψ = 0, 0.2, 0.5. The bottom panels refer to ψ = 0, 0.2, 0.5 and β = 2. Left: c = 3, k = 6.
Right: c = k = 6. Note that M ∈ {−k,−k + 1, . . . , k − 1, k}, so the lines connecting the markers
are only guides to the eye.

field-induced asymmetry in the height of the two peaks increases at smaller temperatures and
larger sizes (figure 9, bottom panels). Thus, external fields trigger the system towards either
activation or inhibition of a strategy (e.g. clonal expansion versus contraction), whereas in
their absence the system oscillates stochastically between the two.

Beyond the multiple clonal expansions, achieved in the present model through activation
signalling from the T-cells to B-cells via appropriately diluted cytokine patterns, the apparent
emergence of regular inhibitory signals sent to the B-clones that are not expanding (in the
absence of external fields triggering those clones) is a biologically fundamental feature for
homeostasis. B-cells that are not receiving a significant number of signals undergo a process
called ‘anergy’ [34, 35], and will eventually die. Thus, the ability to support fast switching
between positive and negative signals to multiple clones in parallel, which is achieved in a
rather natural way in the present multitasking network, has further welcome implications.

4.6. Alternative formulation of the theory before the RS ansatz

The approach developed in the previous section led to transparent formulae for the distribution
of overlaps in the RS state (99), and even allows us to derive analytically the condition defining
the (continuous) phase transition where (99) ceases to hold (see appendix C). However, the
states beyond the transition point are better described within an alternative (but mathematically
equivalent) formulation of the theory. This alternative approach is based on formulating our
equations first in terms of the following quantities:

L(σ) = αc
∫ π

−π

dω P(ω) cos(ω · σ), Q(ω) = ecF(ω). (112)
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Both P(ω) and Q(ω) are only defined for ω ∈ [−π ,π]n. In terms of (112) we can write our
earlier saddle-point equations (70), (69) as

P(ω) =
〈

Q(ω)
∑

M∈Zn eiω·M+
∑

α χ (Mα ,ψ )

∫ π

π
dω′ Q(ω′)

∑
M∈Zn eiω′·M+

∑
α χ (Mα ,ψ )

〉

ψ

, (113)

log Q(ω) = c

∑
σ∈{−1,1}n cos(ω · σ) eL(σ)

∑
σ∈{−1,1}n eL(σ)

, (114)

and the free energy (73) as

f [χ ] = − lim
n→0

1
βn

{

log

(
∑

σ

eL(σ)−cα

)

−
∑

σ L(σ) eL(σ)

∑
σ eL(σ)

+α

〈

log

(
∑

M

∫ π

−π

dω

(2π )n
eiω·M+

∑
α βχ (Mα ,ψ )Q(ω)

)〉

ψ

}

, (115)

where we used α
∫ π

−π
dω P(ω) log Q(ω) =

∑
σ L(σ)eL(σ)/

∑
σ eL(σ). Clearly

∫ π

−π
dωP(ω) = 1,

Q(ω) ∈ R, Q(−ω) = Q(ω), and Q(0) = ec. We can now switch from the order parameter
Q(ω) to a new order parameter Q̃(M), defined on M ∈ Zn, via the following one-to-one
transformations:

Q̃(M) =
∫ π

−π

dω

(2π )n
Q(ω) eiω·M, Q(ω) =

∑

M∈Zn

Q̃(M) e−iω·M. (116)

The validity of these equations follows from the two identities (2π )−1
∫ π

−π
dω eiωm = δm0

for m ∈ Z, and (2π )−1 ∑
M∈Z eiωM = δ(ω) for ω ∈ [−π ,π]. By construction we now

have
∑

M Q̃(M) = ec. Moreover, since Q(−ω) = Q(ω) we also know that Q̃(M) =
(2π )−n

∫ π

−π
dωQ(ω) cos(ω · M) ∈ R. One can write the saddle-point equations in terms

of these order functions (see appendix D for details):

Q̃(M) =
∫ π

−π

dω cos(ω · M) exp

[

c

∑
σ cos(ω · σ) eL(σ)

∑
σ eL(σ)

]

, (117)

L(σ) = αc e
βn
2c

〈∑
M Q̃(M) eβ

∑
α χ (Mα ,ψ ) cosh

[
β
( 1

c M · σ + ψ
∑

α σα
)]

∑
M Q̃(M) eβ

∑
α χ (Mα ,ψ )

〉

ψ

. (118)

and the free energy reads

f [χ ] = − lim
n→0

1
βn

{

log
∑

σ

eL(σ)−cα −
∑

σ L(σ) eL(σ)

∑
σ eL(σ)

+α

〈

log

[
∑

M

e
∑

α βχ (Mα ,ψ )Q̃(M)

]〉

ψ

}

. (119)

From (72) we find that the distribution of overlaps can be written as

P(M|ψ ) = lim
n→0

∑
M

( 1
n

∑n
γ=1 δM,Mγ

)
eβ

∑
α χ (Mα ,ψ )Q̃(M)

∑
M eβ

∑
α χ (Mα ,ψ )Q̃(M)

∣∣∣∣∣
χ (M,ψ )=M2/2c+Mψ

. (120)

In appendix E we confirm the correctness of (120) in several special limits.
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4.7. The RS ansatz—route II

We now try to construct the RS solution of our new equations (118), (117), by applying the
RS ansatz to the functions L(σ) and Q̃(M):

L(σ) = αc
∫

dhW (h)

n∏

α=1

eβhσα

, Q̃(M) = ec
∫

{dπ}W [{π}]
∏

α

π (Mα ), (121)

with
∫

dhW (h) = 1,W (h) = W (−h), and with a (normalized) functional measure W [π ]
that is only nonzero for functions π (M) that are themselves normalized according to∑

M∈Z π (M) = 1. This ansatz meets the requirements L(−σ) = L(σ), L(0) = αc and∑
M Q̃(M) = ec, and is the most general form of the functions L(σ) and Q̃(M), that is

invariant under all replica permutations. The advantage of this second formulation of the
theory is that it allows us to work with a distribution W (h) of effective fields, instead of
functional measures over distributions, which have easier physical interpretations, and are
more easy to solve numerically from self-consistent equations.

We relegate to appendix F all the details of the derivation of the RS equations, based on
the form (121), the results of which can be summarized as follows. The RS functional measure
W [π ] and the field distribution W (h) obey the following closed equations:

W (h) =
∫

{dπ}W [π ]

〈〈

δ

[

h − τψ − 1
2β

log

(∑
M π (M) eβ(M2/2c+M(ψ+τ/c))

∑
M π (M)eβ(M2/2c+M(ψ−τ/c))

)]〉

ψ

〉

τ=±1

,

(122)

W [π ] = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×
∏

M

δ

[

π (M) −
〈
eβ

∑
s"r hsσ)s δM,

∑
)"k σ)

〉
σ1...σk

〈eβ
∑

s"r hsσ)s 〉σ1...σk

]

. (123)

Both W (h) and W [π ] are correctly normalized, W (h) = W (−h), and W [π ] allows only for
functions π such that π (M) = π (−M) and

∑
M π (M) = 1. We can substitute the second

equation into the first and eliminate the functional measure W [π ], leaving us with a compact
RS equation for the field distribution W (h) only:

W (h) = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×
〈〈

δ

[

h − τψ − 1
2β

log

(〈
eβ(

∑
)"k τ))

2/2c+β(
∑

)"k τ))(ψ+τ/c)+β
∑

s"r hsτ)s
〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c+β(
∑

)"k τ))(ψ−τ/c)+β
∑

s"r hsτ)s
〉
τ1...τk=±1

)]〉

ψ

〉

τ=±1

.

(124)

We see that W (h) = δ(h) is a solution of (124) for any temperature; one easily confirms that
this is in fact the earlier state (99), recovered within the alternative formulation of the theory. If
we inspect continuous bifurcations of new solutions with moments mr =

∫
dhhrW (h) different

from zero, we find (see appendix G) a second order transition along the critical surface in the
(α,β, c)-space defined by

1 = αc2
∑

k%0

e−c ck

k!

{∫
Dz tanh(z

√
β/c + β/c) coshk+1(z

√
β/c + β/c)

∫
Dz coshk+1(z

√
β/c + β/c)

}2

. (125)
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We note that the RHS obeys 0 " RHS " αc2, with limβ→0 RHS = 0 and limβ→∞ RHS =
αc2. Hence a transition at finite temperature Tc(α, c) = β−1

c (α, c) > 0 exists to a new state
with W (h) 2= δ(h) as soon as αc2 > 1. The critical temperature becomes zero when αc2 = 1,
consistent with the percolation threshold (11) derived from the network analysis. We show in
appendix H that the critical surface (125) is indeed identical to the one found in (C.20), within
the approach involving functional distributions.

Finally, within the new formulation of the theory, the RS field-conditioned overlap
distribution is found to be

P(M|ψ ) = lim
n→0

∫
{dπ}W [π ]

(∑
M′ π (M′) eβ(M′2/2c+ψM′)

)n−1
π (M) eβ(M2/2c+ψM)

∫
{dπ}W [π ]

(∑
M′ π (M′) eβ(M′2/2c+ψM′ )

)n

=
∫

{dπ}W [π ]

{
π (M) eβ(M2/2c+ψM)

∑
M′ π (M′) eβ(M′2/2c+ψM′)

}

. (126)

Insertion of (123) allows us to eliminate the functional measure in favour of effective field
distributions:

P(M|ψ ) = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×
{ 〈

eβ
∑

s"r hsσ)s δM,
∑

)"k σ)

〉
σ1...σk

eβ(M2/2c+ψM)

∑
M′

〈
eβ

∑
s"r hsσ)s δM′,

∑
)"k σ)

〉
σ1...σk

eβ(M′2/2c+ψM′ )

}

= e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×
{〈

δM,
∑

)"k τ)
eβ(

∑
)"k τ))

2/2c+βψ
∑

)"k τ)+β
∑

s"r hsτ)s
〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c+βψ
∑

)"k τ)+β
∑

s"r hsτ)s
〉
τ1...τk=±1

}

. (127)

Again, we can rewrite this result (127) in the form (104), which is more useful for investigating
the system’s performance since it quantifies the statistics of overlaps relative to their maximum
value k, with

P(M|k,ψ ) = e−αck
∑

r%0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×






〈
δM,

∑
)"k τ)

eβ(
∑

)"k τ))
2/2c+βψ

∑
)"k τ)+β

∑
s"r hsτ)s

〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c+βψ
∑

)"k τ)+β
∑

s"r hsτ)s
〉
τ1...τk=±1




 . (128)

The latter formula shows very clearly that h is to be interpreted as a clonal interference field,
which is caused by overlapping signalling strategies in the bi-partite graph B and leads to
clique interactions in the effective H–H graph G. Biologically these interference fields can
manifest themselves in unwanted clonal expansions (in the absence of the required antigen),
or unwanted clonal reductions (in the presence of the required antigen), due to accidental
(frozen) random interactions between clones. Fortunately, we see in figure 10 that even above
the percolation threshold αc2 = 1 the system is able to suppress clonal cross-talk (i.e. have
W (h) = δ(0)), provided the noise level is nonzero, and that even in the cross-talk phase the
signalling performance of the system degrades only smoothly (see the section below).
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Figure 10. Transition lines (125) for c = 1, 2, 3, 4, in the (αc2, T ) plane, with T = β−1. The
distribution W (h) represents the statistics of clonal cross-talk fields, which are caused by increased
connectivity in the graph G. If W (h) = δ(h) the clones are controlled via signalling strategies
that can act independently; we see that this is possible even above the percolation threshold if
the temperature (i.e. the signalling noise) is nonzero. Circles: transition calculated via numerical
solution of (124) for c = 1 (see section 5).

5. Numerical results: population dynamics and numerical simulations

5.1. Population dynamics calculation of the cross-talk field distribution

We solve numerically equation (124) for the clonal interference field distribution W (h) with
a population dynamics algorithm [50], which is based on interpreting (124) as the fixed-point
equation of a stochastic process and simulating this process numerically. One observes that
(124) has the structural form

W (h) = 〈〈δ[h − h(k, r, h, $, τ,ψ )]〉〉k,r,h,$,τ,ψ , (129)

with the following set of random variables:

k ∼ Poisson (c)

r ∼ Poisson (αck)

h = (h1, . . . , hr) : r i.i.d. random fields with probability density W (h)

$ = ()1, . . . , )r) : r i.i.d. discrete random variables, distributed uniformly over {1, . . . , k}
τ : dichotomic random variable, distributed uniformly over {−1, 1}
ψ : distributed according to P(ψ )

and with

h(k, r, h, $, τ,ψ ) = τψ + 1
2β

log




〈
eβ(

∑
)"k τ))

2/2c+β(
∑

)"k τ))(ψ+τ/c)+β
∑

s"r hsτ)s
〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c+β(
∑

)"k τ))(ψ−τ/c)+β
∑

s"r hsτ)s
〉
τ1...τk=±1



 .

(130)

We approximate W (h) by the empirical field frequencies computed from a large number (i.e. a
population) of fields, which are made to evolve by repeated numerical iteration of a stochastic
map. We start by initializing S fields hs ∈ R, with s = 1, . . . , S, randomly with uniform
probabilities over the interval [−hmax, hmax]. Their empirical distribution then represents the
zero-step approximation W0(h) of W (h). We then evolve the fields stochastically via the
following Markovian process, giving at each step n an empirical distribution Wn(h) which as
n increases gives an increasingly precise approximation of the invariant measure W (h):
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• choose randomly the variables k, r, $, τ,ψ according to their (known) probability
distributions;

• choose randomly r fields h = h1, . . . , hr from the S fields available, i.e. draw r fields from
the probability distribution Wn−1(h) of the previous step;

• compute h(k, r, h, $, τ,ψ );
• choose randomly one field from the set of the S available, and set its value to

h(k, r, h, $, τ,ψ );

In all population dynamics calculations in this paper we used populations of size S = 5000.
We iterate the procedure until convergence, checking that every O(S2) steps the distance

between different Wn(h), and speed up the computation of h(k, r, h, $, τ,ψ ) by rewriting it as

h(k, r, h, $, τ,ψ )

= τψ + 1
2β

log

( ∫
Dz

〈
ez

√
β/c

∑
)"kτ)+β(

∑
)"k τ))(ψ+τ/c)+β

∑
s"r hsτ)s

〉
τ1...τk=±1∫

Dz
〈
ez

√
β/c

∑
)"k τ)+β(

∑
)"k τ))(ψ−τ/c)+β

∑
s"r hsτ)s

〉
τ1...τk=±1

)

= τψ + 1
2β

log

(∫
Dz

∏
)&k cosh[z

√
β/c + β(ψ + τ/c) + β

∑
s&r hsδ))s ]∫

Dz
∏

)&k cosh[z
√

β/c + β(ψ − τ/c) + β
∑

s&r hsδ))s ]

)

, (131)

which requires Gaussian integration instead of the average over {τ1, . . . , τk}. Having computed
W (h), we can build P(M|ψ ) using equation (127). The latter can be rewritten as

P(M|ψ ) =
〈〈〈

δM,
∑

)"k τ)
eβ(

∑
)"k τ))

2/2c+βψ
∑

)"k τ)+β
∑

s"r hsτ)s
〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c+βψ
∑

)"k τ)+β
∑

s"r hsτ)s
〉
τ1...τk=±1

〉〉

k,r,h,$,ψ

=
〈〈〈

δM,
∑

)"k τ)
eβ(

∑
)"k τ))

2/2c+βψ
∑

)"k τ)+β
∑

s"r hsτ)s
〉
τ1...τk=±1

Z(k, r, h, $,ψ )

〉〉

k,r,h,$,ψ

, (132)

with Z(. . .) =
∫

Dz
∏

)&k cosh[z
√

β
c + β(ψ − τ/c) + β

∑
s&r hsδ))s ] as determined in (131).

Hence we can carry out the ensemble average over the parameters {τ, k, r, h, $,ψ} in this last
expression as an arithmetic average over a large number L of samples drawn from their joint
distribution, for which in this paper we choose L = O(107). The distribution (128) is handled
in the same way, and can be rewritten as

P(M|k,ψ ) =
〈〈〈

δM,
∑

)"k τ)
eβ(

∑
)"k τ))

2/2c+βψ
∑

)"k τ)+β
∑

s"r hsτ)s
〉
τ1...τk=±1

Z(k, r, h, $,ψ )

〉〉

r,h,$,ψ

, (133)

i.e. upon simply omitting the averaging over k.
In the interest of transparency and an intuitive understanding, it helps to identify the

physical meaning of the random variables involved in the above stochastic process. Given a
subsystem of k spins linked to a particular cytokine pattern (say pattern µ = 1, without loss
of generality), we may ask how many other patterns µ 2= 1 interfere with it. This number is
the cardinality of the set

R =
{
ξµ

i , i=1, . . . , N;µ=2, . . . ,αN : ξµ
i ξ 1

i 2= 0
}
. (134)

With each of the k spins (labelled i, with ξ 1
i 2= 0) correspond αN−1 cytokine variables ξµ

i with
µ > 1. Hence we have, for a set of k spins, k(αN−1) independent possibilities to generate
interfering cytokine signals, each nonzero with probability c/N. Thus, for N → ∞ the number
of possible interferences is a Poissonian random variable with mean αck, which is recognized
as the variable r. For each value of r we next ask on which of the k spins each interference acts,
i.e. which are the r indices i such that ξµ

i ξ 1
i 2= 0 for some µ > 1. Each i refers to one of the k
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spins selected, so we can describe this situation by r random variables )s, with s = 1, . . . , r,
each distributed uniformly in {1, . . . , k}, with are recognized as the vector $. The parameters
k, r and $ considered so far depend only on the (quenched) structure of the B–H network. By
conditioning on these random variables we can write

P(M|ψ ) =
∞∑

k=0

e−c ck

k!

∞∑

r=0

e−αck (αck)r

r!

k∑

)1,...,)r=1

k−rP(M|k, r, $,ψ )

=
〈〈

∑

σ

δM,
∑k

)=1 ξ 1
) σ)

Z−1(k, r, $,ψ )e−βH(σ|k,r,$,ψ )

〉〉

k,r,$

. (135)

Inside the brackets we have the overlap M of a single pattern (µ = 1) with k non-null entries,
whose correlation with the other patterns is specified uniquely by the parameters (k, r, $).
We can write the effective Hamiltonian governing this k-spin subsystem by isolating in the
Hamiltonian (42) µ = 1 contribution:

Heff(σ) = −M2
1 (σ)/2c − ψM1(σ) −

k∑

i=1

σi

∑

µ>2

ξµ
i (Mµ(σ)/c + ψµ). (136)

Upon transforming τ) = ξ 1
) σ), and defining hµ

) (τ) = ξ 1
) ξµ

) (Mµ/c + ψµ), and using the
meaning of the parameters r and )s, we arrive at a description involving r nonzero fields hs(τ),
each acting on a spin )s:

Heff(τ1, . . . , τk) = −
(

∑

)&k

τ)

)2

/2c − ψ
∑

)&k

τ) −
∑

s&r

hs(τ)τ)s . (137)

If we then regard each field hs(τ) as a independent random field (conditional on (k, r, $)), with
probability distribution W (hs), we arrive at

P(M) =
〈〈 ∫

dhW (h)

〈

δM,
∑k

)=1 τ)

eβ(
∑

)"k τ))
2/2c+βψ

∑
)"k τ)+β

∑
s"r hsτ)s

Z(k, r, $,ψ )

〉

τ

〉〉

k,r,$

. (138)

This is exactly equation (127) obtained within the RS ansatz. Hence the parameters h in (129)
represent the effective fields induced by the cross-talk interference of cytokine patterns. The
only difference between the rigorous RS derivation and the above heuristic one is that in
the former we effectively find W (h) =

∏
s&r W (hs), i.e. the random fields are independent.

This may not always be the case: if we recall the definition of the r effective fields, viz.
hµ

) (τ) = ξ 1
) ξµ

) (Mµ/c + ψµ), we see that as soon as different patterns have more then one spin
in common, their interference fields will not be independent. One therefore expects the RS
equation to no longer be exact if the bi-partite B–H network is not-tree like but contains loops.
Finally we note that in the absence of external fields, the effective fields take values in Z/c, so
that W (h) becomes a superposition of delta-functions, consistent with the numerical results in
figure 13. This allows in principle a rewriting of the self-consistency equation (124) in terms
of the amplitudes of such superposition, which are scalar parameters rather than distribution
and may be easier to find numerically.

5.2. Critical line, overlap distributions and the interference field distribution

First we use the population dynamics algorithm to validate the location of the critical line (125).
To do so we keep α fixed and compute W (h) for different values of the inverse temperature
β. From the solution we compute m2 =

∫
dhh2W (h), and determine for which β-value it

becomes nonzero (starting from the high temperature phase), i.e. where clonal cross-talk sets
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Figure 11. Widths (variances) m2 =
∫

dhW (h)h2 of the distribution of clonal cross-talk fields,
shown as markers versus the inverse temperature β for different values of α. In all cases c = 1.
The values of m2 are calculated from the population dynamics solution of (129), and are (modulo
finite-size fluctuations in population dynamics algorithm) in excellent agreement with (125). The
latter predicts that for the α-values considered and for c = 1 the widths m2 should become nonzero
at: βc = 0.6634 (for α = 1.75), βc = 0.5639 (for α = 2.12), and βc = 0.4707 (for α = 2.75).

in. The result is shown in figure 11, which reveals excellent agreement between the predicted
bifurcation temperatures (125) and those obtained from population dynamics. We also see
that there is no evidence for discontinuous transitions. In figure 10 we plotted the bifurcation
temperatures obtained via population dynamics versus αc2 (markers), together with the full
transition lines predicted by (125) and again see excellent agreement between the two.

In the under-percolated regime αc2 < 1, there is no possibility of a phase transition and the
only solution of (124) is W (h) = δ(h). Both equations (127), (128) then lose their dependence
on α, and after some simple manipulations we recover our earlier results (104), (105). In
figure 12 we test our predictions for the overlap statistics against the results of numerical
(Monte Carlo) simulations of the spin process defined by Hamiltonian (3), in the absence
of external fields. There is excellent agreement between theory and numerical experiment.
Comparison of P(M|k, 0) to P(M|0) shows that the former changes shape as the inverse
temperature β is increased from zero, from a single peak at M = 0 to two symmetric peaks,
showing that the system behaviour at high versus low noise levels is very different. In contrast,
P(M|0) always has a maximum in M = 0, due to the Poissonian distribution of k, and does
not capture the two different behaviours. Hence P(M|k, 0) is the most useful quantifier of
retrieval behaviour, which from now on we will simply denote in the absence of external fields
as P(M|k).

When αc2 > 1, and below the critical line defined by equation (125), the solution of
equation (124) in the absence of external fields will exhibit W (h) 2= δ(h); see figure 13. As a
consequence, the effective Boltzmann factor governing the behaviour of a set of k spins, linked
to a single pattern, acquires a term β

∑
s&r hsτ)s (see equation (133)). This term means that each

subsystem is no longer isolated as in the under-percolated regime, but feels the interference
due to the other patterns in the form of effective random fields. Numerical results for P(M|k) in
the over-percolated regime, including comparisons between population dynamics calculations
and measurements taken in numerical simulations (involving spin systems with N = 3.104
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Figure 12. Left: degree-conditioned conditioned overlap distribution P(M|k, 0) in the under-
percolated regime, for k = 6, c = 1, and different β values (see legend), without external fields.
Solid lines: theoretical predictions. Markers: the results of measuring the overlap statistics in Monte
Carlo simulations of the spin system with Hamiltonian (3), with N = 3.104 H-cells. Different
symbols represent different values of α, namely α = 0.005 (bullets), α = 0.008 (squares) and
α = 0.011 (triangles). The theory predicts that here P(M|k, 0) is independent of α, which we find
to be confirmed. Right panel: the overlap distribution P(M|0) at zero field in the under-percolated
regime, for k = 6, c = 1 and α = 0.5, and different temperatures (see legend). Note that M ∈ Z,
so the line segments are only guides to the eye.

Figure 13. The clonal cross-talk interference field distribution W (h) below the critical temperature
and in the absence of external fields, as calculated (approximately) via the population dynamics
algorithm, for c = 2, α = 2 and β = 6.2. Note that the support of W (h) is Z/c. One indeed
observes the weight of W (h) being concentrated on these points; due to the finite population size
in the algorithm (here S = 5000) one finds small nonzero values for h /∈ Z/c due to finite-size
fluctuations.

H-cells) are shown in figure 14. Again we observe excellent agreement. Moreover, we see
that in the regime of clonal cross-talk the system’s signalling performance degrades only
gracefully; provided α is not yet too large, the overlap distribution maintains its bimodal form.
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Figure 14. Left panel: overlap distribution P(M|k) at zero field in the over-percolated regime, for
k = 6, c = 1 and β = 0.8, and different α values (see legend). Right: the same distribution at
β = 0.8, but now for k = 6, c = 3, and different α values (see legend). Note the different vertical
axis scales of the two panels. Solid lines: theoretical predictions, calculated via the population
dynamics method. Markers: results of measuring the overlap statistics in Monte Carlo simulations
of the spin system with Hamiltonian (3), with N = 3.104 H-cells. The theory predicts that here
P(M|k, 0) is no longer independent of α, which we find confirmed. Note that M ∈ Z, so the line
segments are only guides to the eye.

6. Conclusions

The adaptive immune system consists of a large and diverse ensemble of cells and chemical
messengers, such as antibodies and cytokines. Helper and suppressor T-lymphocytes (the
coordinator branches) control the activity of B-lymphocytes (the effector branches) through
a rich and continuous exchange of cytokines, which elicit or suppress effector actions. From
a theoretical point of view, a fascinating feature of the immune system is the ability of
T-lymphocytes to manage multiple B-clones at once, which is vital in defending the host from
simultaneous attacks by multiple pathogens. We investigated this ability in the present study,
as an emergent, collective feature of a spin-glass model, that describes the adaptive response
of B-cells under the coordination of T-cells.

In particular, the focus of this paper is on the ability of the T-cells to coordinate very
effectively an extensive number of B-soldiers, when a suitable degree of dilution in the B-T
network is employed. We assumed that the number NB of B-cells scales with the number
NT of T-cells as NB = αNT , with α > 0, and we modelled the interactions between B-cells
and T-cells by means of a finitely connected bi-partite spin-glass, where each B-cell has a
likelihood of being connected to a T-cell which scales as c/NT . This is in agreement with the
biological picture of highly-selective touch-interactions among B- and T-cells. The system
is thermodynamically equivalent to a diluted monopartite graph G that describes effective
interactions between T-cells, whose topological properties are shown to depend crucially on
the parameters α and c. In particular, when αc2 < 1 the typical components in G are finite
sized, and form cliques whose occurrence frequency decays exponentially with their size.
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Each clique corresponds to a cytokine signalling pattern, and this kind of arrangement easily
allows for the simultaneous recall of multiple patterns. On the other hand, when αc2 > 1, the
effective network can exhibit a giant component, which can compromise the system’s parallel
processing ability.

We have analysed the operation of the system as an effective equilibrated stochastic process
of interacting T-cells, by using techniques from the statistical mechanics of finitely connected
spin systems. Within the replica-symmetric (RS) ansatz, we found a critical surface Tc(α, c)

that separates two distinct phases. For T > Tc(α, c), the system behaves as an extensively
large set of independent neural networks, each of finite size and each storing a single undiluted
pattern. Here, the only source of noise are the thermal fluctuations within each subsystem.
For high temperature, each subsystem behaves as a paramagnet while, at low temperature
each subsystem retrieves one particular pattern (or its inverse), representing parallel retrieval
(perfectly at zero temperature) of an extensive number of finite-size cytokine patterns. The
regulators are able to activate and inhibit independently the whole B repertoire, as they should.
In particular, each subsystem will oscillate between positive and negative signalling (with a
timescale which increases with its size and only tends to infinity at zero temperature), because
there is only weak ergodicity breaking. In the presence of noise (temperature), no clone can
be expanded forever and there is no expansion without contraction, unless there is a persistent
external stimulus (field) pinning the system to one particular strategy. This may be a key
feature for the homeostatic regulation of lymphocytes numbers, as cells that are not signalled
in a given time undergo anergy and apoptosis. The critical temperature becomes zero when
αc2 = 1, i.e. Tc(α, 1/

√
α) = 0 ∀α ! 0, so for αc2 < 1 no transition at finite temperature

away from this phase is possible.
When the load increases, i.e. when α becomes larger and we cross the transition line,

overlaps among bit entries of the ‘cytokine patterns’ to be recalled become more and more
frequent, and this gives rise to a source of cross-clonal interference which acts as an effective
random field on each node. This represents an additional source of noise for the system at any
finite temperature, and the only source of noise at zero temperature, and is seen to diminish
the parallel processing capabilities. However, the signalling performance is found to degrade
only smoothly as one enters further into the clonal cross-talk regime.

Remarkably, the high-temperature phase without clonal cross-talk is the one that gives
the desired emerging behaviour of parallel retrieval, in contrast to traditional associative
networks. This is due to the fact that the distribution of overlaps, which is the order
function of the model, encodes both the thermal fluctuations of the overlap of the system
with each pattern, and the fluctuations of the overlap across different patterns. Below the
percolation threshold, i.e. α < 1/c2, where the system consists of independent subsystems,
each dealing with one pattern, fluctuations of the overlap across different patterns (i.e.
subsystems) are uncorrelated even at zero temperature (when all spins are frozen and
ergodicity is broken by each subsystem), so each replica evolves independently. Increasing
the temperature restores ergodicity in each subsystem, and the regime of α-values without
clonal cross-talk gets wider. From physical arguments and interpretations of our formulae
we expect that parallel retrieval without cross-talk is RS, whereas sequential retrieval (or
parallel retrieval in the presence of cross-talk) will not be. Our predictions and results are
tested against numerical simulations wherever possible, and we consistently find perfect
agreement.

Finally, we are tempted to add a last note on the solvability of this model. Despite the
graph G exhibiting many short loops, which are usually an obstacle to statistical mechanical
techniques, the present spin model on G is found to be solvable, due to the separable nature
of the effective interaction matrix. This separability allows us to unfold the effective network
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into a bi-partite network B, where loops are few or absent and factorization over sites can be
achieved.
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Appendix A. Simple limits

Here we work out the theory in some simple limits, which can be worked out independently,
to test more complicated stages of our general calculation.

• The paramagnetic state at β = 0:

lim
β→0

β f = − lim
N→∞

lim
n→0

1
Nn

log
∑

σ1...σn

1 = − log 2. (A.1)

The conditioned overlap distribution at β = 0 would be

P(M|ψ ) = 1
P(ψ )

lim
N→∞

1
αN

αN∑

µ=1

δ(ψ − ψµ)

∫ π

−π

dφ

2π
eiMφ2−N

∑

σ

e−iφ
∑

i ξ
µ
i σi

= lim
N→∞

∫ π

−π

dφ

2π
eiMφ

(
1 + c

N
[cos(φ) − 1]

)N

=
∫ π

−π

dφ

2π
eiMφ+c[cos(φ)−1] = e−c

∑

k%0

ck

k!

∫ π

−π

dφ

2π
eiMφ〈eiφσ 〉k

σ=±1

= e−c
∑

k%0

ck

k!
〈δM,

∑
)"k σk〉σ1...σk=±1. (A.2)

• The case of external fields only.
This simply corresponds to removing the M2

µ terms, and gives

f = − lim
N→∞

lim
n→0

1
βNn

log
∏

iα

(
∑

σ

eβσ
∑αN

µ=1 ψµξ
µ
i

)

= − 1
β

log 2 − lim
N→∞

lim
n→0

1
βn

log coshn

(

β
∑

µ&αN

ψµξµ

)

= − 1
β

log 2 − lim
N→∞

lim
n→0

1
βn

log
∫

dh dĥ
2π

eiĥh coshn(βh) e−iĥ
∑

µ"αN ψµξµ

= − 1
β

log 2 − lim
N→∞

lim
n→0

1
βn

log
∫

dh dĥ
2π

eiĥh coshn(βh)

αN∏

µ=1

(
1 + c

N
[cos(ĥψµ) − 1]

)

= − 1
β

log 2 − lim
n→0

1
βn

log
∫

dh dĥ
2π

eiĥh coshn(βh) eαc
∫

dψP(ψ )[cos(ĥψ )−1]

= − 1
β

log 2 − lim
n→0

1
βn

log
∫

dh dĥ
2π

eiĥh+αc
∫

dψP(ψ )[cos(ĥψ )−1]
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× {1 + n log cosh(βh) + O(n2)}

= − 1
β

log 2 − 1
β

∫
dhW (h) log cosh(βh), (A.3)

with the effective field distribution

W (h) =
∫

dĥ
2π

eiĥh+αc
∫

dψP(ψ )[cos(ĥψ )−1]

= e−αc
∑

k%0

(αc)k

k!

∫ [
∏

)&k

P(ψ))dψ)

] ∫
dĥ
2π

eiĥh
∏

)&k

cos(ĥψ))

= e−αc
∑

k%0

(αc)k

k!

∫ [
∏

)&k

P(ψ))dψ)

]〈∫
dĥ
2π

eiĥ(h−
∑

)"k ψ)σ))

〉

σ1...σk=±1

=
∑

k%0

e−αc (αc)k

k!

〈〈

δ

[

h −
∑

)&k

ψ)σ))

]〉

ψ1...ψk

〉

σ1...σk=±1

. (A.4)

Appendix B. Normalization of F(ω)

In this appendix we derive equation (74). It follows from
∫ π

−π

dω cos(ω · σ) =
∫

dm dm̂
2π

eimm̂ cos(m)

∫ π

−π

dω e−im̂ω·σ

=
∫

dm dm̂
2π

eimm̂ cos(m)

[
2c
m̂

sin(m̂π )

]n

=
∫

dm̂
δ(m̂ + 1) + δ(m̂ − 1)

2

[
2c
m̂

sin(m̂π )

]n

= 0, (B.1)

where we isolated σ · ω via 1 = (2π )−1
∫

dm dm̂ eimm̂−im̂ω·σ and used
∫ π

−π

dω e−im̂ω·σ =
n∏

α=1

∫ π

−π

dωα e−im̂ωασα =
n∏

α=1

(

2
∫ π

0
dωα cos(m̂ωασα )

)

=
n∏

α=1

(
2cσα

m̂
sin(m̂πσα )

)

=
[

2c
m̂

sin(m̂π )

]n

. (B.2)

Appendix C. Continuous RS phase transitions via route I

Here we derive the equation for the continuous phase transitions in the absence of external
fields, i.e. for P(ψ ) = δ(ψ ), away from solution (99). At the transition, the function D0(ω|β),
which we will denote simply as D(ω|β), still satisfies (75). Continuous bifurcations away
from (99) can be identified via a Guzai (or functional moment) expansion [49]. We transform

π (ω) → cos(ω) + -(ω), (C.1)

with fk({π1, . . . ,π)}) → f̃k({-1, . . . ,-k}), W [{π}] → W̃ [{-}], and W̃ [{-}] = 0 as soon as∫
dω-(ω) 2= 0 (because

∫
dω π (ω) = 1), and λ(θ |W ) → λ̃(θ |W̃ ). We expand our equations

in powers of the functional moments 4(ω1, . . . ,ωr) =
∫
{d-}W̃ [{-}]-(ω1) . . . -(ωr). One

assumes that close to the transition there exists some small ε such that 4(ω1, . . . ,ωr) = O(εr).
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If the lowest bifurcation is of order ε1, we obtain, upon multiplying (89) by - and subsequently
integrating over -:

4(ω) =
∫

{d-}-(ω)

∫
dθ

2π
λ̃(θ |W̃ )

∏

ω

δ[-(ω) + cos(ω) − cos(ω − θ )]

=
∫

dθ

2π
λ̃(θ |W̃ )[cos(ω − θ ) − cos(ω)] = cos(ω)

∫
dθ

2π
λ̃(θ |W̃ )[cos θ − 1], (C.2)

where we used the invariance under θ → −θ of

λ̃(θ |W̃ ) =
∑

m∈Z
eimθ+cα

∑
k!0

cke−c
k!

∫ ∏k
)=1[{d-)}W̃ [{-)}]]{cos[m arctan f̃k({-1,...,-k})]−1}. (C.3)

The solution of (C.2) is clearly 4(ω) = φ cos(ω), with

φ =
∫

dθ

2π
λ̃(θ |W̃ )[cos(θ ) − 1], (C.4)

which we need to evaluate further by expanding λ̃(θ |W̃ ) for small ε. Conversely, if the lowest
bifurcating order is ε2 one must focus on

4(ω1,ω2) =
∫

{d-}-(ω1)-(ω2)

∫
dθ

2π
λ̃(θ |W̃ )

∏

ω

δ[-(ω) − cos(ω) − cos(ω − θ )]

= cos(ω1) cos(ω2)

∫
dθ

2π
λ̃(θ |W̃ )[cos(θ ) − 1]2

+ sin(ω1) sin(ω2)

∫
dθ

2π
λ̃(θ |W̃ ) sin2(θ ). (C.5)

We first inspect (C.4). Transforming each π) in (98) according to (C.1), we have
k∏

)=1

π)(ω) =
k∏

)=1

[cos(ω) + -)(ω)] = cosk(ω)

[

1 +
k∑

)=1

-)(ω)

cos(ω)

]

+ O(-2). (C.6)

Inserting this result into (98) and using the properties (75) allows us to expand
f̃k({-1, . . . ,-k}):

f̃k({-1, . . . ,-k}) =
∑k

)=1

∫ π

−π
dω sin(ω) cosk−1(ω)-)(ω)D(ω|β)
∫ π

−π
dω cosk+1(ω)D(ω|β)

+ O(-2). (C.7)

We substitute the above into (C.3) and expand cos(m arctan(x)) = 1 − 1
2 m2x2 +O(x4). Upon

introducing

Ik =
∫ k∏

)=1

[{d-)}W̃ [{-)}]]
[

k∑

s=1

∫ π

−π

dω sin(ω) cosk−1(ω)-s(ω)D(ω|β)

]2

, (C.8)

Ak =
∫ π

−π

dω cosk+1(ω)D(ω|β), (C.9)

we see that Ik = O(ε2), so we can now expand λ̃(θ |W̃ ) as

λ̃(θ |W̃ ) =
∑

m∈Z
exp

[

imθ − cα
2

m2
∑

k%0

e−cck

k!
Ik

A2
k

+ O(ε4)

]

=
∑

m∈Z
eimθ

[

1 − cα
2

m2
∑

k%0

e−cck

k!
Ik

A2
k

+ O(ε4)

]

= 2πδ(θ ) + παcδ′′(θ )
∑

k%0

e−cck

k!
Ik

A2
k

+ O(ε4). (C.10)
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Next we need to work out the factors Ik. Using the functional moment definition
4(ω1, . . . ,ωr) =

∫
{d-}W̃ [{-}]-(ω1) . . . -(ωr), one may write

∫ k∏

)=1

[{d-)}W̃ [{-)}]]
k∑

r,s=1

-r(ω
′)-s(ω

′′)

=
∑

r

∫
{d-r}W̃ [{-r}]-r(ω

′)-r(ω
′′) +

∑

r 2=s

∫
{d-r}{d-s}W̃ [{-r}]W̃ [{-s}]-r(ω

′)-s(ω
′′)

= k4(ω′,ω′′) + k(k − 1)4(ω′)4(ω′′). (C.11)

This allows us to work out (C.8) further:

Ik = k
∫ π

−π

dω′dω′′ sin(ω′) cosk−1(ω′)D(ω′|β) sin(ω′′) cosk−1(ω′′)D(ω′′|β)ψ (ω′,ω′′)

+ k(k − 1)

[ ∫ π

−π

dω′ sin(ω′) cosk−1(ω′)D(ω′|β)ψ (ω′)

]2

= k
∫ π

−π

dω′dω′′D(ω′|β)D(ω′′|β) sin(ω′) cosk−1(ω′)ψ (ω′,ω′′) sin(ω′′) cosk−1(ω′′),

(C.12)

where in the last equality we have used the symmetry of D(ω|β) and 4(ω) = φ cos(ω).
Inserting this last expression in (C.10) and shifting the summation index k → k + 1 then leads
to

λ̃(θ |W̃ ) = 2πδ(θ ) + παc2δ′′(θ )S({4}) + O(ε4), (C.13)

S({4}) =
∑

k%0

e−cck

k!

×
∫ π

−π
dω′dω′′D(ω′|β)D(ω′′|β) sin(ω′) cosk(ω′)4(ω′,ω′′) sin(ω′′) cosk(ω′′)

[ ∫ π

−π
dωD(ω|β) cosk+2(ω)

]2 .

(C.14)

To make further progress we need to calculate 4(ω′,ω′′). We can first simplify (C.5) using
(C.4), giving

4(ω1,ω2) = φ′ sin(ω1) sin(ω2) − (2φ + φ′) cos(ω1) cos(ω2), (C.15)

where we defined

φ′ =
∫ π

−π

dθ

2π
λ̃(θ |W̃ ) sin2(θ ). (C.16)

With this we can simplify (C.14) to

S({4}) = φ′
∑

k%0

e−cck

k!

[ ∫ π

−π
dωD(ω|β) sin2(ω) cosk(ω)

]2

[ ∫ π

−π
dωD(ω|β) cosk+2(ω)

]2 . (C.17)

Together with (C.13), this allows us to establish equations from which the two amplitudes φ

and φ′ can be solved, by substitution into (C.4) and (C.16). This results in, after integration by
parts over θ :

φ = 1
2
αc2S({4})

∫ π

−π

dθ [cos(θ ) − 1]δ′′(θ ) + O(ε4) = −1
2
αc2S({4}) + O(ε4)

= −1
2
αc2φ′

∑

k%0

e−cck

k!

[ ∫ π

−π
dωD(ω|β) sin2(ω) cosk(ω)

]2

[ ∫ π

−π
dωD(ω|β) cosk+2(ω)

]2 + O(ε4) (C.18)

39



J. Phys. A: Math. Theor. 46 (2013) 415003 E Agliari et al

φ′ = 1
2
αc2S({4})

∫ π

−π

dθ sin2(θ )δ′′(θ ) + O(ε4)

= αc2φ′
∑

k%0

e−cck

k!

[ ∫ π

−π
dωD(ω|β) sin2(ω) cosk(ω)

]2

[ ∫ π

−π
dωD(ω|β) cosk+2(ω)

]2 + O(ε4). (C.19)

Since φ′ = 0 immediately implies that φ = 0, the only possible continuous bifurcation must
be the first instance where φ′ 2= 0. According to the above equation this O(ε2) bifurcation
happens when

1 = αc2
∑

k%0

e−cck

k!

[∫ π

−π
dω sin2(ω) cosk(ω)D(ω|β)

∫ π

−π
dω cosk+2(ω)D(ω|β)

]2

, (C.20)

with D(ω|β) = (2π )−1 ∑
m∈Z cos(mω)eβm2/2c. Equation (C.20) defines the transition point,

where the system will leave the state (99). The RHS of (C.20) obeys limβ→0 RHS = 0.
In Appendix G we show that limβ→∞ RHS = αc2, so a transition at finite temperature
Tc = β−1

c > 0 exists in a new state with W [{π}] 2=
∏

ω δ[π (ω) − cos(ω)] as soon as αc2 > 1.
The critical temperature becomes zero when αc2 = 1.

Appendix D. Saddle-point equations in terms of L(σ)

Here we derive equation (118), starting from the definition (112) and relation (113):

L(σ) = αc

〈∫ π

−π
dω cos(ω · σ)Q(ω)

∑
M eiω·M+

∑
α χ (Mα ,ψ )

∫ π

−π
dωQ(ω)

∑
M eiω·M+

∑
α χ (Mα ,ψ )

〉

ψ

= αc

〈∫
dω cos(ω · σ)

∑
M′ Q̃(M′)

∑
M eiω·(M−M′ )+

∑
α χ (Mα ,ψ )

∫
dω

∑
M′ Q̃(M′)

∑
M eiω·(M−M′ )+

∑
α χ (Mα ,ψ )

〉

ψ

. (D.1)

We can then work out the integrals
∫ π

−π

dω cos(ω · σ) eiω·(M−M′ ) = 1
2

∫ π

−π

dω(eiω·σ +eiω·σ ) eiω·(M−M′ )

= π (δM′,M+σ + δM′,M−σ ), (D.2)

and substituting into (D.1) gives

L(σ) = 1
2
αc

〈∑
M[Q̃(M + σ) eβ

∑
α χ (Mα ,ψ ) + Q̃(M − σ) eβ

∑
α χ (Mα ,ψ )]

∑
M Q̃(M) e

∑
α χ (Mα ,ψ )

〉

ψ

= 1
2
αc

〈∑
M Q̃(M)[eβ

∑
α χ (Mα−σα ,ψ ) + eβ

∑
α χ (Mα+σα ,ψ )]

∑
M Q̃(M) e

∑
α χ (Mα ,ψ )

〉

ψ

= cα

〈

e
βn
2c

∑
M Q̃(M) eβ

∑
α χ (Mα ,ψ ) cosh

[
β
( 1

c M · σ + ψ
∑

α σα
)]

∑
M Q̃(M) eβ

∑
α χ (Mα ,ψ )

〉

ψ

. (D.3)

Appendix E. Simple limits to test the replica theory

Here we inspect several simple limits to test our results for the overlap distribution and the
free energy.
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• Infinite temperature. Using limβ→0 L(σ) = αc and
∑

M Q̃(M) = ec in (119) we
immediately find the correct free energy

lim
β→0

β f RSB = − lim
n→0

1
n

{

log
∑

σ

1

}

= − log 2. (E.1)

Moreover, from (117) we can extract

lim
β→0

Q̃(M) =
∫ π

−π

dω

(2π )n
cos(ω · M)ec2−n ∑

σ cos(ω·σ)

=
∑

k%0

ck

k!
2−nk

∑

σ1...σk

∫ π

−π

dω

(2π )n
cos(ω · M)

∏

)&k

cos(ω · σ))

=
∑

k%0

ck

k!
2−nk

∑

σ1...σk

δM,
∑

)"k σ) =
∑

k%0

ck

k!

n∏

α=1

〈δMα ,
∑

)"k σ)
〉σ1...σk=±1. (E.2)

Hence, it now follows from (120) that

lim
β→0

P(M|ψ ) = lim
n→0

1
n

n∑

γ=1

∑
M∈Zn

∑
k%0

ck

k!

∏n
α=1〈δMα ,

∑
)"k σ)

〉σ1...σk=±1δM,Mγ

∑
M∈Zn

∑
k%0

ck

k!

∏n
α=1〈δMα ,

∑
)"k σ)

〉σ1...σk=±1

= e−c
∑

k%0

ck

k!
〈δM,

∑
)"k σ)

〉σ1...σk=±1. (E.3)

This coincides with our RS expression, as it should since at high temperature the RS ansatz
is exact.

• External fields only. In the case of having only external fields we simply remove all terms
that come from the interaction energy in (D.3), obtaining

L(σ) = αc
〈

cosh
[
βψ

∑

α

σα

]〉

ψ

. (E.4)

Inserting this into (117), and introducing the normalized measure

λ(σ) = eαc〈cosh[βψ
∑

α σα ]〉ψ
∑

σ ′ eαc〈cosh[βψ
∑

α σ ′
α]〉ψ

, (E.5)

we get

Q̃(M) =
∫ π

−π

dω

(2π )n
cos(ω · M) ec

∑
σ λ(σ) cos(ω·σ)

=
∑

k%0

ck

k!

∫ π

−π

dω

(2π )n
eiω·M

(
∑

σ

λ(σ) e−iω·σ

)k

=
∑

k%0

ck

k!

∫ π

−π

dω

(2π )n
eiω·M

∑

σ1...σk

[
k∏

)=1

λ(σ))

]

e−iω·
∑

)"k σ)

=
∑

k%0

ck

k!

∑

σ1...σk

[
k∏

)=1

λ(σ))

]

δM,
∑

)"k σ)
. (E.6)

This then gives for the free energy, upon removing the interaction energy:
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f RSB = − lim
n→0

1
βn

{

α

〈

log
∑

M∈Zn

Q̃(M) eβψ
∑

α Mα

〉

ψ

+ log
∑

σ

eαc[〈cosh[βψ
∑

α σα ]〉ψ−1] − αc
∑

σ

λ(σ)〈cosh[βψ
∑

α

σα]〉ψ

}

= − lim
n→0

1
βn

{

α

〈

log

[
∑

k%0

ck

k!

∑

σ1...σk

[
k∏

)=1

λ(σ))

]
∑

M∈Zn

δM,
∑

)"k σ)
eβψ

∑
α Mα

]〉

ψ

+ log
∑

σ

eαc[〈cosh[βψ
∑

α σα ]〉ψ−1] − αc
∑

σ

λ(σ)

〈

cosh

[

βψ
∑

α

σα

]〉

ψ

}

= − lim
n→0

1
βn

{

α

〈

log

[
∑

k%0

ck

k!

(
∑

σ

λ(σ) eβψ
∑

α σα

)k]〉

ψ

+ log
∑

σ

eαc[〈cosh[βψ
∑

α σα ]〉ψ−1] − αc
∑

σ

λ(σ)

〈

cosh

[

βψ
∑

α

σα

]〉

ψ

}

= − lim
n→0

1
βn

{

αc

〈
∑

σ

λ(σ) eβψ
∑

α σα

〉

ψ

− αc

+ log
∑

σ

eαc[〈cosh[βψ
∑

α σα ]〉ψ−1] − αc
∑

σ

λ(σ)

〈

cosh

[

βψ
∑

α

σα

]〉

ψ

}

= − lim
n→0

1
βn

{

αc
∑

σ

λ(σ)

〈

cosh

[

βψ
∑

α

σα

]〉

ψ

− αc

+ log
∑

σ

eαc[〈cosh[βψ
∑

α σα ]〉ψ−1] − αc
∑

σ

λ(σ)

〈

cosh

[

βψ
∑

α

σα

]〉

ψ

}

= − lim
n→0

1
βn

{

log
∑

σ

eαc[〈cosh[βψ
∑

α σα ]〉ψ−1]

}

, (E.7)

where in the penultimate step we used λ(σ) = λ(−σ). We next use the following replica
identity, which is proved via Taylor expansion of even non-negative analytical functions
F(x) that have F(0) = 1:

lim
n→0

n−1 log

〈

F

(
n∑

α=1

σα

)〉

σ1...σn=±1

=
∑

k>0

F (k)(0)

k!

(
dk

dxk
log cosh(x)

)∣∣∣∣∣
x=0

. (E.8)

Application to the function F(z) = exp[αc〈cosh[βψz]〉ψ − αc] gives

f RSB = − 1
β

log 2 − e−αc

β
lim

x,z→0

∑

k>0

1
k!

(
dk

dxk
log cosh(x)

)
dk

dzk
eαc〈cosh(βψz)〉ψ

= − 1
β

log 2 − e−αc

β

∑

)%0

(αc))

)!
lim

x,z→0

∑

k>0

1
k!

(
dk

dxk
log cosh(x)

)
dk

dzk
〈cosh(βψz)〉)ψ

= − 1
β

log 2 − e−αc

β

∑

)%0

(αc))

)!
lim

x,z→0

∑

k>0

1
k!
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×
(

dk

dxk
log cosh(x)

)
dk

dzk
〈〈eβψ

∑
r") σrzr 〉ψ1...ψ)

〉σ1...σ)=±1

= − 1
β

log 2 − e−αc

β

∑

)%0

(αc))

)!

×
〈〈

∑

k>0

1
k!

(
lim
x→0

dk

dxk
log cosh(x)

)(

β
∑

r&)

σrψr

)k〉

ψ1...ψ)

〉

σ1...σ)=±1

= − 1
β

log 2 − e−αc

β

∑

)%0

(αc))

)!

〈〈

log cosh

(

β
∑

r&)

σrψr

)〉

ψ1...ψ)

〉

σ1...σ)=±1

= − 1
β

log 2 − 1
β

∫
dhW (h) log cosh(βh), (E.9)

with

W (h) =
∑

k%0

e−αc (αc)k

k!

〈〈

δ

[

h −
∑

)&k

ψ)σ))

]〉

ψ1...ψk

〉

σ1...σk=±1

. (E.10)

This correctly recovers the solution of external fields only.

Appendix F. Derivation of RS equations via route II

The RS ansatz converts the saddle-point equation (118) into
∫

dhW (h) eβh
∑

α σα

= eβn/2c

〈〈 ∫
{dπ}W [π ]

∏

α

(
∑

M

π (M) eβ(M2/2c+ψM+τ (ψ+M/c)σα )

)〉

ψ

〉

τ=±1

= eβn/2c

〈〈 ∫
{dπ}W [π ]

(
∑

M

π (M) eβ(M2/2c+ψM+τ (ψ+M/c))

) 1
2 n+ 1

2

∑
α σα

×
(

∑

M

π (M) eβ(M2/2c+ψM−τ (ψ+M/c))

) 1
2 n− 1

2

∑
α σα

〉

ψ

〉

τ=±1

= eβn/2c

〈〈 ∫
{dπ}W [π ]

(∑
M π (M) eβ(M2/2c+ψM+τ (ψ+M/c))

∑
M π (M) eβ(M2/2c+ψM−τ (ψ+M/c))

) 1
2

∑
α σα

〉

ψ

〉

τ=±1

= eβn/2c
∫

dh eβh
∑

α σα

〈〈 ∫
{dπ}W [π ]δ

×
[

h − 1
2β

log

(∑
M π (M) eβ(M2/2c+ψM+τ (ψ+M/c))

∑
M π (M) eβ(M2/2c+ψM−τ (ψ+M/c))

)]〉

ψ

〉

τ=±1

. (F.1)

We conclude after sending n → 0 that

W (h) =
〈〈 ∫

{dπ}W [π ]δ

[

h − 1
2β

log

(∑
M π (M) eβ(M2/2c+ψM+τ (ψ+M/c))

∑
M π (M) eβ(M2/2c+ψM−τ (ψ+M/c))

)]〉

ψ

〉

τ=±1

.

(F.2)
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W (h) is indeed symmetric. Next we turn to equation (117), where we require quantities of the
form

4(ω) =
∑

σ

cos(ω · σ) eL(σ) =
∑

σ

cos(ω · σ) eαc
∫

dhW (h) eβh
∑

α σα
. (F.3)

In fact we will need only the ratio 4(ω)/4(0). We note that

4(0) = 2n
∑

k%0

(αc)k

k!

∫
dh1 . . . dhk

[
∏

)&k

W (hk)

]

coshn

(

β
∑

)&k

h)

)

= eαc+O(n). (F.4)

We can hence write the RS version of our first saddle-point equation as follows, using
W (h) = W (−h):
∫

{dπ}W [π ]
n∏

α=1

π (Mα ) = e−c
∫ π

−π

dω

(2π )n
cos(ω · M) ece−αc+O(n)4(ω)

= e−c+O(n)
∑

k%0

ck

k!

∫ π

−π

dω

(2π )n
cos(ω · M)〈cos(ω · σ)eαc

∫
dhW (h)[eβh

∑
α σα −1]〉k

σ

= e−c+O(n)
∑

k%0

ck

k!

〈〈 ∫ π

−π

dω

(2π )n
eiω·(τM−

∑
)"k τ)σ

) )eαc
∑

)"k

∫
dhW (h)[eβh

∑
α σ)

α −1]

〉

σ1...σk

〉

τ,τ1...τk=±1

= e−c+O(n)
∑

k%0

ck

k!
e−αck〈eαc

∑
)"k

∫
dhW (h) eβh

∑
α σ)

α
δM,

∑
)"k σ)〉σ1...σk

= e−c+O(n)
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

〈( ∫
dhW (h)

∑

)&k

eβh
∑

α σ )
α

)r

δM,
∑

)"k σ)

〉

σ1...σk

= e−c+O(n)
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫
dh1 . . . dhr

×
[

∏

s&r

W (hs)

]
∑

)1...)r&k

∏

α

〈eβ
∑

s"r hsσ)s δMα ,
∑

)"k σ)
〉σ1...σk

= e−c+O(n)
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫
dh1 . . . dhr

×
[

∏

s&r

W (hs)

]
∑

)1...)r&k

∏

α

{〈
eβ

∑
s"r hsσ)s δMα ,

∑
)"k σ)

〉
σ1...σk〈

eβ
∑

s"r hsσ)s
〉
σ1...σk

}

=
∫

{dπ}
(

∏

α

π (Mα )

)

e−c+O(n)
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×
∏

M

δ

[

π (M) −
〈
eβ

∑
s"r hsσ)s δM,

∑
)"k σ)

〉
σ1...σk〈

eβ
∑

s"r hsσ)s
〉
σ1...σk

]

. (F.5)

We thus conclude that for n → 0 the following equation for W [π ] solves our saddle-point
problem:

W [π ] = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×
∏

M

δ

[

π (M) −
〈
eβ

∑
s"r hsσ)s δM,

∑
)"k σ)

〉
σ1...σk〈

eβ
∑

s"r hsσ)s
〉
σ1...σk

]

. (F.6)
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Everything is properly normalized, and if W (h) = W (−h) the measure W [π ] is seen to permit
only real-valued distributions π (M) such that π (M) ∈ [0,∞) and π (−M) = π (M) for all
M ∈ Z.

Appendix G. Continuous RS phase transitions via route II

Here we work with the order parameter equation that is written in terms of W (h) only, i.e.
(124), and look for phase transitions in the absence of external fields. For P(ψ ) = δ(ψ ) we
must solve W (h) from

W (h) = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dh1 . . . dhr

[
∏

s&r

W (hs)

]
∑

)1...)r&k

×
〈

δ

[

h − 1
2β

log

(〈
eβ(

∑
)"k τ))

2/2c+β(
∑

)"k τ))τ/c+β
∑

s"r hsτ)s
〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c−β(
∑

)"k τ))τ/c+β
∑

s"r hsτ)s
〉
τ1...τk=±1

)]〉

τ=±1

.

(G.1)
Clearly W (h) = δ(h) solves this equation for any temperature. Due to W (h) = W (−h), we
will always have

∫
dhW (h)h = 0, so the first bifurcation away from W (h) = δ(h) is expected

to be in the second moment. We write h = εy, with 0 < ε ' 1, and expand in powers of ε.
Upon setting W (h) = ε−1W̃ (h/ε) we have

W̃ (y) = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dy1 . . . dyr

[
∏

s&r

W̃ (ys)

]
∑

)1...)r&k

×
〈

δ

[

y − 1
2βε

log

(〈
eβ(

∑
)"k τ))

2/2c+β(
∑

)"k τ))τ/c+βε
∑

s"r ysτ)s
〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c−β(
∑

)"k τ))τ/c+βε
∑

s"r ysτ)s
〉
τ1...τk=±1

)]〉

τ=±1

.

(G.2)
Next we expand the logarithm in the last line. To leading orders in ε we obtain

1
2βε

log(. . .) = 1
2βε

log

(〈
eβ(

∑
)"k τ))

2/2c+β(
∑

)"k τ))τ/c[1 + βε
∑

s&r ysτ)s

]〉
τ1...τk=±1〈

eβ(
∑

)"k τ))2/2c−β(
∑

)"k τ))τ/c[1 + βε
∑

s&r ysτ)s

]〉
τ1...τk=±1

)

= 1
2βε

log

(1 + βε
∑

s&r ys
〈τ)s eβ(

∑
)"k τ) )2/2c+β(

∑
)"k τ) )τ/c〉τ1 ...τk=±1

〈eβ(
∑

)"k τ) )2/2c+β(
∑

)"k τ) )τ/c〉τ1 ...τk=±1

1 + βε
∑

s&r ys
〈τ)s eβ(

∑
)"k τ) )2/2c−β(

∑
)"k τ) )τ/c〉τ1 ...τk=±1

〈eβ(
∑

)"k τ) )2/2c−β(
∑

)"k τ) )τ/c〉τ1 ...τk=±1

)

= 1
2

∑

s&r

ys

{〈
τ)s e

β(
∑

)"k τ))
2/2c+β(

∑
)"k τ))τ/c〉

τ1...τk〈
eβ(

∑
)"k τ))2/2c+β(

∑
)"k τ))τ/c〉

τ1...τk

−
〈
τ)s e

β(
∑

)"k τ))
2/2c−β(

∑
)"k τ))τ/c〉

τ1...τk〈
eβ(

∑
)"k τ))2/2c−β(

∑
)"k τ))τ/c〉

τ1...τk

}

= τ
∑

s&r

ys

{∫
Dz tanh(z

√
β/c + β/c) coshk(z

√
β/c + β/c)

∫
Dz coshk(z

√
β/c + β/c)

}

. (G.3)

Hence our order parameter equation (G.2) becomes

W̃ (y) = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dy1 . . . dyr

[
∏

s&r

W̃ (ys)

]
∑

)1...)r&k

×
〈

δ

[

y − τ
∑

s&r

ys

{∫
Dz tanh(z

√
β/c + β/c) coshk(z

√
β/c + β/c)

∫
Dz coshk(z

√
β/c + β/c)

}]〉

τ=±1

.

(G.4)
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The first potential type of bifurcation away from W (h) = δ(h) would have
∫

dhW (h)h =
ε
∫

dyW̃ (y)y ≡ εm1 2= 0. However, we see that multiplying both sides of (G.4) by y, followed
by integration, immediately gives m1 = 0. Thus, as expected, a bifurcation leading to a
function W (h) with

∫
dhW (h)h 2= 0 is impossible.

Any continuous bifurcation will consequently have
∫

dhW (h)h = 0 and
∫

dhW (h)h2 =
ε2

∫
dyW̃ (y)y2 ≡ ε2m2 2= 0. Multiplication of equation (G.4) by y2, followed by integration

over y gives

m2 = e−c
∑

k%0

ck

k!
e−αck

∑

r%0

(αc)r

r!

∫ ∞

−∞
dy1 . . . dyr

[
∏

s&r

W̃ (ys)

]
∑

)1...)r&k

×
∑

s&r

y2
s

〈{∫
Dz tanh(z

√
β/c + β/c) coshk(z

√
β/c + β/c)

∫
Dz coshk(z

√
β/c + β/c)

}2〉

τ=±1

. (G.5)

So now we get a bifurcation when

1 = αc2
∑

k%0

e−c ck

k!

{∫
Dz tanh(z

√
β/c + β/c) coshk+1(z

√
β/c + β/c)

∫
Dz coshk+1(z

√
β/c + β/c)

}2

. (G.6)

We note that the RHS of (G.6) obeys limβ→0 RHS = 0 and limβ→∞ RHS = αc2. Hence a
transition at finite temperature Tc(α, c) > 0 exists in a new state with W (h) 2= δ(h) as soon
as αc2 > 1. The critical temperature becomes zero when αc2 = 1, so Tc(α, 1/

√
α) = 0 for

all α ! 0. For large c, using tanh x = x + O(x3) and cosh x = 1 + x2/2, valid for small x, we
have Tc =

√
α.

Appendix H. Coincidence of the two formulae for the transition line

In order to prove that the two expressions (G.6) and (C.20) for the RS transition line are
identical, as they should be, we show that
{∫ π

−π
dω sin2(ω) cosk(ω)D(ω|β)

∫ π

−π
dω cosk+2(ω)D(ω|β)

}2

=
{∫

Dz tanh(z
√

β/c + β/c) coshk+1(z
√

β/c + β/c)
∫

Dz coshk+1(z
√

β/c + β/c)

}2

, (H.1)

where Dz = (2π )−1/2e−z2/2 dz. We can rewrite the argument of the curly brackets on the RHS,
which we will denote as A, as

A =
∫

Dz sinh(z
√

β/c + β/c) coshk(z
√

β/c + β/c)
∫

Dz coshk+1(z
√

β/c + β/c)

=
∫

Dz〈τk+1 e(z
√

β/c+β/c)
∑

)"k+1 τ)〉τ1...τk+1=±1∫
Dz〈e(z

√
β/c+β/c)

∑
)"k+1 τ)〉τ1...τk+1=±1

= 〈τk+1 e(β/2c)(
∑

)"k+1 τ))
2+(β/c)

∑
)"k+1 τ)〉τ1...τk+1=±1

〈e(β/2c)(
∑

)"k+1 τ))2+(β/c)
∑

)"k+1 τ)〉τ1...τk+1=±1
, (H.2)

where we have carried out the Gaussian integrations. Next we insert 1 =
∑

M∈Z δM,
∑

)"k+1 τ)
,

and write the Kronecker delta in integral form. This gives

A =
∑

M∈Z e(β/2c)M2+(β/c)M
∫ π

−π
dω eiωM〈τk+1 e−iω

∑
)"k+1 τ)〉τ1...τk+1=±1

∑
M∈Z e(β/2c)M2+(β/c)M

∫ π

−π
dω eiωM〈e−iω

∑
)"k+1 τ)〉τ1...τk+1=±1

= − i

∑
M∈Z e(β/2c)M2+(β/c)M

∫ π

−π
dω eiωM cosk(ω) sin(ω)

∑
M∈Z e(β/2c)M2+(β/c)M

∫ π

−π
dω eiωM cosk+1(ω)

. (H.3)
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By completing the square,
∑

M e(β/2c)M2+(β/c)M = e−β/(2c)
∑

M e(β/2c)(M+1)2
, shifting the

summation index M → M − 1, and using the symmetry properties (75) of D(ω|β) at zero
fields, we finally get

A = − i

∑
M∈Z e(β/2c)M2 ∫ π

−π
dω eiω(M−1) cosk(ω) sin(ω)

∑
M∈Z e(β/2c)M2

∫ π

−π
dω eiω(M−1) cosk+1(ω)

= − i

∫ π

−π
dωD(ω|β) cosk(ω) sin(ω)[cos(ω) − i sin(ω)]

∫ π

−π
dωD(ω|β) cosk+1(ω)[cos(ω) − i sin(ω)]

= −
∫ π

−π
dωD(ω|β) cosk(ω) sin2(ω)

∫ π

−π
dωD(ω|β) cosk+2(ω)

, (H.4)

which proves (H.1).
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and Nikoletopoulos T 2005 J. Phys. A: Math. Gen. 38 8289
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