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Abstract. I report on the development of a novel statistical mechanical formalism for the
analysis of random graphs with many short loops, and processes on such graphs. The graphs
are defined via maximum entropy ensembles, in which both the degrees (via hard constraints)
and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over
graphs can be done analytically, using a replica formalism with complex replica dimensions.
All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs,
the emerging theory has an appealing and intuitive structure, suggests how message passing
algorithms should be adapted, and what is the structure of theories describing spin systems on
loopy architectures. However, the formalism is still largely untested, and may require further
adjustment and refinement.

1. Introduction
Networks and graphs are increasingly popular and e↵ective tools for visualising and modelling
large and complex processes and ‘big’ data sets. We know that many important graphical
structures in the world (biological networks, computing and communication networks, resource
grids, lattices in physics, etc) are not tree-like; they tend to have many short loops, and we know
that processes on graphs are a↵ected significantly by the presence of such loops. It is therefore
problematic that most of our tools and algorithms for analysing (processes on) finitely connected
graphs, such as cavity methods [1], belief propagation type algorithms [2, 3, 4], and conventional
replica analyses [5, 6], require topologies that are locally tree-like. Some methods were extended
with loop corrections [7, 8, 9, 10], but all tend to fail for graphs with many short loops. The
exceptions, solvable spin models or spectrum calculations for loopy graphs, all rely on some
special property of either the dynamics or the graph topology, and are thus non-generic: these
include spherical models [11], one- and two-dimensional Ising systems [12, 13], loopy immune
models that can be mapped to tree-like systems [14], and trees of loopy modules [15, 16].

In this paper I report on ongoing research aimed at the development of a new and more
general statistical mechanical method that removes the restriction to tree-like graphs. It is
designed to handle analytically ensembles of large and sparse random graphs with prescribed
degree sequences and prescribed loop statistics (via their adjacency spectra), and stochastic
processes on such graphs. It is based on an alternative flavour of the replica method, with
imaginary replica dimensions, and produces explicit closed equations in the infinite size limit,
leading to Shannon entropies and expressions for spectra of ensembles of sparse loopy graphs.
The familiar equations describing tree-like graphs are recovered as a simple limiting case.
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2. Definitions
We study simple nondirected N -node graphs characterised by adjacency matrices c = {cij},
with cij 2 {0, 1}, cij = cji and cii = 0 for all (i, j). They are drawn randomly from maximum
entropy ensembles p(c), in which we prescribe the values of all degrees ki(c) =

P
j cij and the

eigenvalue spectrum %(µ|c), subject to
R
dµ µ%(µ|c) = N�1P

i cii = 0 and
R
dµ µ2%(µ|c) =

N�1P
ij cijcji = N�1P

i ki. Since the spectrum controls the statistics of closed paths of all
lengths via its moments, we are not limited to tree-like graphs. Modulo isomorphisms, many
graphs are already determined by their spectra [17, 18, 19], and without external fields the free
energy of spin systems on loopy graphs depends only on the loop statistics [20], so we expect
that graphs from such ensembles can be tailored very e↵ectively to model complex real-world
systems. We impose the degrees as hard constraints, and the spectrum as a soft constraint, so

p(c) / eN
R
dµ %̂(µ)%(µ|c)

Y

iN

�ki,
P

j cij
(1)

We can write the relevant sums over graphs in terms of the generating function

�[%̂] =
1

N
log

X

c

eN
R
dµ %̂(µ)%(µ|c)

Y

iN

�ki,
P

j cij
(2)

The equation from which to solve the Lagrange parameter %̂(µ), i.e. %(µ) =
P

c p(c)%(µ|c), and
the ensemble entropy per node S = �N�1P

c p(c) log p(c), are both expressed in terms of (2):

%(µ) = ��[%̂]/�%̂(µ), S = �[%̂]�

Z
dµ %̂(µ)⇢(µ) (3)

We could alternatively start by choosing %̂(µ), and view the first equation of (3) as a tool for
calculating the associated spectrum. Locally tree-like graphs correspond to %̂(µ) = 0. For
%̂(µ) = ↵3µ3 with ↵3 > 0 we get loopy random graphs constrained by the degrees and the
density of triangles. Adding higher order terms to %̂(µ) means controlling higher order closed
path statistics. Imposing the full spectrum means constraining the numbers of closed paths of
all lengths. The core of our problem is how to do analytically the sum over graphs in (2).

3. Calculation of the generating function
We can write (2) as an average over an Erdös-Rènyi graph ensemble [21] with average degree
hki = 1

N

P
i ki. Since the probabilities pER(c) of this ensemble depend on c only via

P
i<j cij ,

we can use the short-hand hf(c)iER =
P

c pER(c)f(c) to write

�[%̂] =
1

2
hki

⇥
log

� N

hki

�
+1

⇤
+

1

N
log

D
eN

R
dµ %̂(µ)%(µ|c)

Y

iN

�ki,
P

j cij

E

ER
+O(

1

N
) (4)

The factors induced by degree constraints are harmless. Our problem is the dependence on c
via %(µ|c). To handle this we use the following identity which can be derived in a few lines from
the spectrum formula of [22], and was first presented in [23]:

eN
R
dµ %̂(µ)%(µ|c) = lim

�,"#0
lim

nµ! i�
⇡

d
dµ %̂(µ)

lim
mµ!�nµ

Y

µ

h
Z(µ+i"|c)nµ Z(µ+i"|c)

mµ
i

(5)

where z indicates complex conjugation, and with the integrals Z(µ|c) =
R
IRNd� exp(�1

2 i� · [c�
µ1I]�). We can now proceed via the replica method. We evaluate the graph average for integer
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{nµ,mµ}, and take the limits to imaginary values via analytical continuation1. The tricky factor
then becomes a product of integrals:

Y

µ

h
Z(µ+i"|c)nµ Z(µ+i"|c)

mµ
i

=
Y

µ

nh nµY

↵µ=1

Z

IRN
d�µ,↵µ

e
� 1

2 ("�iµ)�2
µ,↵µ

ih mµY

�µ=1

Z

IRN
d µ,�µe

� 1
2 ("+iµ) 2

µ,�µ

io

⇥e
i
P

i<j cij
P

µ

⇥Pmµ
�µ=1  

i
µ,�µ

 j
µ,�µ

�
Pnµ

↵µ=1 �
i
µ,↵µ�

j
µ,↵µ

⇤
(6)

We can now do the graph summations. We abbreviate �i = {�iµ,↵µ
} and  i = { i

µ,�µ
}, with

�i
·�j =

P
µ

P
↵µnµ

�iµ,↵µ
�jµ,↵µ and  i

· j =
P

µ

P
�µmµ

 i
µ,�µ

 j
µ,�µ

, and we introduce a matrix

M with entries Mµ,↵;µ0,↵0 = µ�µµ0�↵↵0 . Upon inserting (5) into (2), writing degree constraints in

integral form via �ki,
P

j cij
= (2⇡)�1

R ⇡
�⇡ d!i e

i!i(ki�
P

j cij), and using (6), we find that the order

parameter of our problem is the distribution P(�, ,!) = N�1P
i �(���

i)�( � i)�(!�!i),
which we introduce into our formulae by inserting for each (�, ,!), with ! 2 [�⇡,⇡]:

1 =

Z
dP(�, ,!) �

h
P(�, ,!)�

1

N

X

i

�(���i)�( � i)�(!�!i)
i

(7)

Upon writing the �-functions in integral form, we then obtain the following path integral
representation of �[%̂] which is for large N evaluated via steepest descent, with limN!1 ✏N = 0:

�[%̂] =
1

2
hki log

� N

hki

�
+ lim

�,"#0
lim

nµ! i�
⇡

d
dµ %̂(µ)

lim
mµ!�nµ

extr{P,P̂} [P, P̂] + ✏N (8)

 [P, P̂] = i

Z
d�d d! P̂(�, ,!)P(�, ,!)

+
1

2
hki

Z
d�d d!d�0d 0d!0 P(�, ,!)P(�0, 0,!0)e�i(!+!0)+i( · 0��·�0

)

+
X

k

p(k) log

Z ⇡

�⇡

d!

2⇡
eik!

Z
d�d e�

1
2�·("1I�iM)�� 1

2 ·("1I+iM) �iP̂(�, ,!) (9)

Working out the saddle-point equations of (9) shows that (8) can be written in the form

�[%̂] =
1

2
hki

⇥
log

� N

hki

�
+1

⇤
+

X

k

p(k) log p̃(k) + ✏N

+ lim
�,"#0

lim
nµ! i�

⇡
d
dµ %̂(µ)

lim
mµ!�nµ

X

k

p(k) log

Z
d�d e�

1
2�·("1I�iM)�� 1

2 ·("1I+iM) 

⇥

h Z
d�0d 0 W(�0, 0)ei( · 0��·�0

)
ik

(10)

Here p̃(k) = e�hki
hkik/k!, limN!1 ✏N = 0, and W(�, ) is to be solved from

W(�, ) =
X

k

k

hki
p(k) (11)

⇥

e�
1
2�·("1I�iM)�� 1

2 ·("1I+iM) 
h R

d�0d 0 W(�0, 0)ei( · 0��·�0
)
ik�1

R
d�00d 00e�

1
2�

00·("1I�iM)�00� 1
2 

00·("1I+iM) 00h R
d�0d 0 W(�0, 0)ei( 

00· 0��00·�0
)
ik

1 In standard replica analyses [24] the replica dimension n is taken to zero. Models with nonzero real-valued
n describe systems with adiabatically separated timescales and multiple temperatures [25, 26, 27, 28, 29, 30].
Imaginary dimensions n have so far been used only in [31, 32, 33] and [34].
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4. Replica symmetric theory
4.1. Replica symmetry ansatz

We assume that W(�, ) is symmetric under all permutations of {�µ,1, . . . ,�µ,nµ} and
{ µ,1, . . . , µ,mµ}. For integer {nµ,mµ} equation (11) is also invariant under W(�, ) !

W( ,�), and we assume that the relevant solution of (11) is invariant under this transformation.
It then follows via De Finetti’s theorem [35] that

W(�, ) = C

Z
{d⇡}W[{⇡}]

hY

µ

nµY

↵µ=1

⇡(�µ,↵µ |µ)
ihY

µ

mµY

�µ=1

⇡( µ,�µ |µ)
i

(12)

C is a constant, and W[{⇡}] is a normalised measure on the space of conditioned distributions ⇡
with

R
dx ⇡(x|µ) = 1 for all µ. We introduce the Fourier transforms ⇡̂(�|µ) =

R
dx e�ix� ⇡(x|µ),

the normalised distributions P [{⇡1, . . . ,⇡k}], and the short-hand A[{⇡1, . . . ,⇡k}] as follows:

P (�|µ,⇡1, . . . ,⇡k) =
e�

1
2 ("�iµ)�2 Q

`k ⇡̂`(�|µ)R
dx e�

1
2 ("�iµ)x2 Q

`k ⇡̂`(x|µ)
(13)

A[{⇡1, . . . ,⇡k}] =
Y

µ

h⇣ Z
dx e�

1
2 ("�iµ)x2 Y

`k

⇡̂`(x|µ)
⌘nµ

⇣Z
dx e�

1
2 ("�iµ)x2

Y

`k

⇡̂`(x|µ)
⌘mµ

i

(14)

This allows us to write equation (11) after some simple manipulations in a form which reveals
that the ansatz (12) indeed solves (11), provided W and C obey

W[{⇡}] =
1

C2

X

k>0

p(k)
k

hki

hQ
`<k

R
{d⇡`}W[{⇡`}]

i
A[{⇡1, . . . ,⇡k�1}]�F

⇥
⇡�P [{⇡1, . . . ,⇡k�1}]

⇤

hQ
`k

R
{d⇡`}W[{⇡`}]

i
A[{⇡1, . . . ,⇡k}]

(15)

C2 =
X

k>0

p(k)
k

hki

hQ
`<k

R
{d⇡`}W[{⇡`}]

i
A[{⇡1, . . . ,⇡k�1}]

hQ
`k

R
{d⇡`}W[{⇡`}]

i
A[{⇡1, . . . ,⇡k}]

(16)

with the functional delta-distribution �F[g] /
Q

x �[g(x)]. Our generating function becomes

�RS[%̂] =
1

2
hki

⇥
log

� N

hki

�
+1

⇤
+
X

k

p(k) log p̃(k) + hki logC+ ✏N

+
X

k

p(k) log
hY

`k

Z
{d⇡`}W[{⇡`}]

i
A[{⇡1, . . . ,⇡k}] (17)

The functional (14) can be written alternatively in terms of (13) as

A[{⇡1, . . . ,⇡k}] = A[P [{⇡1, . . . ,⇡k}]] (18)

in which we now define

A[{P}] = e�
P

µ

⇥
nµ log P (0|µ)+mµ log P (0|µ)

⇤
(19)

This property is due to the fact that A[{⇡1, . . . ,⇡k}] can be expressed in terms of the
denominators of the right-hand side of (13), which in turn can be written in terms of P (0|µ) as
a consequence of the identity ⇡̂`(0|µ) =

R
dx ⇡(x|µ) = 1 for all µ and all `.
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4.2. Formula for the spectrum

According to (3), working out %(µ) requires di↵erentiation of �RS[%̂] with respect to %̂. This
was indeed the origin and purpose of the generating function. This di↵erentiation is easier if we
write �RS[%̂] as an extremum over C and W, so that the dependences of C and W on %̂ will not
a↵ect these derivatives. If we also extremise over C for fixed W, and eliminate C, we obtain

C�2 =

Z
{d⇡d⇡0}W[{⇡}]W[{⇡0}]B[{⇡,⇡0}] (20)

�RS[%̂] =
1

2
hki

⇥
log

� N

hki

�
+1

⇤
+
X

k

p(k) log p̃(k) + ✏N

+ extr{W}

nX

k

p(k) log
hhY

`k

Z
{d⇡`}W[{⇡`}]

i
A[{⇡1, . . . ,⇡k}]

i

�
1

2
hki log

Z
{d⇡d⇡0}W[{⇡}]W[{⇡0}]B[{⇡,⇡0}]

o
(21)

with

B[{⇡,⇡0}] =
Y

µ

nhZ
d�d�0⇡(�|µ)⇡0(�0|µ)e�i��0

inµ
hZ

d�d�0⇡(�|µ)⇡0(�0|µ)e�i��0
imµ

(22)

Now %̂ appears only in A[. . .] and B[. . .], and we obtain from (3) the following formula:

%RS(µ) =
X

k

p(k)

Z
{d⇡d⇡0}W[{⇡0}]B[{⇡,⇡0}]

n⇣� logA[{⇡}]

�%̂(µ)
+
� logB

⇥
{⇡,⇡0}]

�%̂(µ)

⌘

⇥

R hQ
`<k{d⇡`}W[{⇡`}]

i
�F
⇥
⇡ � P [{⇡1, . . . ,⇡k�1}]

⇤
A[{⇡}]

R hQ
`k

R
{d⇡`}W[{⇡`}]

i
A[{⇡1, . . . ,⇡k}]

o

�
1

2
hki

R
{d⇡d⇡0}W[{⇡}]W[{⇡0}]B[{⇡,⇡0}]� logB[{⇡,⇡0}]/�%̂(µ)R

{d⇡d⇡0}W[{⇡}]W[{⇡0}]B[{⇡,⇡0}]
(23)

Substituting the definitions of nµ and mµ, and taking � # 0, the functional derivatives become

� logA[{⇡}]

�%̂(µ)
= �

2

⇡

d

dµ
Arg ⇡(0|µ) (24)

� logB[{⇡,⇡0}]

�%̂(µ)
=

2

⇡

d

dµ
Arg

Z
d�d�0e�i��0⇡(�|µ)⇡0(�0|µ) (25)

5. Exploiting the nature of the propagation
5.1. Gaussian propagated densities

Equation (15) can be seen as the fixed-point equation of a process in which densities ⇡(x|µ) are
mapped via (13). As in e.g. [36], this dynamics is seen to close for complex Gaussian functions:

W[{⇡}] =

Z
{dxdy}W[{x, y}] �F

⇥
⇡ � ⇡[{x, y}]

⇤
(26)

Here {x} and {y} are complex functions of µ 2 IR, with Im x(µ) < 0 for all µ, and ⇡[{x, y}] is
the µ-conditioned normalised density ⇡(�|x(µ), y(µ)) defined via

⇡(�|x, y) =
e�

1
2 ix�

2+iy�

Z(x, y)
, Z(x, y) =

⇣2⇡
|x|

⌘1
2
e

1
2 i atan[Re(x)/Im(x)]+ 1

2 iy
2/x (27)
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The integrals leading to the normalisation factor Z(x, y) are found in [37]. The Fourier transform
of (27) is ⇡̂(�|µ) = exp[12 i�

2/x(µ)� i�y(µ)/x(µ)], so (13) takes the form

P (�|µ,⇡1, . . . ,⇡k�1) = ⇡(�|F (µ|x1, . . . , xk�1), G(µ|x1, y1, . . . , xk�1, yk�1)) (28)

Here F (. . .) and G(. . .) are the following functions of µ:

F (µ|x1, . . . , xk�1) = �µ� i"�
X

`<k

1/x`(µ) (29)

G(µ|x1, y1, . . . , xk�1, yk�1) = �

X

`<k

y`(µ)/x`(µ) (30)

If all x`(µ) have negative imaginary parts, so will F (µ|x1, . . . , xk�1). Hence all relevant integrals
over � exist and the propagation (13) indeed closes within the family (27).

5.2. Order parameter equations and spectrum formula

We work out the functionals A[{⇡}] and B[{⇡,⇡0}]. Starting from (14,22) or (24,25) one derives

A[{x, y}] = e
1
⇡

R
dµ %̂(µ) d

dµ

⇥
atan

�
Re(x(µ))
Im(x(µ))

�
+Re

�
y2(µ)
x(µ)

�⇤
(31)

B[{x, y;x0, y0}] = e
1
⇡

R
dµ %̂(µ) d

dµ

⇥
atan

�
Re(x(µ)�1/x0(µ))
Im(x(µ)�1/x0(µ))

�
�atan

�
Re(x(µ))
Im(x(µ))

�⇤

⇥e
1
⇡

R
dµ %̂(µ) d

dµRe
�

y2(µ)/x(µ)+y02(µ)/x0(µ)�2y(µ)y0(µ)
x(µ)x0(µ)�1

�
(32)

Similarly we can work out the order parameter equations (15) for W[{x, y}] and (20) for the
normalisation factor C. To compactify the result we introduce the short-hand

Fk[{x, y}] =
hY

`k

Z
{dx`dy`}W[{x`, y`}]

i
�F
hx�F [x1, . . . , xk]
y�G[x1, y1, . . . , xk, yk]

i
(33)

Here F [x1, . . . , xk] and G[x1, y1, . . . , xk, yk] are the functions defined in (29,30). Now

W[{x, y}] =
1

C2

X

k>0

p(k)
k

hki

A[{x, y}]Fk�1[{x, y}]R
{dx0dy0}A[{x0, y0}]Fk[{x0, y0}]

(34)

C�2 =

Z
{dxdydx0dy0}W[{x, y}]W[{x0, y0}]B[{x, y;x0, y0}] (35)

Finally we turn to our spectrum equation (23), which for the density (26) becomes

%RS(µ) =
X

k

p(k)

Z
{dxdydx0dy0}W[{x0, y0}]B[{x, y;x0, y0}]

⇥
A[{x, y}]Fk�1[{x, y}]R

{dx0dy0}A[{x0, y0}]Fk[{x0, y0}]

⇣� logA[{x, y}]

�%̂(µ)
+
� logB

⇥
{x, y;x0, y0}]

�%̂(µ)

⌘

�
1

2
hki

R
{dxdydx0dy0}W[{x, y}]W[{x0, y0}] �B[{x, y;x0, y0}]/�%̂(µ)R

{dxdydx0dy0}W[{x, y}]W[{x0, y0}]B[{x, y;x0, y0}]
(36)

with � logA[{x, y}]

�%̂(µ)
=

1

⇡

d

dµ

h
atan

�Re(x)
Im(x)

�
+Re

�y2(µ)
x(µ)

�i
(37)

� logB[{x, y;x0, y0}]

�%̂(µ)
=

1

⇡

d

dµ

h
atan

�Re(x(µ)� 1/x0(µ))

Im(x(µ)� 1/x0(µ))

�
� atan

�Re(x(µ))
Im(x(µ))

�

+Re
�y2(µ)/x(µ) + y02(µ)/x0(µ)�2y(µ)y0(µ)

x(µ)x0(µ)� 1

�i
(38)
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5.3. Reflection symmetry in the origin

Our equations are invariant under W[{x, y}] ! W[{x,�y}], which represents reflection in the
origin of the complex plane of the centres of the ⇡(�|x, y). Assuming the true saddle-point to be
of the invariant form W[{x, y}] = W[{x}]�[{y}] implies that we consider the functions ⇡(�|x, y)
to be centred at the origin, and we will find that this is a property that holds in the limit of
treelike ensembles. It simplifies our equations to

W[{x}] =
1

C2

X

k>0

p(k)
k

hki

A[{x}]Fk�1[{x}]R
{dx0}A[{x0}]Fk[{x0}]

(39)

C�2 =

Z
{dxdx0} W[{x}]W[{x0}]B[{x, x0}] (40)

with Fk[{x, y}] = Fk[{x}]�[{y}], and

A[{x}] = e
1
⇡

R
dµ %̂(µ) d

dµatan
�

Re(x(µ))
Im(x(µ))

�
(41)

B[{x;x0}] = e
1
⇡

R
dµ %̂(µ) d

dµ

⇥
atan

�
Re(x(µ)�1/x0(µ))
Im(x(µ)�1/x0(µ))

�
�atan

�
Re(x(µ))
Im(x(µ))

�i

(42)

The spectrum becomes

%RS(µ) =
X

k

p(k)

Z
{dxdx0}W[{x0}]B[{x;x0}]

⇥
A[{x}]Fk�1[{x}]R

{dx0}A[{x0}]Fk[{x0}]

⇣� logA[{x}]

�%̂(µ)
+
� logB

⇥
{x;x0}]

�%̂(µ)

⌘

�
1

2
hki

R
{dxdx0}W[{x}]W[{x0}] �B[{x;x0}]/�%̂(µ)R

{dxdx0}W[{x}]W[{x0}]B[{x;x0}]
(43)

Continuous bifurcations of states with W[{x, y}] 6= W[{x}]�[{y}] can be located via a Guzai (i.e.
functional moment) expansion [6]. One can show that such bifurcations do occur, but it is not
yet clear whether they correspond to physically relevant transitions.

5.4. Regular graphs

For regular graphs our formulae simplify considerably. Here we find the order parameter equation
(34) for W[{x, y}] and the spectrum reducing to

W[{x, y}] =
A[{x, y}]Fk�1[{x, y}]R

{dx0dy0}A[{x0, y0}]Fk�1[{x0, y0}]
(44)

%RS(µ) =

R
{dxdydx0dy0}W[{x, y}]W[{x0, y0}]B[{x, y;x0, y0}] %(µ|{x, y;x0, y0})R

{dxdydx0dy0}W[{x, y}]W[{x0, y0}]B[{x, y;x0, y0}]
(45)

with

%(µ|{x, y;x0, y0}) =
1

2⇡

d

dµ

n
(1�

1

2
k)
h
atan

�Re(x(µ)�1/x0(µ))

Im(x(µ)�1/x0(µ))

�
+atan

�Re(x0(µ)�1/x(µ))

Im(x0(µ)�1/x(µ))

�i

+
1

2
k
h
atan

�Re(x(µ))
Im(x(µ))

�
+ atan

�Re(x0(µ))
Im(x0(µ))

�i

+Re
⇣
(2�k)

y2(µ)/x(µ)+y02(µ)/x0(µ)�2y(µ)y0(µ)

x(µ)x0(µ)� 1
+
y2(µ)

x(µ)
+
y02(µ)

x0(µ)

⌘o
(46)
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6. Interpretation and simple tests of the theory
6.1. Interpretation and link with message passing algorithms

In the limit %̂! 0, where C = A[{x, y}] = 1 for all {x, y}, formula (34) acquires the standard form
W[{x, y}] =

P
k>0 p(k)(k/hki)Fk�1[{x, y}] of message passing algorithms on tree-like graphs.

Also the more complex structure of (34) can be interpreted as describing the stationary state of a
message passing process, but now extended with the nontrivial message acceptance probabilities

P[{x, y}|k] /
A[{x, y}]R

{dx0dy0}A[{x0, y0}]Fk[{x0, y0}]
(47)

(modulo a multiplicative constant). This is similar to the re-weighting of solutions in e.g. [38].
In tree-like graphs we accept each proposed message {x, y}. This interpretation shows us how
to solve (34,35) numerically, and how we should adapt belief propagation and other message
passing algorithms [2, 3, 4], to make these exact for stochastic processes on loopy graphs.

6.2. Locally tree-like graphs

Our theory should recover established results on locally tree-like graphs upon setting %̂ = 0.
This reduces our ensemble to a maximum entropy one in which only the degrees are prescribed.
Now A[{x, y}] =B[{x, y;x0, y0}] = C= 1, and we indeed recover from (17) the correct ensemble
entropy density of tree-like ensembles with prescribed degrees [39], with limN!1 ✏N = 0:

S =
1

2
hki

⇥
log

� N

hki

�
+1

⇤
+
X

k

p(k) log p̃(k) + ✏N (48)

The spectra of locally tree-like graphs are also recovered correctly, with solutions of the simple
form W[{x, y}] = W[{x}]�[{y}] and real-valued {x}. Our present formalism predicts that

%(µ) = �
d

dµ

n1

2

X

k

p(k)

Z
{dx}Fk[{x}]sgn

⇥
x(µ)

⇤i
(49)

+
1

2
hki

Z
{dxdx0}W[{x}]W[{x0}] ✓[x(µ)x0(µ)]✓[1�x(µ)x0(µ)]sgn[x(µ)+x0(µ)]

o

in which

W[{x}] =
X

k>0

p(k)
k

hki
Fk�1[{x}], Fk[{x}] =

hY

`k

Z
{dx`}W[{x`}]

i
�F
⇥
x�F [x1, . . . , xk]

⇤
(50)

For k-regular tree-like graphs our order parameter equation (50) and the spectrum (49) become

W[{x}] =
hY

`<k

Z
{dx`}W[{x`}]

i
�F
⇥
x�F [x1, . . . , xk�1]

⇤
(51)

%(µ) = �
1

2

d

dµ

Z
{dxdx0}W[{x}]W[{x0}]

⇥✓[x(µ)x0(µ)]sgn[x(µ)+x0(µ)]
h
1+(k�2)✓[1�x(µ)x0(µ)]

i
(52)

For k = 1 equation (51) immediately leads to %(µ) = 1
2�(µ�1) + 1

2�(µ+1), which is indeed
the spectrum of a graph consisting of N/2 disconnected 2-node components (the only possible
regular graph with k = 1). Equation (51) can be solved analytically also for k > 1. To find the
spectrum we only need the distribution W(x|µ) of each individual x(µ), for which we find:

|µ| < 2
p
k�1 : W(x|µ) =

1

⇡

q
k�1� 1

4µ
2

(x+ 1
2µ)

2 + k�1� 1
4µ

2
(53)

|µ| > 2
p
k�1 : W(x|µ) = �

h
x+

1

2
µ+

1

2
µ
p

1�4(k�1)/µ2
i

(54)
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Inserting this result into (52) leads us to an integral that can again be evaluated analytically,
and recovers the correct spectrum of [40] for k-regular treelike graphs:

%(µ) = ✓
⇥
2
p
k�1�|µ|

⇤ k
p
4(k�1)�µ2

2⇡(k2�µ2)
(55)

For graphs with arbitrary degree distributions p(k) we can show that from (50) indeed follows
the equation obtained in [41]. Thus our formalism passes the available tests in the tree-like limit.

7. Current and next stage of the research programme
7.1. Equations for order parameters and spectra of loopy ensembles

We now also have explicit equations for the analysis of graphs with extensively many short
loops, where %̂(µ) 6= 0. The order parameter equation and the spectrum are given by (44,45). In
the tree-like limit we had W[{x, y}] = W[{x}]�[{y}] with Im[x(µ)] " 0 for all µ. If we make the
ansatz that also in the presence of loops we still have W[{x, y}] = W[{x}]�[{y}] with Im[x(µ)] " 0
for all µ, and limit ourselves to regular graphs, we can simplify our order parameter equation to

W[{x}] =
A[{x}]

hQ
`<k

R
{dx`}W[{x`}]

i
�F
⇥
x�F [x1, . . . , xk�1]

⇤

R
{dx0}A[{x0}]

hQ
`<k

R
{dx`}W[{x`}]

i
�F
⇥
x0�F [x1, . . . , xk�1]

⇤ (56)

with A[{x}] = exp
⇥
�

1
2

R
dµ %̂(µ) d

dµsgn[x(µ)]
⇤
. The function F [x1, . . . , xk�1] is for " # 0 defined

as F (µ|x1, . . . , xk�1) = �µ�
P

`<k 1/x`(µ). The spectrum formula simplifies to

%RS(µ) =

R
{dxdx0}W[{x}]W[{x0}]B[{x;x0}] %(µ|{x;x0})R

{dxdx0}W[{x}]W[{x0}]B[{x;x0}]
(57)

%(µ|{x;x0}) = �
1

4

d

dµ

nh
sgn[x(µ)]+sgn[x0(µ)]

ih
1+(k�2)✓[1�x(µ)x0(µ)]

io
(58)

in which

B[{x;x0}] = e
1
2

R
dµ %̂(µ) d

dµ

�⇥
sgn[x(µ)]+sgn[x0(µ)]

⇤
✓[1�x(µ)x0(µ)]

�
(59)

It is not di�cult to prove that (58) is normalised correctly. However, testing the validity of our
equations in full is nontrivial for a number of reasons.

First, there appear to exist no benchmark solutions yet, in the form of exact and independent
asymptotic spectrum derivations for ensembles of the form (1) with %̂ 6= 0, against which to
test our predictions. Second, solving the order parameter equations numerically for %̂ 6= 0
is nontrivial, as it involves population dynamics algorithms in which we propagate functions
rather than fields, and with nontrivial acceptance probabilities, that are quite hard to equilibrate
accurately without sacrificing eigenvalue resolution. Thirdly, generating random graphs from (1)
numerically, in order to then obtain their spectra by numerical diagonalisation, is itself nontrivial
[42]; for relatively simple choices like %̂(µ) = ↵3µ3+↵4µ4 reliable algorithms and code do exist,
but these ensembles are notorious for their complex phase transitions [43, 44, 45, 46]. For
instance, for regular graphs with k = 3 and %̂(µ) = ↵3µ3 one observes in numerical simulations
that, modulo finite size e↵ects, the spectrum is of the form

%(µ) ⇡ (1� �)%̃(µ) + �
n3

4
�(µ+1) +

1

4
�(µ�3)

o
(60)

in which � 2 [0, 1] and %̃(µ) is McKay’s k = 3 formula (55) for tree-like regular random graphs.
One confirms that hµi = 0 and hµ2

i = 3 for any �, as required. The second term in (60) is the
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spectrum of a fully connected simple graphlet of size four. Hence (60) describes graphical phase
separation; the system increases the number of triangles by disconnecting a fraction � of the
nodes from the treelike bulk, to form �N/4 disconnected 4-node cliques. Similarly, For regular
graphs with k = 3 and %̂(µ) = ↵4µ4 one observes in numerical simulations spectra of the form

%(µ) ⇡ (1� �)%̃(µ) + �
n2

3
�(µ) +

1

6
�(µ�3) +

1

6
�(µ+3)

o
(61)

in which again %̃(µ) is McKay’s formula (55) for k = 3. Also here hµi = 0 and hµ2
i = 3 for

any �. The second term of (61) is the spectrum of the six node graphlet with adjacency matrix
aij = �i,j+1+�i,j�1+�i,j+3+�i,j�3 (i, j mod 6), which is a 6-node clique from which all triangles
are removed. Here the system increases the number of squares by disconnecting a fraction � of
the nodes from the treelike bulk, to form �N/6 suitable disconnected 6-node graphlets.

With the available numerical evidence at this moment, consisting of numerical solutions of
order parameter equations and spectra for ensembles with %̂(µ) = ↵3µ3 + ↵4µ4 (obtained via
population dynamics with nontrivial acceptance probabilities), together with spectra measured
in numerical graph simulations, satisfactory agreement has not yet been obtained. Preliminary
population dynamics computations suggest that the above phase separation phenomena are not
yet captured. Yet the structure of the theory seems elegant and intuitive, with the richness to
exhibit complex phase transition phenomenology, and it is correct in the limit %̂! 0. The reason
for the residual disagreement has not yet been identified. Apart from mundane explanations
(e.g. imprecise or nonequilibrated numerical algorithms, either in population dynamics or graph
generation, or saddle-points that are not of the assumed form), a possible candidate lies in the
usage of complex logarithms. Some of the identities used in the present derivations, such as
log exp(Z) = Z or log(ZW ) = log(Z) + log(W ), hold for complex values only if we can steer
away from the cut in the complex plane. A more careful re-derivation may well reveal extra
terms that for some reason become irrelevant for %̂! 0 (where we know the theory works) but
may be important for ⇢̂ 6= 0. To this author, the structure of the equations simply feels right
as a description of loopy graph ensembles, and he is optimistic that the remaining discrepancy
will soon be removed.

7.2. Processes on loopy graphs

Looking ahead towards the use of the presently proposed method for the modelling of spin
systems on loopy graphs, one can see that the calculation of the disorder-averaged free energy
density of such systems will involve further (non-complex) replicas, and requires the evaluation
of the following more complicated generating function:

�K [%̂, {�}] =
1

N
log

X

c

eN
R
dµ %̂(µ)%(µ|c)+K

P
i<j cij�i·�j

Y

iN

�ki,
P

j cij
(62)

with K = �J and the n-replicated spin vectors �i = (�1i , . . . ,�
n
i ). Again also this quantity

can be calculated, the limit N ! 1 can be taken, and one finds a more complex closed set
of equations in which now the graph order parameters and the spin order parameters are
entangled. If we assume spin replica symmetry, in addition to graph replica symmetry, the
final RS order parameter will take the form W[{x, y}, v], in which v denotes an e↵ective field.
It is encouraging to confirm that upon assuming the physical saddle-point to be of the form
W[{x, y}, v] = W[{x, y}]W[v] (i.e. the statistical features of the process decouple from those of
the graph) we indeed recover the previous equations of this paper for W[{x, y}], and the solution
of [47] for the transition temperature on tree-like graphs (where indeed one would expect such
decoupling to apply).
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[24] Mézard M, Parisi G and Virasoro M A 1987 Spin glass theory and beyond (Singapore: World Scientific)
[25] Penney R W, Coolen A C C and Sherrington D 1993 J. Phys. A: Math. Gen. 26 3681–3695
[26] Coolen A C C, Penney R W and Sherrington D 1993 Phys. Rev. B 48 16116–16118
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