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Protein interaction networks (PINs) are popular means to visualize the pro-

teome. However, PIN datasets are known to be noisy, incomplete and biased

by the experimental protocols used to detect protein interactions. This paper

aims at understanding the connection between true protein interactions and

the protein interaction datasets that have been obtained using the most pop-

ular experimental techniques, i.e. mass spectronomy and yeast two-hybrid.

We start from the observation that the adjacency matrix of a PIN, i.e. the

binary matrix which defines, for every pair of proteins in the network,

whether or not there is a link, has a special form, that we call separable.

This induces precise relationships between the moments of the degree distri-

bution (i.e. the average number of links that a protein in the network has, its

variance, etc.) and the number of short loops (i.e. triangles, squares, etc.)

along the links of the network. These relationships provide powerful tools

to test the reliability of datasets and hint at the underlying biological

mechanism with which proteins and complexes recruit each other.
1. Introduction
Protein interactions are a biological phenomenon that controls a large part of

the functionality of a cell. Protein interaction networks (PINs) are graphical rep-

resentations of the complex patterns of interactions that appear in the proteome,

which enable quantitative studies of the underlying biology via mathematical

tools and complex networks theory.

Mathematically, a PIN is a graph where nodes i ¼ 1 . . . N represent proteins

and links represent their interactions. This graph is encoded in an adjacency

matrix a ¼ faijg, whose entries denote whether there is a link between proteins

i and j (aij ¼ 1) or not (aij ¼ 0). However, there is ambiguity in its definition,

arising from the non-binary nature of the underlying biochemistry. For

example, three proteins may form a complex, but may not interact in pairs.

Assigning binary values to intrinsically non-binary interactions requires further

prescriptions, which vary across experimental protocols and lead in practice to

different graphs. Moreover, different experiments measure protein interactions

in different ways, which causes further biases [1–3]. For quantitative studies of

the effects of sampling biases on networks see [4–10].

In this paper, we seek to establish the connection between true biological

protein interactions and protein interaction datasets produced by the most pop-

ular experimental techniques, mass spectronomy (MS) and yeast two-hybrid

(Y2H). We argue that the most natural network matrix representation of the

proteome has a separable form, which induces precise relationships between

the degree distribution and the density of short loops. These relationships pro-

vide simple tests to assess the reliability and quality of different datasets, and

provide hints on the underlying (evolutionary) mechanisms with which pro-

teins and complexes recruit each other. Our study also provides a theoretical

framework to discriminate between ‘party’ and ‘date’ hubs in PINs (e.g. [11]

and references therein) and addresses several intriguing questions concerning
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Figure 1. Bipartite graph representation of protein interactions. The protein species i ¼ 1 . . . N are drawn as circles, and their complexes m ¼ 1 . . . aN as
squares. In the bipartite graph representation of protein interactions, di is the degree of protein i or protein promiscuity (denoting the number of complexes
it participates in), and qm is the degree of complex m or complex size (denoting the number of protein species it contains). The bipartite graph gives more detailed
information than the conventional PIN with protein nodes and pairwise links only. For instance, one distinguishes easily between different types of ‘hub’ proteins:
‘date hub’ proteins connect to many degree-2 complexes, whereas ‘party hub’ proteins connect to a high degree complex. (Online version in colour.)
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the universality of protein and complex statistics across

species. For example, given N protein species in a cell,

what is the number of complexes they typically form, i.e.

to what extent is the ratio a complexes/proteins conserved

across different species? Is the distribution of complex sizes

peaked around ‘typical’ values, or does it have long tails?

How is this mirrored in the protein promiscuities, i.e. the

propensities of proteins to participate in multiple complexes?

Does the power-law behaviour of the degree distribution of

PINs perhaps result from tails in the distribution of complex

sizes and protein promiscuities?

We tackle the above questions using a mathematical

approach that is entirely based on statistical properties of

graph ensembles. In §2, we define our models as distinct

separable graph ensembles which mimic PINs, each reflecting

different possible mechanisms for complex genesis. In §3, we

give an overview of the main results and their application to

real PINs measured by MS and Y2H experiments. Section 4

defines the mathematical set-up of our analysis and in

§§5–7, we give a full derivation of results, that are tested

on synthetically generated networks in §8. We end our

paper with a summary of our conclusions, and suggest

pathways for further research.
2. Definitions and basic properties
2.1. The bipartite graph representation of the proteome
Proteins are large and complicated heteropolymers, which

can bind in specific combinations to form stable molecular

complexes. We consider a set of N protein species, labelled

by i ¼ 1 . . . N. We assume that the number of stable com-

plexes p scales as p ¼ aN, where a . 0, and we label the

complexes by m ¼ 1 . . . aN. We can represent this system as

a bipartite graph [12], with two sets of nodes (figure 1).

The set np represents proteins species (drawn as circles), the

set nc represents complexes (drawn as squares), and a link

between protein species i [ np and complex m [ nc is

drawn if protein i participates in complex m. This graph is

defined by the N � aN connectivity matrix j ¼ fj m
i g,

where j
m
i ¼ 1 if there is a link between i and m, and j

m
i ¼ 0

otherwise. For simplicity, we do not allow for complexes

with more than one occurrence of any given protein species.

In the bipartite graph, one has two types of node degrees:

the degree diðjÞ ¼
P

mj
m
i (or ‘promiscuity’) of each protein i

gives the number of different complexes in which it is
involved, and the degree qmðjÞ ¼
P

ij
m
i (or ‘size’) of each com-

plex m gives the number of protein species of which it is

formed (figure 1). For a given bipartite graph j, we define

the protein degree distribution, or promiscuity distribution, as

pðdjjÞ ¼ N�1
XN

i¼1

dd,diðjÞ, ð2:1Þ

where dxy is the Kronecher function, defined as 1 for x ¼ y and

0 otherwise. This counts the frequency of occurrence of a

protein with promiscuity d, and it is normalized by the total

number of proteins N. Similarly, we define the complex

degree distribution, or complex size distribution, as

pðqjjÞ ¼ ðaNÞ�1
XaN

m¼1

dq,qmðjÞ, ð2:2Þ

which counts the frequency of occurrence of a complex con-

taining q different protein species, divided by the total

number of complexes aN.

As the number of links stemming from the proteins has to

equate the number of links stemming from complexes, we have

XaN

m¼1

qmðjÞ ¼
XN

i¼1

diðjÞ 8 j:

This leads to the identity

kdðjÞl ¼ akqðjÞl,

where kdðjÞl ¼
P

ddpðdjjÞ is the average promiscuity, i.e. the

first moment of the distribution of promiscuities, and

kqðjÞl ¼
P

qqpðqjjÞ is the average complex size, i.e. the first

moment of the distribution of complex sizes.

2.2. Protein interactions as detected by experiments
Protein detection experiments seek to measure for each pair

(i, j ) of protein species whether they interact in any complex,

and assign an undirected link between nodes i and j if they

do. This leads to a graphical representation of protein inter-

actions in terms of a monopartite graph, where there is

only one type of nodes, which represent proteins. The

graph can be represented by an adjacency matrix a ¼ faijg
whose entries are aij ¼ 1 if there is a link between proteins

i, j and 0 otherwise. It is reasonable to expect that PIN adja-

cency matrices resulting from detection experiments are in

the form

aii ¼ 0 8 i ð2:3Þ
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Figure 2. Bipartite graph representation j of protein interactions (a) and corresponding monopartite graph representation a, obtained by marginalizing the bi-
partite graph (b). A dimer, i.e. a complex made up of two proteins i, j in the bipartite graph corresponds to a link between proteins i, j in the monopartite graph. A
trimer, i.e. a complex made up of three proteins in the bipartite graph corresponds to a triangle in the monopartite graph. Similarly, larger complexes correspond to
clique motifs.
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and

aij ¼ u
XaN

m¼1

j
m
i j

m
j

 !
8 i = j, ð2:4Þ

where u(x) is a binary function that takes value 1 if x . 0 and

0 otherwise. We call the form of the matrix a ‘separable’ as

the dependence of its entries on the indices i,j is factorized,

as a consequence of the fact that protein interactions are

mediated by complexes. Graph a can be thought of as a

marginalized version of the bipartite graph j whereby com-

plexes are ‘integrated-out’, i.e. summed over. Figure 2 gives

an illustration of the relationship between the two graphical

representations, and shows that protein complexes in j are

inextricably related to loops in a. In particular, the presence

of large complexes will boost the number of short loops in

PIN a.

If PINs detected experimentally displayed properties too

far away from those observed in (2.4), this might signal the

presence of strong biases in the experimental protocols for

the PIN detection and one should ask what exactly the

detection experiment is measuring. A key feature we will

exploit in our analysis is that, due to the sparsity of links

j
m
i , average properties of random graphs (2.4) are identical,

to leading orders in N, to those of the related weighted
random graphs

cii ¼ 0 8 i ð2:5Þ

and

cij ¼
XaN

m¼1

j
m
i j

m
j 8 i = j, ð2:6Þ

for which average properties are much easier to calculate.

Graphs c have the same structure as a but links are

weighted, with each weight cij ¼
P

m�aNj
m
i j

m
j [ IN repre-

senting the number of complexes in which proteins i and j
participate simultaneously. We will mainly focus on the fol-

lowing properties of the random graphs c:

— The degree distribution

pðkjcÞ ¼ 1

N

XN

i¼1

dk,kiðcÞ ð2:7Þ

denoting the probability of observing a node in graph c

having degree kiðcÞ ¼
P

jcij equal to k. This distribution

should not be confused with the promiscuity distribution
p(djj). The latter is a property of the bipartite graphs j,

whereas the former is a property of the monopartite

graphs c.

— The density of loops of length 3 and 4, defined as

m3ðcÞ ¼
1

N

X
ijk

cijc jkcki ð2:8Þ

and

m4ðcÞ ¼
1

N

X
ijk‘

cijc jkck‘c‘i ð2:9Þ

denoting, respectively, the density of closed non-intersect-

ing paths of length 3 and 4, along the links of network c.

We do not go beyond loops of length 4 because real networks

are known to be ‘small world’, with pairs of nodes typically

connected by paths of small length. With larger path lengths,

one can typically link every node to any other and the

number of loops through any node will increase significantly

as we increase the length of loops. Hence, one expects the

relevant biological information to be encoded in the short

loops statistics.

2.3. Link distribution in the bipartite graph
As we generally do not know the microscopic bipartite graph

j, we will regard the j’s as random variables, drawn from a

distribution p(j), that we need to postulate. First of all,

we will assume that the j’s are independent, so that their

distribution factorizes over the protein and complex indices

pðjÞ ¼
Y
im

pðj m
i Þ:

This is the easiest assumption that we can make and will

need to be checked a posteriori. Next, we need to postulate

pðj m
i Þ: As each j

m
i is a binary variable which can only take

values 0 and 1, we only need to specify pðj m
i ¼ 1Þ, and

pðj m
i ¼ 0Þ ¼ 1� pðj m

i ¼ 1Þ: We have three natural choices for

pðj m
i ¼ 1Þ, mimicking (i) a complex-driven, (ii) a protein-driven

and (iii) a mixed mechanism for complex genesis.

(i) A natural choice is to assume that complexes

have given sizes fqmg, distributed according to

PðqÞ ¼ ðaNÞ�1P
mdq,qm , which are determined, for

example, by the functions that they are called to

carry out inside the cell, and the likelihood of a protein

i making part of a complex m is given by the number
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qm of proteins participating in complex m divided by

the total number of proteins,

pðj m
i ¼ 1Þ ¼ qm

N
and pðj m

i ¼ 0Þ ¼ 1� qm
N
: ð2:10Þ

In random graphs j built according to this prescrip-

tion, for large N, each complex size qm( j) is a

Poissonian random variable with average qm, and

all protein promiscuities di( j) will be Poissonian

variables with the same average kdl ¼ akql, with

kql ¼
P

qPðqÞq (see appendix A). Hence, in this ensem-

ble, complex sizes are prescribed on average, i.e.

kqmðjÞl ¼ qm 8m, and protein promiscuities are

homogeneous, Poissonian variables with average

determined from the average size of complexes, i.e.

kdiðjÞl ¼ akql 8 i: As in this ensemble proteins’ recruit-

ment to complexes is determined by functions, we will

refer to this ensemble as ‘function-driven’ or more

briefly, ‘q-ensemble’.

(ii) An alternative choice is to assume that proteins have

given propensities to interact fdig, distributed accord-

ing to PðdÞ ¼ N�1
P

idd,di , which are determined, for

example, by the number of their binding sites, polariz-

ation, etc., and the likelihood of a protein i making part

of complex m is given by the number of complexes

which involve protein i divided by the total number

of complexes,

pðj m
i ¼ 1Þ ¼ di

aN
and pðj m

i ¼ 0Þ ¼ 1� di

aN
: ð2:11Þ

For large graphs j drawn from ensemble (2.11), each

protein promiscuity di( j) is a Poissonian variable

with average di, whereas all complex sizes qm( j) are

Poisson variables with the same average kql ¼ kdl=a,

with kdl ¼
P

dPðdÞd (appendix A). In this ensemble, it

is therefore assumed that protein binding is driven by

protein promiscuities, and we will refer to it as

‘protein-driven’ or ‘d-ensemble’.

(iii) A third obvious choice is to assume that protein

promiscuities fdig and complex sizes fqmg are distrib-

uted according to given P(d ) and P(q), respectively,

and the likelihood of protein i participating in complex

m is controlled by both protein promiscuity and

complex size

pðj m
i ¼ 1Þ ¼ qmdi

aNkql
and

pðj m
i ¼ 0Þ ¼ 1� qmdi

aNkql
: ð2:12Þ

Large graphs j drawn from this ensemble will have all

protein promiscuities and complex sizes constrained

on average, i.e. kdiðjÞl ¼ di and kqmðjÞl ¼ qm, with

fdig and fqmg distributed according to P(d ) and P(q).

In this third scenario, protein-binding statistics is

driven both by complex functionality and protein

promiscuity factors, and we will refer to this as the

‘mixed ensemble’.

The mixed ensemble (2.12) reduces to (2.10) for the choice of

homogeneous protein promiscuities PðdÞ ¼ dd,akql, and to (2.11)

for the choice of homogeneous complex size PðqÞ ¼ dq,kql: By

determining which of the above ensembles reflects better bio-

logical reality, we will learn about the mechanisms with

which complexes and proteins recruit each other.
2.4. Accounting for binding sites
In all PINs, each protein is reduced to a simple network node,

in spite of the fact that proteins are in reality complex chains

of amino acids with several binding domains. Here we show

that the ensembles introduced in the previous section can

accommodate the presence of multiple binding sites when

these are equally reactive. Let us first assume that each

protein has d functional reactive amino acid endgroups.

When two such proteins bind, the resulting dimer has

2d22 unused reactive endgroups, a trimer has 3d24

endgroups and a k-mer has kd22(k21) ¼ (d22)k þ 2 end-

groups. If all endgroups are equally reactive, the a priori
probability that a protein i is part of a complex m is given by

pðj m
i ¼ 1Þ ¼ d½ðd� 2Þqm þ 2�

Z
≃ qmd

aNkql
, ð2:13Þ

where the last approximate equality holds for d� 1 and

Z ¼
P

mqmd ¼ aNkqld: This corresponds to ensemble (2.10),

with the choice d ¼ akql: If proteins have different endgroups di,

pðj m
i ¼ 1Þ ≃ di½ðd� 2Þqm þ 2�

aNkqld
≃ diqm

aNkql
, ð2:14Þ

where d ¼ N21P
idi, leading to ensemble (2.12). If the variability

of qm is small, qm ≃ kql,

pðj m
i ¼ 1Þ ¼ di

aN
, ð2:15Þ

and we retrieve (2.11). The assumption of unbiased interactions

between proteins with varying individual binding affinities

has been supported in [13], and in recent structural analysis on

residue-type-independent interactions [14].
3. Overview of results
In this section, we summarize the main results of this paper,

that will be derived in full details in the next sections, suitable

for readers with a mathematical or a statistical background.

Readers with a less quantitative background who are inter-

ested in the biological applications of the mathematical

framework introduced above, can stop at the end of this

section and skip the mathematical details presented later.
3.1. Test relationships
The main result of this paper is that graphs with elements

cii ¼ 0 8 i and

cij ¼
XaN

m¼1

j
m
i j

m
j 8 i = j,

where the j are drawn from either the ‘function-driven’ dis-

tribution (2.10) or the ‘protein-driven’ distribution (2.11),

display special relationships between the moments kkl, kk2l,
etc. of their degree distribution p(k) and the density m3, m4,

etc. of their loops of length 3, 4, etc. Remarkably, these

relationships are completely independent of a, P(q) and

P(d ) and follow solely from the separable nature of the

matrix cij. In addition, they are identical, to orders OðN0Þ,
to those found in the binary matrices a with elements

aij ¼ uð
PaN

m¼1 j
m
i j

m
j Þ 8 i = j and aii ¼ 0 8 i: For the q-ensemble

we have the following relationships:

m3 ¼ kk2l� kkl2 � kkl ð3:1Þ



Table 1. List of the publicly available experimental protein interaction datasets as used in this study, together with their main quantitative characteristics
(number of proteins N, average degree kkl and largest degree kmax) and references.

species N kkl kmax method references

C. elegans 2528 2.96 99 Y2H [15]

C. jejuni 1324 17.5 207 Y2H [16]

E. coli 2457 7.05 641 MS [17]

H. pylori 724 3.87 55 Y2H [18]

H. sapiens I 1499 3.37 125 Y2H [19]

H. sapiens II 1655 3.71 95 Y2H [20]

H. sapiens III 2268 5.67 314 MS [21]

M. loti 1803 3.43 401 Y2H [22]

P. falciparum 1267 4.17 51 Y2H [23]

S. cerevisiae I 991 1.82 24 Y2H [24]

S. cerevisiae II 787 1.91 55 Y2H [25]

S. cerevisiae III 3241 2.69 279 Y2H [25]

S. cerevisiae IV 1576 4.58 62 MS [26]

S. cerevisiae VI 1358 4.73 53 MS [27]

S. cerevisiae VIII 2551 16.77 955 MS [28]

S. cerevisiae IX 2708 5.25 141 MS [29]

S. cerevisiae X 1630 11.15 127 MS [30]

Synechocystis 1903 3.25 51 Y2H [31]

T. pallidum 724 10.01 285 Y2H [32]
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and

m4 ¼ kk3l� 3kk2lþ 2kklþ kklðkk2l� kkl� 2kkl2Þ

¼ kk3l� 3kk2lþ 2kkl� kkl3 � 3kklm3, ð3:2Þ

whereas for the d-ensemble we have

m4 ¼
m2

3

kkl
: ð3:3Þ

Remarkably, we obtain different sets of relationships for the

two ensembles, meaning that the two ensembles do not rep-

resent equivalent descriptions of the bipartite representation

of the proteome, as one may have naively expected. One

can then check whether real PINs come closer to satisfy the

test relationships from the q-ensemble or the ones from the

d-ensemble. This will hint at the underlying mechanism

with which proteins and complexes recruit each other.

Next, we apply the above results to real publicly available

protein interaction datasets, obtained via MS and Y2H exper-

iments. The detailed quantitative features of the various

datasets and their references are listed in table 1.
3.2. Application to mass spectrometry datasets
Seven of the experimental PIN datasets in table 1 were

obtained by MS experiments, and they involved three distinct

biological species, namely Saccharomyces cerevisiae, Homo
sapiens and Escherichia coli. Each set takes the form of an

N � N matrix of binary entries aij, but with different values

of N. In figure 3, we show the results of our analytical predic-

tions for the densities of length-3 and length-4 loops, as given
by the formulae for the function- and protein-driven ensem-

bles, versus their measured values in the MS datasets. Before

looking at the performance of PIN data with respect to the

above test formulae, let us briefly look at what we would

expect in fully random networks, of the Erdös–Rényi (ER)

type, which are not in the family of separable graphs. Let

us denote with m‘q and m‘d the density of loop of length ‘

as predicted by the function- and the protein-driven ensem-

ble, respectively, and with m‘m their measured value. In

fully random graphs, the degree distribution is Poissonian

and one has kk2l ¼ kklþ kkl2 and kk3l ¼ kklð1þ 3kklþ kk2lÞ:
Furthermore, measured values of loop densities are typically

m‘m ¼ OðN�1Þ for ‘ ¼ 3,4. Hence, the r.h.s. of (3.1) and

(3.2) vanish giving m3q ¼ OðN�1Þ and m4q ¼ OðN�1Þ,
whereas (3.3) gives m3d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kklm4m

p
¼ OðN�1=2Þ and

m4d ¼ m2
3m=kkl ¼ OðN�2Þ: Hence, one has m3d � m3q tm3m

and m4m tm4q � m4d:

We now turn to the interpretation of plots in figure 3. First

off, we note that the theoretical predictions from the function-

driven ensemble lead to values of the number of short loops

consistently higher than those predicted by the protein-

driven ensemble, even for loops of length 3. This is remarkably

different from the behaviour expected in random graphs of the

ER type and is consistent with the behaviour of separable

random graphs, where a function-driven complex genesis

induces large cliques in the PINs, which boosts short loops.

By contrast, a protein-driven complex genesis induces a homo-

geneous distribution for the complex sizes, which suppresses

the presence of large cliques, hence of short loops, in the

PINs. Notably, the densities of length-4 loops of all MS data-

sets are in between those of the d-ensemble (which thereby
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Figure 3. (a) Theoretical predictions m3th for the densities of length-3 loops in the PINs, as obtained from the q-ensemble (stars) and the d-ensemble (circles),
plotted versus the values m3m measured in the different MS datasets. (b) Theoretical predictions m4th for the densities of length-4 loops in the same PINs, obtained from
the q-ensemble (stars) and the d-ensemble (circles), plotted versus the measured values m4m. The diagonals are shown as guides to the eye. (Online version in colour.)
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plotted versus the values m3m measured in the different Y2H datasets. (b) Theoretical predictions m4th for the densities of length-4 loops in the same PINs, obtained from
the q-ensemble (stars) and the d-ensemble (circles), plotted versus the measured values m4m. The diagonals are shown as guides to the eye. (Online version in colour.)
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acts as a lower bound) and those of the q-ensemble (which acts

as an upper bound). This suggests a compatibility of data from

MS experiments with the expected separable form of the pro-

teome network. However, the measured densities of length-3

loops are consistently lower than the values compatible with

a separable structure of the proteome.

To shed light on this result, it is useful to compare this be-

haviour with those of random graphs with the same degree

distribution as our PINs. As the latter is non-Poissonian,

the theoretical predictions for the loop densities given by

the function-driven ensemble are now m3q ¼ Oð1Þ and

m4q ¼ Oð1Þ, whereas both m3m and m4m are still OðN�1Þ,
yielding the same m3d and m4d as in ER networks. This

now leads to m3q � m3d � m3m and m4q � m4m � m4d:

In real PINs, we observe the same patterns of inequal-

ities; however, the measured values of loop densities are

Oð1Þ hence much larger than their expected values in

random graphs with the same degree distribution. In par-

ticular, several datasets (including cerevisiae VI and

cerevisiae IX) show a loop density m3 of the same magnitude

as the one predicted by the separable models and dataset cer-
evisiae X is in excellent agreement with the predicted value.

This suggests a degree of compatibility with the proposed
separable model, which enforces many more loops than in

a typical random network with the same degree distribution,

and also a large degree of noise which tends to randomize

interactions.
3.3. Applications to yeast two-hybrid datasets
We tested similarly the compatibility of Y2H data with a

separable structure of the proteome, by checking whether

the measured values for the network observables m3 and

m4 fall within what appeared to be (in separable graph

ensembles) theoretical bounds set by the function- and

protein-driven ensembles. We now used the 12 PIN datasets

in table 1 that were obtained from Y2H experiments. Results

are shown in figure 4. We observe that Y2H datasets exhibit

generally fewer short loops than MS dataset. This may be

due to the fact that, at variance with MS datasets, which

use immunoprecipitations to sample from a functioning bio-

logical network, Y2H experiments sample proteins from the

entire potential biophysical network, a much larger inter-

action space than any given one cell-type/tissue sampled

by MS, leading to an undersampling of links and therefore

to underestimation of connectivity and loops. Qualitatively
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Y2H datasets show similar trends to MS, with measured

values of m4 somewhat compatible with separable models,

and values for m3 that fall below. This is quite remarkable,

as MS and Y2H experiments are known to measure inter-

actions in very different ways. However, quantitatively, m3

is generally an order of magnitude less than that predicted

by separable models, with the exception of dataset jejuni
which stays closer to the predicted values. This suggests

that Y2H has a lower level of compatibility with a separable

structure of the proteome.
J.R.Soc.Interface
12:20150573
3.4. Origin of fat tails in the degree distribution
of protein interaction network

In previous sections, we have introduced the promiscuity

distribution P(d ), the complex size distribution P(q) and

the degree distribution p(k). The former distributions are

properties of the bipartite graph j, whereas the latter is

a property of the marginalized graph c, or a. The

degree distribution p(k) can be computed directly from

the graph a and for PINs it typically displays a fat tail,

pðkÞ ≃ Ck�m for large k with 2 , m , 3 [33–36].

By contrast, P(d ) and P(q) cannot be measured directly,

but they are related to p(k). This allows one in principle to

infer the tail behaviour of the promiscuity and complex size

distributions from the tail of the degree distribution of the

PIN, which can be easily computed. The relationship between

the above distributions depends on the mechanism driving

complex genesis, i.e. (i) function-driven, (ii) protein-driven

or (iii) mixed.

(i) For function-driven ensembles, one has for large q

PðqÞ ≃ C
a

� �
q�m�1 ð3:4Þ

and PðdÞ ¼ dkdl,akql: This shows that the complex size

distribution P(q) decays faster than the degree distri-

bution of the associated PIN a, so fat tails in the

degree distribution p(k) of PINs can emerge from

less heterogeneous complex size distributions. In par-

ticular, complex size distributions P(q) with a finite

second moment (but diverging higher moments)

give scale-free degree distributions p(k). This is consist-

ent with the intuition that, while large hubs are often

observed in PINs, super-complexes of the same

number of proteins are unlikely to be stable. Indeed,

many interactions in hubs are ‘date’ types, as opposed

to ‘party’ type [11]. Our framework allows us to dis-

criminate between different types of hub proteins,

and suggests that heterogeneous (i.e. power law) be-

haviour in PINs may emerge from homogeneous

protein ‘dating’ and moderately heterogeneous

protein ‘partying’.

(ii) For protein-driven ensembles, one has for large d,

PðdÞ ≃ C0d�m ð3:5Þ

with

C0 ¼ C
a

kdl

� �m�1

¼ Ckql1�m, ð3:6Þ

whereas PðqÞ ¼ dkql,kdl=a: Hence, any tail in the

promiscuity distribution will produce the same tail

in the degree distribution of a, but with a rescaled
amplitude. Fat tails in the degree distribution of

PINs can thus arise from equally heterogeneous

‘dating’ interactions between proteins, combined

with a homogeneous distribution of ‘party’ inter-

actions. Short loops are boosted by broad

distributions of complex sizes, as large complexes

in the bipartite graph induce large cliques in the

network a. The d-ensemble (4.2), which attributes

any heterogeneity in p(k) to heterogeneity of protein

binding promiscuities, generates separable PIN

graphs a with the least number of loops. Conver-

sely, the q-ensemble (4.1), which attributes all

heterogeneity in p(k) to heterogeneity in complex

sizes, generates separable PIN graphs a with the

largest number of loops.

(iii) For the mixed ensembles, it is easier to write relation-

ships in terms of the distribution W(q), related to P(q)

via WðqÞ ¼ qPðqÞ=kql: Assuming W(q) has a power-

law tail, with a finite first moment (as in both cases

previously considered), i.e. WðqÞ ≃ Kq�g with g . 2,

one has P(d) � C0d2m with m � g, where C0 ¼
Cðkq2l=kqlÞ1�m for g . m and KkdlþC0ðkq2l=kqlÞm�1 ¼ C
for g ¼ m. This means that if W(q) decays faster

than p(k) (as for protein-driven recruitment), then

the tail in p(k) must arise from the tail in P(d ),

although heterogeneities in P(q) will affect the ampli-

tude of the power-law tail in P(d ). Conversely, if

P(d ) is as broad as W(q), then both P(q) and P(d ) con-

tribute to the tail of p(k), whose amplitude will be the

sum of the amplitudes of the tails of the two

distributions.

4. Mathematical set-up
The remainder of this paper is devoted to the derivation of

results presented in §3. We start by casting the objectives of

our study in mathematical language. Formally, we can write

the bipartite network distributions for the three different

type of protein–complex recruitment (i.e. complex-driven,

protein-driven and mixed) as

pðjÞ ¼
Y
im

qm
N

dj m

i ,1 þ 1� qm
N

� �
dj m

i ,0

h i
, ð4:1Þ

pðjÞ ¼
Y
im

di

aN
dj m

i ,1 þ 1� di

aN

� �
dj m

i ,0

� �
ð4:2Þ

and pðjÞ ¼
Y
im

diqm
aNkql

dj m

i ,1 þ 1� diqm
aNkql

� �
dj m

i ,0

� �
, ð4:3Þ

respectively. Bipartite graphs drawn from (4.1) were found to

have modular topologies, and to accomplish parallel infor-

mation processing for suitable values of the parameter a

[37,38], and their connection to PINs has been pointed out in

[39]. As explained above, the three ensembles become equival-

ent when complex sizes and protein promiscuities are both

homogeneous, i.e. qm ¼ kql 8m and di ¼ akql 8 i: In that case,

the recruitment process between proteins and complexes is

fully random. We are interested in the properties of the

random graph ensemble

pðaÞ ¼ k Yi,j

d
aij,u

P
m�aN

j
m

i j
m

j

� �
2
4

3
5 Y

i

daii,0

" #
l
j

, ð4:4Þ
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where k � lj ¼
P

j � pðjÞ and p( j) is given by (4.1)–(4.3). Some

properties of (4.4) will turn out not to depend on the choices

made for the distributions of complex sizes and protein pro-

miscuities, and this leads to powerful benchmarks against

which to test available PIN datasets.

A key step of our analysis is that averages over (4.4) can

often be replaced by averages over the ensemble of weighted
graphs (2.6)

pðcÞ ¼ k Yi,j

dcij ,
P

m�aN
j
m

i j
m

j

2
4

3
5 Y

i

dcii,0

" #
l
j

: ð4:5Þ

For finite qm, di and a, one finds that in large networks

generated via (4.1)–(4.3), the probability of seeing cij . 1 is

of order OðN�2Þ, and the values of many macroscopic obser-

vables in the a and c ensembles will, to leading order in N,

be identical.
0573
5. Network properties generated by the
q-ensemble

In this section, we study the statistical properties of the

ensembles (4.5) and (4.4) upon generating the bipartite

protein interaction graph j from ensemble (4.1), where

complexes recruit proteins.
5.1. Link probabilities
For the graphs c of (4.5), we find the following expectation

values of individual bonds:

kcijl ¼
XaN

m¼1

kj m
i j

m
j l

j
¼
XaN

m¼1

qm
N

� �2

¼ a

N
kq2l, ð5:1Þ

where the brackets on the r.h.s. denote averaging over

the complex size distribution P(q). The likelihood of an

individual bond is (see appendix B)

pðcijÞ ¼ kdcij,
P
m�aN

j
m

i j
m

j
lj

¼ dcij ,0þ
akq2l

N
ðdcij ,1� dcij ,0Þ þ

a2kq2l2

2N2
� 1

2

akq4l
N3

 !

� ðdcij ,2� 2dcij ,1þ dcij ,0Þ þ
a3kq2l3

6N3

� ðdcij ,3� 3dcij ,2þ 3dcij ,1� dcij ,0Þ þOðN�4Þ, ð5:2Þ

so we find for the first few probabilities:

pð0Þ ¼ 1�akq2l
N
þa2kq2l2

2N2
�akq4l

2N3
�a3kq2l3

6N3
þOðN�4Þ ð5:3Þ

and

pð1Þ ¼ akq2l
N
�a2kq2l2

N2
þakq4l

N3
þa3kq2l3

2N3
þOðN�4Þ, ð5:4Þ

and hence X
‘.1

pð‘Þ ¼ 1� pð0Þ � pð1Þ ¼OðN�2Þ and

X
‘.1

‘pð‘Þ ¼ kcijl� pð1Þ ¼OðN�2Þ: ð5:5Þ
The probability to have cij = 0 is of order OðN�1Þ, so the

graphs generated by (4.5) are finitely connected. Moreover,

although the graphs c are in principle weighted, for large N
the number of links per node that are not in f0, 1g will be

vanishingly small.
5.2. Densities of short loops
We now turn to the calculation of expectation values for

different observables in ensemble (4.5). First, we calculate

the average number of ordered and oriented loops of

length-3 per node, which are (see appendix B)

m3 ¼ k 1

N

X
ijk

cijc jkckil
j
¼ 1

N

XaN

mnr¼1

X
i=j=k

kj m
i j

m
j j

n
j j

n
kj

r

kj
r
i l

j
ð5:6Þ

¼ akq3lþOðN�1Þ: ð5:7Þ

Calculating the density of loops mL for lengths L . 3 can

be simplified by returning to the bipartite graph j. We

define a star Sn to be a simple (n þ 1)-node tree in j, of

which the central node belongs to nc (the complexes), and

the n leaves belong to np (the proteins). Thus, S2 stars represent

protein dimers, S3 stars represent protein trimers, and so on.

Each link in c corresponds to at least one S2 star in the bi-

partite graph (which, in turn, can be a subset of any Sn star

with n . 2). Therefore, the total number of S2 stars in the

bipartite graph,

X
m

X
i=j

kj m
i j

m
j l ¼

X
m

X
i=j

kj m
i lkj m

j l ¼
X
i=j

X
m

q2
m

N2

¼ aðN � 1Þkq2l, ð5:8Þ

has to equate in leading order the total number of links Nkkl in

graph c, yielding

kq2l ¼ kkl
a
þOðN�1Þ, ð5:9Þ

which is indeed in agreement with the result of the direct cal-

culation kkl ¼ N�1
P

ijkcijl, using (5.1). Similarly, we can obtain

the number of loops of length 3, calculated earlier, by realizing

that these loops arise when we have in the bipartite graph

either a star S3 (which can be a subset of any Sn with n . 3)

or a combination of three S2 stars, where every leaf is shared

by two stars. The contribution of the number of S3 stars per

node to the number of loops of length 3 is

1

N

X
m

X
i=j=kð=iÞ

kjmi j
m
j j

m

k l¼ 1

N

X
m

X
i=j=kð=iÞ

kjmi lkjmj lkjmk l

¼ 1

N

X
m

X
i=j=kð=iÞ

q3
m

N3
¼ akq3lþOðN�1Þ:

ð5:10Þ

The contribution of the combination of three S2 stars, where

each leaf is shared by two stars, is

1

N

X
½m,n,r�

X
½i,j,k�

kj m
i j

m
j j

n
j j

n
kj

r

kj
r
i l ¼ 1

N

X
½m,n,r�

X
½i,j,k�

q2
mq2

nq2
r

N6

¼ 1

N
a3kq2l3 þOðN�1Þ, ð5:11Þ

with the square brackets [i, j, k] denoting that the three indices

are distinct. The expected density of length 3 loops is the sum

of an Oð1Þ contribution from S3 stars, plus an OðN�1Þ contri-

bution from combinations of three S2 stars that share leaves.
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For large N the second contribution vanishes, and we recover

m3 ¼ akq3l: Likewise, the Oð1Þ contribution to the density of

length-4 loops comes from S4 stars in the bipartite graph,

which consist of five sites (four leaves and one central node)

and four links, each with probability OðN�1Þ: Combinations

of two S3 stars with two shared leaves, or of S2 stars, always

involve a number of links at least equal to the number of

nodes and therefore yield sub-leading contributions. Hence,

the density of loops of length 4 is

m4 ¼
1

N

X
m

X
½i,j,k,‘�

kj m
i j

m
j j

m

k j
m
‘ l ¼ akq4lþOðN�1Þ: ð5:12Þ

More generally, the average density of loops of arbitrary

length L is given by

mL ¼ akqLlþOðN�1Þ: ð5:13Þ

For large N the ratio a and the distribution P(q) of complex

sizes apparently determine in full the statistics of loops of arbi-

trary length in c, if the protein interactions are described

by (4.1).

Finally, we note that if mL gives the number of ordered

and oriented loops of length L per node, the number of unor-

dered and unoriented closed paths of length L equals

�mL ¼ mL=6, as there are L possible nodes to start a closed

path from, and two possible orientations.
5.3. The degree distribution
It follows from (5.9) and (5.13) that by measuring the average

degree kkl and the densities mL of loops of length L we can

compute all the moments of the distribution of complex

sizes P(q):

kq2l ¼ kkl
a

and 8 L . 2: kqLl ¼ mL

a
: ð5:14Þ

This would allow us to calculate P(q) in full via its generating

function, provided a and kql are known. However, counting

the number of loops of arbitrary length in a graph is compu-

tationally challenging, and a and kql are generally unknown.

However, it is possible to express P(q) for large N in terms of

the degree distribution P(k) of c. Specifically, in appendix C,

we show that

lim
N!1

pðkÞ ¼
Ð1

0 dy PðyÞ e�yyk

k!
, ð5:15Þ

where

PðyÞ ¼ e�akql
X
‘�0

ðakqlÞ‘

‘!

X
q1 ...ql�0

Wðq1Þ . . . Wðq‘Þ d y�
X
r�‘

qr

" #
,

ð5:16Þ

and WðqÞ ¼ qPðqÞ=kql is the likelihood to draw a link

attached to a complex node of degree q in the bipartite

graph j. Formula (5.15) is easily interpreted. The degree of

node i in c is given by the second neighbours of i in j;

the number ‘ of first neighbours of node i will thus be a

Poissonian variable with average akql, and each of its ‘

first neighbours will have a degree qr drawn from W(qr).

Clearly, any tail in the distribution W(q) will induce a tail

in the distribution p(k), with (as we will show below) the

same exponent, but an amplitude that is reduced by a

factor akql:
One can complement (5.15) with a reciprocal relation-

ship that gives P(q) in terms of p(k). To achieve this, we

define the generating functions Q1ðzÞ ¼
P

kpðkÞe�kz,

Q2ðzÞ ¼
Ð1

0 dy PðyÞe�yz and Q3ðzÞ ¼
P

qWðqÞe�zq: We then

see from expression (5.15) for p(k) that

Q1ðzÞ ¼
ð1

0

dy PðyÞ e�y
X
k�0

ðye�zÞk

k!

¼
ð1

0

dy PðyÞ ey½e�z�1� ¼ Q2ð1� e�zÞ ð5:17Þ

and

Q2ðzÞ ¼ e�akql
X
‘�0

ðakqlÞ‘

‘!

X
q1...q‘�0

Wðq1Þ . . . Wðq‘Þ e
�z
P

r�‘qr

¼ e�akql
X
‘�0

ðakqlQ3ðzÞÞ‘

‘!
¼ eakql½Q3ðzÞ�1�: ð5:18Þ

The first identity can be rewritten as Q1(2log(12y)) ¼ Q2(y).

Inserting this into (5.18) allows us to express the desired

Q3(z) as

Q3ðzÞ ¼ 1þ log Q2ðzÞ
akql

¼ 1þ log Q1ð� logð1� zÞÞ
akql

, ð5:19Þ

which translates intoX
q.0

PðqÞqe�zq ¼ kqlþ 1

a
log
X

k

pðkÞð1� zÞk: ð5:20Þ

We can now extract the asymptotic form of P(q) from that of

p(k). The generating functions Q1(z) of degree distributions

that exhibit prominent tails, i.e. pðkÞ ≃ Ck�m for large k with

2 , m , 3 (as observed in PINs [33–36]), are for small z of

the form

Q1ðzÞ ¼ 1� kklzþ CGð1� mÞzm�1 þ � � � , ð5:21Þ

where G is Euler’s gamma function [40]. For small z, we may

use 1� z ≃ e�z to rewrite (4.19) as

log Q1ðzÞ ≃ akql½Q3ðzÞ � 1�: ð5:22Þ

Combining this with (5.21) then gives, for small z,

� kklzþ CGð1� mÞzm�1 ≃ akql½Q3ðzÞ � 1�: ð5:23Þ

Hence, for small z, Q3(z) has the same form as Q1(z),

Q3ðzÞ ¼ 1� kkl
akql

zþ C
akql

Gð1� mÞzm�1: ð5:24Þ

Therefore, W(q) behaves asymptotically in the same way as

p(k), i.e. WðqÞ ≃ ðC=akqlÞq�m: This, in turn, gives

PðqÞ ≃ C
a

� �
q�m�1: ð5:25Þ
5.4. Relationships that are independent of P(q) and a
The first two moments of p(k) are given, to leading order in N,

by (see appendix C)

kkl ¼ akq2lþOðN�1Þ, ð5:26Þ

which is in agreement with (5.9), and

kk2l ¼ akq2lþ akq3lþ a2kq2l2: ð5:27Þ

The latter is easily interpreted in terms of the underly-

ing bipartite graph: kk2l is the average density of paths of
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length two, so it has a contribution from kkl ¼ akq2l because

of backtracking, plus a contribution from pairs of S2 stars that

share a node, whose density is

1

N

X
½ijk�

X
m=n

kj m
i j

m
j j

n
j j

n
kl ¼ 1

N

X
½ijk�

X
m=n

q2
m

N2

q2
n

N2
¼ a2kq2l2, ð5:28Þ

plus a contribution from S3 stars, whose density is akq3l (as

shown earlier). Combining (5.27) with (5.14) gives us a

relationship between average and width of the degree

distribution of c and its density of length-3 loops. Remark-

ably, this relationship is completely independent of a

and P(q):

m3 ¼ kk2l� kkl2 � kkl: ð5:29Þ

This identity and others, which all depend only on

the separable underlying nature of the PIN and the

assumption of complex-driven recruitment of proteins to

complexes, can be derived more systematically from (5.20)

by expanding both sides as power series in z and comparing

the expansion coefficients. This gives a hierarchy of relation-

ships between moments of p(k) and P(q), and hence (via

(5.13)) between moments of p(k) and densities of loops of

increasing length, that are all completely independent of a

and P(q). At order z2, one recovers (5.29). The next order z3

leads to

m4 ¼ kk3l� 3kk2lþ 2kklþ kklðkk2l� kkl� 2kkl2Þ

¼ kk3l� 3kk2lþ 2kkl� kkl3 � 3kklm3: ð5:30Þ

To test these asymptotic identities in finite systems, we

generate random graphs c of size N ¼ 3000 according to
(4.1) and (4.5), and we compared the measured values of

m3 and m4 in these random graphs with the predictions of

formulae (5.29) and (5.30), respectively. We show the results

in figure 5.
5.5. Link between a and c graph definitions
In conventional experimental PIN databases, one

records only whether or not protein pairs interact, not the

number of complexes in which they interact. Hence, protein

interactions are normally represented in terms of the adja-

cency matrix a ¼ faijg, which is related to the weighted

matrix c ¼ fcijg via aij ¼ uðcijÞ 8 ði = jÞ, with the convention

for the step function u(0) ¼ 0. We therefore have

pðaijÞ ¼ kdcij,0ldaij,0 þ ð1� kdcij ,0lÞdaij ,1: However, the links faijg
are correlated. In appendix D, we derive the relation-

ship between the expected values of different graph

observables for the two graph ensembles p(a) and p(c).

Denoting averages in the a ensemble as k . . . la, and using

the usual notation k . . . l for averages in the c ensemble, one

finds that for large N the first two moments of the degree

distributions and the first two loop densities in the two

ensembles are identical:

kkla ¼
1

N

X
ij

kaijla ¼
1

N

X
ij

½1� kdcij ,0l� ¼ akq2lþOðN�1Þ

¼ kklþOðN�1Þ, ð5:31Þ

kk2la ¼
1

N

X
i=j=k

kaijajkla ¼ akq2lþ akq3lþ a2kq2l
2 þOðN�1Þ

¼ kk2lþOðN�1Þ, ð5:32Þ
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ma

3 ¼
1

N

X
i=j=kð=iÞ

kaija jkakila ¼ akq3lþOðN�1Þ

¼ m3 þOðN�1Þ ð5:33Þ

and ma
4 ¼

1

N

X
½i,j,k,‘�

kaijajkak‘a‘ila ¼ akq4lþOðN�1Þ

¼ m4 þOðN�1Þ: ð5:34Þ

Square brackets underneath summations again indicate

distinct indices, which excludes backtracking in the counting

of length-4 loops. Apparently, the ensembles p(a) and p(c) are

asymptotically equivalent with regard to the statistics of these

four quantities. We will see in the next section that this equiv-

alence holds also for the ‘dual’ ensemble (4.2). To test the

above claims, we compute and show in figure 6 the above

observables in synthetic graphs c and a generated randomly

from (4.4) and (4.5), where the random bipartite interaction

graph j is drawn from (4.1).
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6. Network properties generated by the
d-ensemble

In this section, we will derive properties for the network

ensembles (4.4) and (4.5) upon assuming that the statistics

of the underlying bipartite PIN are given by (4.2), i.e. are

protein-driven as opposed to complex-driven. Despite the

superficial similarity between definitions (4.1) and (4.2), the

expectations of graph observables in the two ensembles are

found to be remarkably different.
6.1. Link probabilities
We start by calculating the link expectation values in the

weighted graphs cij ¼
P

mj
m
i j

m
j :

kcijl ¼
X
m

kj m
i j

m
j l ¼

didj

aN
: ð6:1Þ

Hence the random graphs c are again finitely connected,

now with

kkl ¼ 1

N

X
ij

kcijl ¼
kdl2

a
: ð6:2Þ

Averages over d refer to the distribution P(d) of protein

promiscuities in the bipartite graph j. The result (6.2) can

also be written as kkl ¼ akql2, and is thus notably different

from the earlier expression kkl ¼ akq2l found in the q-ensemble.

The link likelihood is calculated in appendix B, and shows

again that pðcij . 1Þ ¼ OðN�2Þ:
6.2. Densities of short loops
We can calculate the density of length-3 loops similar to how

this was done for the q-ensemble in the previous section.

Again these are given, to order Oð1Þ, by the S3 stars in the

bipartite graph, as the contribution from combinations of S2

stars is as before OðN�1Þ: Here we obtain

m3 ¼
1

N

X
½ijk�

X
m

kj m
i j

m
j j

m

k l ¼ 1

N

X
½ijk�

X
m

didjdk

a3N3
¼ kdl3

a2
: ð6:3Þ
For loops of arbitrary length L, this generalizes to

mL ¼
kdlL

aL�1
: ð6:4Þ

Interestingly, the densities mL of short loops and the

average connectivity kkl depend on P(d ) only through its first

moment. Promiscuity heterogeneity apparently cannot affect

the densities of short loops. In the present ensemble, these

densities must therefore be identical to what would be found

in a randomly wired bipartite graph. This prediction will be

confirmed in simulations.

6.3. The degree distribution
In appendix C, we calculate the asymptotic degree distri-

bution of c for the protein-driven complex recruitment

model (4.2), giving

pðkÞ ¼ lim
N!1

1

N

X
i

dk,
P

j

cij

¼
X
d�0

PðdÞ
X
‘

e�dd‘

‘!

� �
e�‘kdl=að‘kdl=aÞk

k!

 !
: ð6:5Þ

This result is again understood easily: the number of

neighbours of a node i is a Poissonian variable ‘, with aver-

age d, where d is now drawn from P(d ). Each of the ‘ first

neighbours will have a degree which is a Poissonian variable

with average kdl=a, so the number k of second neighbours of

i in the bipartite graph is a Poisson variable with average

‘kdl=a: Equation (6.5) shows that a tail in the promiscuity

distribution P(d ) will induce a tail in the degree distribution

p(k) of c. The link between the two distributions is again

most easily expressed via generating functions. Upon defin-

ing Q1ðzÞ ¼
P

kpðkÞe�zk and Q4ðzÞ ¼
P

dPðdÞe�zd, we obtain

from (6.5)

Q1ðzÞ ¼
X
d�0

PðdÞe� pd

P
‘

ðdekdlðe�z�1Þ=aÞ‘

‘!

¼ Q4ð1� ekdlðe�z�1Þ=aÞ: ð6:6Þ

For z ≃ 0 this gives

Q1ðzÞ ≃ Q4
zkdl
a

� �
: ð6:7Þ

Hence, if p(k) decays for large k as pðkÞ ≃ Ck�m with 2 ,

m , 3, then via (5.21) we infer that

Q4
zkdl
a

� �
≃ 1� kklzþ CGð1� mÞzm�1: ð6:8Þ

Equivalently,

Q4ðxÞ ≃ 1� akklx
kdl
þ CG ð1� mÞ a

kdl

� �m�1

xm�1: ð6:9Þ

This implies that for large d the promiscuity distribution

will be of the form PðdÞ ≃ C0d�m, where

C0 ¼ C
a

kdl

� �m�1

¼ Ckql1�m: ð6:10Þ
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6.4. Relationships that are independent of P(d ) and a
The first two moments of the degree distribution p(k) of the

separable PIN networks c are

kkl ¼
X

k

kpðkÞ ¼
X

d

PðdÞ
X
‘

e�d d‘

‘!

‘kdl
a
¼ kdl2

a
ð6:11Þ
and

kk2l ¼
X

k

k2pðkÞ ¼
X

d

PðdÞ
X
‘

e�d d‘

‘!

‘kdl
a

� �2

þ ‘kdl
a

" #

¼ kdl2

a
þ kdl3

a2
þ kdl2kd2l

a2
: ð6:12Þ
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Combination of (6.18), (6.12) and (6.13) now yields the

relationship

kd2l
a
¼ kk2l� kkl�m3

kkl
, ð6:13Þ

which still involves kd2l and a. We can also find an alternative

expression for the density of loops of length 3 by combining

(6.18) and (6.13)

m3 ¼
kkl3=2ffiffiffi

a
p : ð6:14Þ

Unfortunately, neither of our two expressions for m3,

(6.13) nor (6.14), are useful, because the protein promiscuities

distribution P(d ) and the ratio a are generally unknown.

Access to information on these quantities via future detection

experiments may therefore be extremely welcome in support

of theoretical modelling of protein interaction datasets. To

make progress, we need to derive relationships for graph

observables that are independent of a and P(d ). We note

that (6.14) yields

8 L � 3:
mLþ1

mL
¼ kdl

a
: ð6:15Þ

This can be rewritten using (6.18) as

8 L � 3:
mLþ1

mL
¼

ffiffiffiffiffiffi
kkl
a

r
: ð6:16Þ

On the other hand, we know from (6.14) that

m3=kkl ¼
ffiffiffiffiffiffiffiffiffiffiffi
kkl=a

p
: Combining the above formulae allows us

to establish the following relationship, that now is completely
independent of P(d ) and a:

m4 ¼
m2

3

kkl
: ð6:17Þ

Again we have tested the various formulae in syntheti-

cally generated graphs (figure 7).
6.5. Link between a and c graph definitions
As a final step, we check whether the observables m3 and m4

are indeed the same for the two PIN definitions (4.4) and

(4.5), with the bipartite graph of our protein-driven ensemble

(4.2), as protein detection experiments provide the binary

matrix a as opposed to the weighted graph c for which

(6.21) was derived. Again we denote averages relating to a

as k . . . la, and those relating to c as k . . . l: For the moments

of the degree distributions, we find the differences to be

negligible:

kkla ¼
1

N

X
ij

kaijla ¼
kdl2

a
þOðN�1Þ ¼ kklþOðN�1Þ ð6:18Þ

and

kk2la ¼
1

N

X
i=j=k

kaijajkla

¼ kdl2

a
þ kdl3

a2
þ kd2lkdl2

a2
þOðN�1Þ

¼ kk2lþOðN�1Þ: ð6:19Þ
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The same is true for the densities of loops of length 3 and 4:

ma
3 ¼

1

N

X
i=j=kð=iÞ

kaijajkakil ¼
kdl3

a2
þOðN�1Þ

¼ m3 þOðN�1Þ ð6:20Þ

and

ma
4 ¼

1

N

X
½i,j,k,‘�

kaijajkak‘a‘il ¼
kdl4

a3
þOðN�1Þ

¼ m4 þOðN�1Þ: ð6:21Þ

This equivalence between the ensembles p(a) and p(c)

when calculating the main average values of graph observa-

bles for large N implies that large protein interaction

adjacency matrices can in practice be regarded as having a

separable structure. Again, we check our relationships

(6.12), (6.18), (6.20) and (6.21), against synthetically generated

graphs and show results in figure 8.
7. Macroscopic observables in the mixed
ensemble

The two bipartite graph ensembles (4.1) and (4.22) considered

so far led to Poissonian distributions either for the protein

promiscuities di (in the q-ensemble) or for the complex sizes

qm (in the d-ensemble). It is possible to model heterogeneity

in both di and qm using the mixed ensemble (4.3). Owing to

the similarities with previous calculations we can and will

be more brief in this section. For ensemble (4.3), the
expectation values of individual links in the weighted

graph c are

kcijl ¼
X
m

kj m
i j

m
j l ¼

X
m

didjq2
m

a2kql2N2

¼
didjkq2l

akql2N
þOðN�3=2Þ, ð7:1Þ

and the average connectivity follows as

kkl ¼ 1

N

X
ij

kcijl ¼
kdl2kq2l
akql2

þOðN�1=2Þ

¼ akq2lþOðN�1=2Þ: ð7:2Þ

Full details are found in appendix B. As in previous

ensembles, the leading contribution to the density of

length-3 loops comes from the S3 stars in the bipartite

graphs, now giving

m3 ¼
1

N

X
½ijk�

X
m

kj m
i j

m
j j

m

k l ¼ 1

N

X
½ijk�

X
m

didjdkq3
m

a3kql3N3

≃ kdl3kq3l
a2kql3

¼ akq3l: ð7:3Þ

As before, the heterogeneity in the d affects neither the

average connectivity kkl nor the density of triangles m3,

both are as they were in the q-ensemble. This is confirmed

numerically (figure 9). The degree distribution for large N
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in the ensemble p(c) is calculated in appendix C, giving

pðkÞ ¼
Ð1

0 dy PðyÞ e�yyk

k!
, ð7:4Þ

where

PðyÞ ¼
X

d

PðdÞe�d
X
‘�0

d‘

‘!

X
q1...q‘�0

Wðq1Þ . . . Wðq‘Þ d y�
X
r�‘

qr

" #
:

ð7:5Þ

Again it is possible to relate the asymptotic behaviour of

p(k) to that of P(d ) and W(q), by inspecting the relationship

between the relevant generating functions. Using our pre-

vious definitions for Q1(z), Q2(z), Q3(z), and Q4(z), we obtain

via (7.4) and (7.5)

Q1ðzÞ ¼
ð

dyPðyÞ
X

k

e�yðye�zÞk

k!
¼
ð

dyPðyÞe�yð1�e�zÞ

¼ Q2ð1� e�zÞ ð7:6Þ

and

Q2ðzÞ ¼
X

d

PðdÞe�d
X
‘

d‘

‘!

Y‘
r¼1

X
qr

WðqrÞe�zqr

 !

¼
X

d

PðdÞe�d
X
‘

d‘

‘!
Q‘

3ðzÞ

¼
X

d

PðdÞe�d½1�Q3ðzÞ� ¼ Q4ð1�Q3ðzÞÞ: ð7:7Þ
Expanding (7.6) for small z tells us that Q1ðzÞ ≃ Q2ðzÞ:
Substitution into (7.7) subsequently gives

Q1ðzÞ ≃ Q4ð1�Q3ðzÞÞ: ð7:8Þ

Assuming W(q) to have a power-law tail, but with a finite

first moment (as in all cases previously considered), i.e.

WðqÞ ≃ Kq�g with g . 2, its generating function Q3(z), can

be written as

Q3ðzÞ ¼ 1� kq2lz
kql
þOðzdÞ, ð7:9Þ

where d ¼minf2,g 2 1g. Insertion into (7.8) then leads to

Q1ðzÞ ≃ Q4
zkq2l
kql
�OðzdÞ

� �
: ð7:10Þ

If p(k) ¼ Ck2m, with 2 , m , 3, we may use our earlier result

(5.21) and get

Q4 x�O xkql
kq2l

� �d
 !

≃ 1� kklkqlx
kq2l

þ CGð1� mÞ kql
kq2l

� �m�1

xm�1:

ð7:11Þ

If g . m we have d . m 2 1, so we can neglect the second

term in the argument of Q4, and conclude that the promis-

cuity distribution has the asymptotic form P(d ) ¼ C0d2m

where C0 ¼ Cðkq2l=kqlÞ1�m: This means that if W(q) decays

faster than p(k) (as in §6), then the tail in p(k) must arise

from the tail in P(d ). Note, however, that heterogeneities in
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P(q) will affect the amplitude of the power-law tail in P(d ),

which will be smaller by a factor ðkq2l=kql2Þ1�m compared with

the case where PðqÞ ¼ dq,kql, where we had C0 ¼ Ckql1�m: Con-

versely, if g ¼ m we have d ¼ m 2 1, and writing the OðzdÞ
term explicitly in (7.10) gives

Q4ðzkq2l=kql� KG ð1� mÞzm�1Þ ¼ 1� kklzþ CGð1� mÞzm�1:

ð7:12Þ

Expanding both sides in powers of z and equating prefactors

tells us that either C0 ¼ 0 and C ¼ Kkdl (i.e. K ¼ C=akql,
which retrieves the case in §5), or d ¼ m

with Kkdlþ C0ðkq2l=kqlÞm�1 ¼ C: Hence, if P(d ) is as broad

as W(q), then both contribute to the tail in p(k), whose ampli-

tude will be the sum of the amplitudes of the tails in P(q) and

P(d ). We see in (7.12) that g , m is not possible, i.e. W(q)

needs to decay at least as fast as p(k).

In appendix C, we calculate the first two moments of the

degree distribution p(k) of the ensemble p(c). This recovers

(7.2) for the first moment, and for the second moment gives

kk2l ¼ akq2lþ akq3lþ kd2lkkl2

kdl2
: ð7:13Þ

Substituting (7.2) and (7.3) into (7.13) then leads to

m3 ¼
kk2l� kkl� kkl2kd2l

kdl2
: ð7:14Þ

The density of length-3 loops depends again on the first

two moments of the degree distribution p(k), but is also

seen to depend on the first two moments of the promiscuity

distribution P(d ), which is unknown. Hence, this relationship

cannot serve as a test of PIN data quality. It is nevertheless

useful for comparing the mixed ensemble with the d- and

the q-ensembles in synthetically generated data.
8. Numerical comparison of the three bipartite
generative ensembles

Here we compare the ability of our bipartite ensembles (4.1)–

(4.4) to predict properties of the associated binary PIN

graphs, for synthetic networks that are generated from any

of these ensembles. We focus on comparing homologous for-

mulae for the observables kkl, kk2l, m3 and m4. The synthetic

matrices a ¼ faijg with aij [ f0, 1g are defined as before via

aij ¼ uð
P

mj
m
i j

m
j Þ, with u(0) ¼ 0, and the links of the bipartite

graph j are generated from the following three protocols.

In the first protocol, links between nodes (i, m) are drawn ran-

domly and independently, until their total number reaches a

prescribed limit. In the second protocol, we assign the links

preferentially to complexes with large sizes. In the third pro-

tocol, we assign links preferentially to proteins with large

promiscuities.

In figure 9, we show along the vertical axes the values

of kkl (left) predicted by the three ensembles, via formulae

(5.26), (6.2) and (7.2), the predicted values of kk2l (middle),

via (5.27), (6.12) and (7.13), and the predicted triangle

density m3 (right), via (5.29), (6.13) and (7.14). All are

shown together with the corresponding values that were

measured in a, along the horizontal axes. As expected, the

d-ensemble outperforms the other ensembles when links

are drawn according to d-preferential attachment, whereas

the q-ensemble performs better for graphs generated via
q-preferential attachment. The mixed ensemble performs

very similar to the q-ensemble in terms of counting tri-

angles, as expected from the reasoning in §7. Deviations

between the q and the mixed ensembles are most evident

in the second moment of the degree distribution, where

the mixed ensemble always leads to values well above

those of the q- and the d-ensembles. We found in §6 that

the d-ensemble is indistinguishable from a fully random

ensemble when calculating kkl and m3, which explains

why the d-ensemble predicts the values of these two obser-

vables perfectly. The other two ensembles are more sensitive

to finite size effects, as any heterogeneity in the q will boost

the number of loops.

In figure 10, we show the values of m3 and m4 predicted

by those formulae that involve only measurable graph

observables, for the synthetically generated graphs used in

figure 9. The prediction of m3 is now obtained from (5.29)

and (6.21), for the q- and d-ensembles, respectively, and m4

is evaluated using (5.30) and (6.21). In figure 11, we plot

the degree distribution p(k) of graphs with identical values

for the number of nodes (N ¼ 3000) and the number of

links L ¼ Nakql, generated synthetically via the three

chosen protocols, together with the distributions P(q) of

complex sizes and P(d ) of protein promiscuities. As

explained in §7, tails in the degree distribution p(k) � k2m

can arise either from a complex size distribution P(q) �
q2m21 and a homogeneous promiscuity distribution, or

from having an equally fat tail in the promiscuity distri-

bution P(d ) � d2m together with less heterogeneous

complex sizes P(q) � q2g21 with g . m.
9. Conclusion
In this paper, we propose a bipartite network representation

of protein interactions, where the two node types repre-

sent proteins and complexes. A protein–protein interaction

network can then be regarded as the result of a ‘marginaliza-

tion’ of the bipartite network, whereby the complexes are

integrated out (i.e. summed over). This leads to a weighted

PIN c with a separable structure. Adjacency matrices of

PINs a are then simply the binary versions of the separable

c, obtained by the entry truncations aij ¼ u(cij), with the con-

vention u(0) ¼ 0. One of the central results of this work is that

for sufficiently large networks there is an equivalence

between the two graph ensembles p(c) and p(a), inasmuch

as macroscopic statistical properties are concerned, such as

densities of short loops and degree distributions. This

allows us to regard the conventional protein interaction

adjacency matrices as if they were to have a separable struc-

ture, and induces precise relationships between expectation

values of macroscopic graph observables which, remarkably,

only depend on measurable quantities and on the underlying

mechanism with which proteins and complexes recruit each

other. They are independent of inaccessible microscopic

details of proteins and their complexes.

We considered the two extreme complex recruitment scen-

arios, one where recruitment is driven solely by protein

promiscuities, and another where it is driven by complex sizes.

Preferential attachment to large complexes (the q-ensemble)

favours the presence of large cliques in PINs, which boosts

the number of short loops. Hence we can reasonably expect

that the predictions on short loop densities from the
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Figure 10. Predicted versus real m3 (a) and m4 (b) for random bipartite graphs with N ¼ 3000 and a ¼ 0.5 generated via random wiring (a(i),b(i)), q-preferential
(a(ii),b(ii)) and d-preferential (a(iii),b(iii)), calculated by using formulae (5.29), (5.30), (6.21) and observables appearing in the formulae computed directly
from the network.
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q-ensemble will overestimate the real number of loops.

Conversely, preferential attachment based only on protein

promiscuities (the d-ensemble) leads to homogeneous com-

plex sizes, which suppresses large cliques in PINs, leading

to an underestimation of short loop densities. Remarkably,

real protein interaction data from MS and Y2H experiments

show a density of length-4 loops in between the predictions

of the d-ensemble and those of the q-ensemble, suggesting a

degree of compatibility of these experimental data with a

separable structure of the proteome. By contrast, both MS

and Y2H datasets show densities or length-3 loops that are

consistently smaller than all our theoretical predictions and

closer to expectation in random graphs with identical

degree distributions, suggesting the presence of a noise

level which randomizes interactions. We note that MS

values generally show a higher degree of compatibility with

a separable structure of the proteome than Y2H.

We believe that, by providing a systematic and practical

framework for understanding protein interaction experiments,

our approach may represent a valuable step towards esta-

blishing a more solid connection between protein interaction
datasets and the underlying biology. Universal bounds on

observables in PINs may become powerful tools for data qual-

ity testing. As future work, it would be useful to apply the

present framework to datasets with different features, includ-

ing ribosomal data, large-scale datasets resulting from the

union of known datasets (e.g. [41]), more nuanced descriptions

of PINs as those involving alternative splicing, as well as

adapting the present framework to include multiple measure-

ments from repeated experiments [42]. Improved versions of

the present models, which fit the experimental data better,

may open a route to infer quantities such as the ratio a, and

the distributions of protein promiscuities and complex sizes.

Such quantities are hardly available in the current PIN data-

sets, and are generally difficult to access experimentally. The

present work has revealed that the asymptotic forms of these

distributions can be extracted from the tails of the PIN

degree distributions. Recent protein–complex datasets such

as [43,44] may provide useful sources to test inference capabili-

ties of the present framework. Finally, our method my shed

some light on the way protein and complexes recruit one

another, in particular, whether this recruitment is driven by
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proteins or by complexes, and may enable us to discriminate

between ‘party hub’ and ‘date hub’ interactions.
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Appendix A. Promiscuities and complex size
distributions in ensembles Pq(j) and Pd(j)
For graphs drawn from ensemble (4.1), where complex

sizes fqmg are drawn from a given distribution P(q), the

distribution of protein promiscuities is, for large N,

pðdÞ ¼ lim
N!1

kdd,
P

m
j
m

i
l ¼ lim

N!1

ðp
�p

dv
2p

eivdke�iv
P

m
j
m

i l

¼
ðp
�p

dv
2p

eivdþakqlðe�iv�1Þ ¼ e�akqlðakqlÞd

d!
: ðA 1Þ
For graphs drawn from ensemble (4.2), where protein promis-

cuities fdig are drawn from a given distribution P(q), the

distribution of complex sizes is, for large N,

pðqÞ ¼ lim
N!1

kdq,
P

i
j
m

i
l ¼ lim

N!1

ðp
�p

dv
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eivqke�iv
P

i
j
m

i l

¼
ðp
�p

dv
2p

eivqþðkdl=aÞðe�iv�1Þ ¼ e�kdl=aðkdl=aÞq

q!
: ðA 2Þ
Appendix B. Link probabilities in the weighted
protein interaction network
In this appendix, we derive the likelihood to have a link in the

weighted PIN cij ¼
P

mj
m
i j

m
j , when the j

m
i are drawn from

the ensembles (4.1)–(4.3).
B.1. The q-ensemble
In the q-ensemble, we have
pðcijÞ ¼ kdcij,
P
m�aN

j
m

i j
m

j
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j
¼
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From this, one reads off directly the values of p(cij ¼ 0),

p(cij ¼ 1) and p(cij � 2). The density of triangles is obtained

writing (B 2) as

m3 ¼ ðN � 1ÞðN � 2Þ
XaN

mnr¼1

kj mj nlkj nj rlkj rj ml, ðB 2Þ
d2
i d2

j =ða

�iv �
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N2
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1� qm
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� �
: ðB 3Þ

This gives
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B.2. The d-ensemble
In the d-ensemble, we obtain

pðcijÞ ¼ kdcij ,
P

m
j
m

i j
m

j
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B.3. The mixed ensemble

For the mixed ensemble, the link likelihood is found to be
pðcijÞ ¼ kdcij ,
P

m
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i j
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j
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e
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Appendix C. Calculation of the degree
distribution p(k)
In this appendix, we calculate the degree distribution of the

weighted PIN cij ¼
P

mj
m

i j
m

j , in which the entries j
m

i are

drawn from the bipartite ensembles (4.1)–(4.3).
C.1. The q-ensemble
In the q-ensemble, we can calculate p(k) as follows:
ub
lishing.org
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12:20150573
pðkÞ ¼
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Hence, for large network sizes N!1 we obtain
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We can rewrite this in terms of the distribution

WðqÞ ¼ qPðqÞ=kql, which denotes the likelihood to draw a

link attached to a node of degree q in the bipartite graph,
lim
N!1
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and upon defining
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we finally get to

lim
N!1

pðkÞ ¼
ð1

0
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PðyÞ e�yyk
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: ðC 5Þ

The interpretation is that if we draw ‘ from a Poisson dis-

tribution with k‘l ¼ akql, and then draw ‘ variables qr from

W(qr), we find k as a Poissonian variable with kkl ¼
P

r�‘qr:
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Clearly p(k) is normalized, and for its first moment we find
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This is in agreement with results from a direct calculation:
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C.2. The d-ensemble
We can calculate the asymptotic degree distribution in the

d-ensemble as follows:
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C.3. The mixed ensemble
In the mixed ensemble, we have the asymptotic degree

distribution
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We can rewrite this expression in terms of the associated

distribution WðqÞ ¼ qPðqÞ=kql as
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or, equivalently, as
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The first two moments of p(k) are
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Appendix D. The link between observables in
the a and c networks
In this appendix, we inspect the relationship between expectation

values of various observables in the ensembles p(a) and p(c).
D.1. The q-ensemble
Denoting averages in the a ensemble as k . . . la, we have, for

the q-ensemble of bipartite graphs
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For loops of length 3, we proceed in the same way,

obtaining
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Finally for loops of length 4, we have
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Again, the square brackets underneath the summations

indicate that all indices are different, to exclude backtracking

in the counting of loops of length 4.
D.2. The d-ensemble
For the d-ensemble, denoting averages relating to a as k . . . la,

we have
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For loops of length 3, we have
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where we used
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