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Abstract
We introduce and analyse ensembles of 2-regular random graphs with a tuneable 
distribution of short cycles. The phenomenology of these graphs depends critically 
on the scaling of the ensembles’ control parameters relative to the number of 
nodes. A phase diagram is presented, showing a second order phase transition from 
a connected to a disconnected phase. We study both the canonical formulation, 
where the size is large but fixed, and the grand canonical formulation, where the 
size is sampled from a discrete distribution, and show their equivalence in the 
thermodynamical limit. We also compute analytically the spectral density, which 
consists of a discrete set of isolated eigenvalues, representing short cycles, and a 
continuous part, representing cycles of diverging size.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Models with pairwise interacting elements are ubiquitous in physics and are sufficient to cap-
ture the phenomenology of many systems, ranging from condensed matter via biology to the 
social sciences and informatics. The properties of the network of interactions strongly affects 
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the properties of the system under study, and hence the analysis of networks is central in mod-
ern physics. Testing statistically whether a specific network property influences the dynamics 
of a system requires sampling networks where such a property is controllable, and for which 
the probability measure is known. This is why random graph ensembles, especially maximum 
entropy ones from which it is possible to sample networks systematically with controlled 
properties, have gained increasing popularity. They range from degree configuration models 
[1–6], i.e. where the number of connections or nodes are fixed, to more complicated models 
where a block structure is given to the nodes in the network, as in stochastic block models [7], 
or other ensembles where clustering, i.e. the tendency of nodes with common neighbours to 
be connected, is enhanced [8–15]. However, controlling analytically and numerically second 
or higher-order properties of networks, i.e. node properties that not only depend on first neigh-
bours, such as the density of cycles, is still a great mathematical and analytical challenge, 
whose range of applications continues to grow [10, 16–22].

So far, nearly all analytical results obtained for random graph ensembles rely on the 
assumption of the absence of short cycles, the tree-like approximation, and we have analyti-
cal solutions only for random graphs where clustering is absent or too weak (or improbable) 
to be relevant. One of the first random graph ensembles in literature to include short cycles 
was [23], where a term depending on the number of 3-cycles of the graph was included as a 
modification to the well known Erdös–Rényi model (ER). This was done in order to encour-
age this connection transitivity in the graph. However, as was found in simulations [23] and 
in a more rigorous way in [8, 11], unless the graph is particularly small, this approach does 
not allow for a tuneable number of triangles. Depending on the values and the scaling of the 
parameters, the model of [23] either stays in a phase very close to the ER model, with a very 
slight increase in triangles, or it collapses to a condensed phase, where the complete clique 
has the probability one. This abrupt transition was found to be a generic feature of exponential 
random graph models. As was shown in [24, 25], this phenomenon will be observed not only 
in two-parameter models like the Strauss model, but in any exponential graph ensemble that 
is biased such as to induce a finite number of subgraph densities.

The natural way to prevent clique formation in the condensed phase is to study random 
graph ensembles with hard degree constraints. Here, all graphs have exactly the same degree 
of distribution, and this distribution is chosen such that the complete clique is not an allowed 
state. However, this constraint makes analytical solution intractable, leaving numerical sam-
pling from the ensemble as the only route for investigation. Examples are the Poissonnian 
graphs studied numerically in [26], where it was found that a triangle bias induced finite size 
graphs to break down into small clusters to maximize the triangle density. Regular graphs with 
triangle bias were numerically explored in [6], and showed similar phenomenology. However, 
both Poissonnian and regular graph enembles with triangle bias have so far resisted analytical 
solution.

In this paper we introduce an exactly solvable ensemble of 2-regular random graphs, with 
an exponential measure that controls the presence of short cycles up to any finite length. 
The imposition of 2-regularity removes the possibility of a complete clique forming, and 
forces the graph instead to be partitioned into a set of disconnected cycles of different lengths. 
This makes the ensemble analytically solvable and perfectly tuneable. The model displays a 
second-order transition, from a phase dominated by extensively long cycles, to a phase where 
only (extensively many) cycles of short lengths are present.

In section 2 we introduce and solve the model, in its canonical formulation. In section 3 
we describe analytically the phases of the ensemble and the critical hyper-surface in the 
space of parameters; from this result we also compute analytically the spectral density of the 
ensemble. In section 4 we demonstrate the equivalence of the canonical and grand canonical 
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formulations of the model, and in section 5 we show the agreement of the analytical predic-
tions with numerical experiments. In a final discussion we summarize the results and deline-
ate future directions for this research, which are twofold. The first is to relax the 2-regularity 
constraint of the ensemble, in order to make it more directly comparable to realistic networks. 
The second is to understand better recent analytical approaches to random graph ensembles 
that involve constraints on the number of closed paths of all lengths, which is equivalent to 
constraining random graphs via their spectra [27].

2. Definitions

We define a random graph ensemble over the set of undirected simple regular graphs of degree 
2, which we denote by GN . Any graph in GN  is necessarily a set of disjoint cycles. The prob-
ability assigned to each graph A ∈ GN is chosen proportional to the exponential of a weighted 
sum of the number of triangles, squares, pentagons, … , K-cycles present in A. We refer to this 
as biasing with respect of the number of short cycles. Thus

p(A) =
1

ZN(α)
exp

(
K∑

ℓ=3

ℓαℓnℓ(A)

)
. (1)

Here nℓ(A) denotes the number of length-ℓ cycles, i.e. closed paths of length ℓ without back-
tracking and without over-counting, and α = (α3, . . . ,αK) ∈ IRK−2 is a vector of control 
parameters. Note that isolated nodes (ℓ = 1) and dimers (ℓ = 2) cannot occur due to the 
degree constraint. The factors ℓ in (1) are included for later convenience. We are effectively 
biasing with respect to the total number of ℓ-cycles starting at a given node through the intro-
duction of the field αℓ.

The partition function ZN(α) is given by

ZN(α) =
∑

A∈GN

exp

(
K∑

ℓ=3

ℓαℓnℓ(A)

)
. (2)

Expression (1) defines a maximum entropy random graph ensemble with respect to the K  −  2 
observables nℓ(A), whose ensemble averages are controlled by varying the parameters α. We 
choose K to be a fixed number for all values of N. This exponential form is a particular version 
of the one presented in equation (1.1) of [24]. It is an ensemble where we are interested in 
controlling the expected values of a finite number of graph observables.

The average fraction of the N nodes that will be found in an ℓ-cycle is given by

mℓ =
ℓ

N
⟨nℓ(A)⟩ (3)

where ⟨ f (A)⟩ =
∑

A p(A) f (A). Following the statistical mechanics route, we define a gen-
erating function φN(α):

φN(α) = N−1 log[ZN(α)/N!]. (4)

The main quantities of interest (3) for our graph ensemble (1) can be computed from (4) via

mℓ = ∂φN(α)/∂αℓ. (5)

The generator φN(α) is minus the free energy density, apart from a factor N! which reflects 
(topologically irrelevant) node label permutations. Including this factor will ensure that the 
limit φ(α) = limN→∞ φN(α) exists.
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3. Analytical solution

3.1. Summation over graphs

To evaluate the partition function (2) we need to perform a sum over graphs. Such sums are 
usually not analytically tractable, especially when the ensemble definition involves cycles, as 
is the case in (1). Here we are able to perform the summation by rewriting it as

ZN(α) =
∑

n
D(n)e

∑K
ℓ=3 ℓαℓnℓ , (6)

with n = (n3, . . . , nN) ∈ INN−2. This decomposition reflects the fact that, in the particular 
case of GN , we are fortunate that each graph has to be a collection of cycles, and can therefore 
be identified fully by a sequence n = (n3, . . . , nN) that specifies the number of cycles of each 
possible length up to N, and a labelling of the nodes. The sum over graphs is then performed 
by summing over all possible sequences n, keeping track of the multiplicity of each sequence 
via an associated density of states D(n):

D(n) =
∑

A∈GN

N∏

ℓ=3

δnℓ,nℓ(A) =
N! δN,

∑N
ℓ=3 ℓnℓ∏N

ℓ=3[(2ℓ)nℓnℓ!]
. (7)

Apart from the condition N =
∑N

ℓ=3 ℓnℓ, this density is proportional to N! but corrected for 
over-counting due to the indistinguishability of different length-ℓ cycles, giving a divisor nℓ!, 
and due to the different ways one can number the nodes in each ℓ-cycle without altering the 
graph (ℓ cyclic permutations, plus ℓ anti-cyclic permutations), giving a further divisor (2ℓ)nℓ. 
Using the integral form of the Kronecker delta δnm =

∫ π
−π(dω/2π)eiω(n−m), we can thus write 

the partition function as

ZN(α) =
∑

n

N!
∏N

ℓ=3[(2ℓ)nℓnℓ!]

(
K∏

ℓ=3

eℓαℓnℓ

)∫ π

−π

dω
2π

eiω(N−
∑N

ℓ=3 ℓnℓ)

=
N!

2π

∫ π

−π
dω eiωN

K∏

ℓ=3

⎛

⎝
∑

nℓ!0

e(αℓ−iω)ℓnℓ

(2ℓ)nℓnℓ!

⎞

⎠
N∏

ℓ=K+1

⎛

⎝
∑

nℓ!0

e−iωℓnℓ

(2ℓ)nℓnℓ!

⎞

⎠

=
N!

2π

∫ π

−π
dω exp

(
iωN +

K∑

ℓ=3

e(αℓ−iω)ℓ

2ℓ
+

N∑

ℓ=K+1

e−iωℓ

2ℓ

)
.

 

(8)

From this, in combination with (4), we infer that

φN(α) =
1
N

log

∫ π

−π

dω
2π

eNfN(ω,α) (9)

with

fN(ω,α) = iω +
K∑

ℓ=3

e(αℓ−iω)ℓ

2ℓN
+

N∑

ℓ=K+1

e−iωℓ

2ℓN
. (10)

An exact expression for (9), valid for any finite N, would require us to perform the integral in 
it. Instead, we proceed in the usual way as in statistical physics. We look at the thermodynamic 
limit, focusing then on φ(α) = limN→∞ φN(α). This will allow us to calculate the asymptotic 
expressions for (3), which should differ from the finite size values by O(1/N) corrections.

The limit N → ∞ of (9) can now be obtained by evaluating the integral over ω in (8) via 
steepest descent:
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φ(α) = lim
N→∞

extrωfN(ω,α). (11)

The extremum is found by solving ∂f (ω,α)/∂ω = 0.

3.2. Scaling with N of control parameters

We observe that for finite {αℓ} our model cannot exhibit nonzero cycle densities mℓ in the 
infinite size limit, since the α-dependent term in (10) vanishes for N → ∞. We are therefore 
led to redefining the parameters α with a size dependent shift,

αℓ = α̃ℓ +
1
ℓ
log(N), (12)

where α̃ℓ = O(1). An intuitive explanation for this scaling is presented in section  4. We 
denote the vector of shifted O(1) control parameters by α̃ = (α̃3, . . . , α̃K), and we define 
φN(α) = ϕN(α̃). This implies that for N → ∞ we will have mℓ = ∂ϕ(α̃)/∂α̃ℓ, in which now

ϕ(α̃) = lim
N→∞

extrω
{

iω +
K∑

ℓ=3

e(α̃ℓ−iω)ℓ

2ℓ
+

N∑

ℓ=K+1

e−iωℓ

2ℓN

}
. (13)

Differentiation of this latter expression reveals that the value ωN  at the extremum is to be 
solved from

1 =
1
2

K∑

ℓ=3

e(α̃ℓ−iωN)ℓ +
1

2N

N∑

ℓ=K+1

e−iωNℓ, (14)

and that the asymptotic values of the observables mℓ are subsequently given by

mℓ =
1
2

e(α̃ℓ−iωN)ℓ. (15)

This last identity, in combination with (14), prompts us to introduce m∞ = 1 −
∑

ℓ!K mℓ ∈ [0, 1], 
which gives the fraction of the nodes that are not in cycles of length K or less. It is for N → ∞ 
apparently given by

m∞ = lim
N→∞

1
2N

N∑

ℓ=K+1

e−iωNℓ. (16)

It follows from (15), that the physical saddle point ω, after contour deformation, must be 
purely imaginary. We switch accordingly to the new variable x = e−iω ∈ IR+

0 , in terms of 
which our equations become:

1 =
1
2

K∑

ℓ=3

xℓNeℓα̃ℓ +
1

2N

N∑

ℓ=K+1

xℓN , (17)

mℓ = lim
N→∞

1
2

xℓNeℓα̃ℓ , (18)

m∞ = lim
N→∞

1
2N

N∑

ℓ=K+1

xℓN . (19)

F A López et alJ. Phys. A: Math. Theor. 51 (2018) 085101
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3.3. Phase phenomenology of the ensemble

We will now demonstrate that the solutions to the coupled equations (17) and (18) give rise 
to two phases of our graph ensemble. A disconnected phase is characterized by the fact that 
all nodes are typically in cycles of length K or less, so m∞ = 0. A second phase, the con-
nected phase, is characterized by finding a finite fraction of the nodes in longer cycles, so here 
m∞ > 0. The transition separating the phases is marked by bifurcation of m∞ > 0 solutions.

If limN→∞ xN = x < 1, the second term of (17) vanishes for N → ∞, and we immediately 
obtain m∞ = 0. Hence we are in the disconnected phase, and here the asymptotic observables 
mℓ are simply found by solving

m∞=0 : 1 =
1
2

K∑

ℓ=3

xℓeℓα̃ℓ , mℓ =
1
2

xℓeℓα̃ℓ . (20)

The condition x  <  1 for this solution to exist will be met for large values of {α̃ℓ}. Upon reduc-
ing the control parameters {α̃ℓ}, the value of x will increase, and a transition to the connected 
phase occurs exactly when x  =  1. This happens at the critical manifold in the K−2 dimen-
sional parameter space, defined by validity of

K∑

ℓ=3

eℓα̃ℓ = 2. (21)

To confirm the equations of the connected phase, we need to investigate how the solution 
xN of (17) scales with N as we approach x  =  1. Substituting xN = 1 − ξ/N , expanding (17) in 
N, and taking the limit N → ∞ gives

mℓ =
1
2

eℓα̃ℓ , m∞ = 1 − 1
2

K∑

ℓ=3

eℓα̃ℓ , (22)

and the link between ξ and m∞ is m∞ = (1−e−ξ)/2ξ.
It turns out that all cycles of finite length L  >  K will always have vanishing density for 

N → ∞. This can be seen simply by replacing K → L in the previous analysis, but with 
αℓ = 0 for all K < ℓ ! L. The newly added control parameters with ℓ > K  will give 
α̃ℓ = −ℓ−1 logN , and hence mℓ = limN→∞

1
2 xℓeℓα̃ℓ = limN→∞

1
2 xℓ/N = 0, in both phases. 

We knew that in the disconnected phase all nodes will typically be in the controlled short 
cycles of length K or less. We may now conclude that, in the connected phase, those nodes that 
are not in the controlled short cycles (the fraction m∞ > 0) will typically be found in cycles 
of diverging length.

The ensemble’s Shannon entropy [28] is given by

SN = −
∑

A∈GN

p(A) log p(A)

= logN! + N
[
φN(α)−

K∑

ℓ=3

αℓ
∂φN(α)

∂αℓ

]

= N log(N)
(

1 −
K∑

ℓ=3

mℓ

ℓ

)
+O(N).

 

(23)

Since 
∑K

ℓ=3(mℓ/ℓ) ! 1
3
∑K

ℓ=3 mℓ ! 1
3, the leading order for large N will always scale as 

N log(N), and be bounded according to SN ! 2
3 N log(N) +O(N), but with a reduced prefactor 
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if we increase the fraction of nodes in short cycles. The lower bound is achieved in the discon-
nected phase, when m3  =  1 and mℓ>3 = 0.

3.4. Spectral densities of adjacency matrices

A graph can be represented uniquely by its adjacency matrix {Aij}, where Aij ∈ {0, 1}, and 
Aij  =  1 if and only if there is a link from j to i. The set GN  contains only simple nondirected 
graphs, so our adjacency matrices are symmetric and with zero diagonal elements. The eigen-
value density of the adjacency matrix of a graph A,

ϱ(µ|A) =
1
N

N∑

i=1

δ[µ− µi(A)], (24)

contains valuable information on the statistics of cycles in the graph. Here the sum runs 
over the set of (real) eigenvalues {µi(A)}i=1,...,N  of A, taking into account multiplicities. For 
instance, the number of closed paths in A is proportional to 

∫
dµ ϱ(µ|A)µℓ. Our main quantity 

of interest will be the expected density, averaged over the ensemble probabilities (1), in the 
infinite size limit,

ϱ(µ) = lim
N→∞

∑

A∈GN

p(A)ϱ(µ|A). (25)

The adjacency matrix of a graph that consists of a single cycle of length ℓ has the Toeplitz 
form, and is therefore diagonalized trivially, leading to the density

ϱℓ(µ) =
1
ℓ

ℓ−1∑

r=0

δ
(
µ− 2 cos(2πr/ℓ)

)
. (26)

If the cycle length ℓ diverges, this density becomes continuous (in a distributional sense), see 
e.g. [29],

ϱ∞(µ) = lim
ℓ→∞

ϱℓ(µ) =
1
π

θ(2 − |µ|)√
4 − µ2

. (27)

The set of eigenvalues for each A ∈ GN  will just be the union of all the sets of eigenvalues of 
the disjoint cycles of which it is composed, taking multiplicities into account:

ϱ(µ|A) =
1
N

N∑

ℓ=3

nℓ(A)
ℓ−1∑

r=0

δ
(
µ− 2 cos

(2πr
ℓ

))

=
N∑

ℓ=3

ℓnℓ(A)

N
ϱℓ(µ).

 

(28)

Upon averaging over the ensemble, using (3) and our earlier observation that for N → ∞ the 
fraction of nodes in cycles of finite length L  >  K vanishes, we immediately obtain the asymp-
totic ensemble-averaged spectrum corresponding to (1), expressed in terms of (26) and (27):

ϱ(µ) =
K∑

ℓ=3

mℓϱℓ(µ) + m∞ϱ∞(µ). (29)

Since we are working with regular graphs, we can immediately recover the spectrum of the 
Laplacian operator (L = 2I − A) by the change of variable µ → 2 − λ.

F A López et alJ. Phys. A: Math. Theor. 51 (2018) 085101
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4. Grand canonical approach

Within the canonical approach one finds that, if N is sufficiently large, graphs generated ran-
domly from (1) will all display the same values of the main intensive quantities, such as 
the fraction of ℓ-cycles (modulo finite size fluctuations). We expect a similar claim to hold 
if we sample randomly both the graphs and the number N of nodes, i.e. if we work with 
grand canonical graph ensembles. The grand partition function of our ensemble with weights 
wN = e−µN/N! (where µ > 0) is given by

Q(α) =
∞∑

N=1

wNZN(α), (30)

with ZN(α) defined in (2). The divisor N! in wN will simplify our calculation, without losing 
the benefits of the thermodynamic limit (since we will find that for µ → 0 the expected system 
size still diverges). Direct calculation of Q(α) now circumvents the integration over ω:

Q(α) =
∑

n

( ∞∏

ℓ=3

e−µℓnℓ

(2ℓ)nℓnℓ!

)( K∏

ℓ=3

eℓαℓnℓ

)

=

⎡

⎣
K∏

ℓ=3

⎛

⎝
∑

n!0

e(αℓ−µ)ℓn

(2ℓ)nn!

⎞

⎠

⎤

⎦

⎡

⎣
∏

ℓ>K

⎛

⎝
∑

n!0

e−µℓn

(2ℓ)nn!

⎞

⎠

⎤

⎦

= exp

(
K∑

ℓ=3

e(αℓ−µ)ℓ

2ℓ
+
∑

ℓ>K

e−µℓ

2ℓ

)

= exp

(
K∑

ℓ=3

e(αℓ−µ)ℓ

2ℓ
− 1

2
log(1−e−µ)−

K∑

ℓ=1

e−µℓ

2ℓ

)
,

 

(31)

where we used 
∑

ℓ>0 xℓ/ℓ = − log(1−x). From Q(α) we obtain, in turn, the grand potential 
Ω(α) = − logQ(α):

Ω(α) =
K∑

ℓ=1

e−µℓ

2ℓ
−

K∑

ℓ=3

e(αℓ−µ)ℓ

2ℓ
+

1
2
log(1 − e−µ). (32)

Its partial derivatives with respect to µ and α yield the average system size, via 
⟨N⟩ = ∂Ω(α)/∂µ, and the average number of length-ℓ cycles (for ℓ = 3, . . . , K ), via 
⟨nℓ(A)⟩ = −ℓ−1∂Ω(α)/∂αℓ. We thereby find that

⟨N⟩ = 1
2

e−µ

1−e−µ
+

1
2

K∑

ℓ=3

e(αℓ−µ)ℓ − 1
2

K∑

ℓ=1

e−µℓ

=
1
2

e−µ(K+1)

1−e−µ
+

1
2

K∑

ℓ=3

e(αℓ−µ)ℓ

 

(33)

and

⟨nℓ(A)⟩ = 1
2ℓ

e(αℓ−µ)ℓ. (34)

Clearly, ⟨N⟩ diverges for µ → 0, which gives our thermodynamic limit. In this limit we can 
then work out for ℓ ∈ {3, . . . , K} the ratios
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lim
µ↓0

ℓ⟨nℓ⟩
⟨N⟩ = lim

µ↓0

e(αℓ−µ)ℓ

e−µ(K+1)

1−e−µ +
∑K

ℓ′=3 e(αℓ′−µ)ℓ′
= 0. (35)

Similar to the canonical case, any µ-independent α will asymptotically always yield a van-
ishing fraction of nodes in cycles of length ℓ ! K . It is clear from (34) that without a re-
parametrization, the expected value of ℓ-cycles only increases exponentially with αℓ in the 
thermodynamic limit. We need to re-parametrize in such a way that the expected number of 
ℓ-cycles increases as the expected system size increases. The re-parametrization required to 
obtain a non-trivial thermodynamic limit is αℓ = α̃ℓ + ℓ−1 log⟨N⟩. Upon following this pre-
scription, we then reproduce the canonical result

ℓ⟨nℓ⟩
⟨N⟩ =

1
2

e(α̃ℓ−µ)ℓ, (36)

and our expression (33) for ⟨N⟩ now becomes

⟨N⟩ = e−µ(K+1)

(1−e−µ)
(
2 −

∑K
ℓ=3 e(α̃ℓ−µ)ℓ

) . (37)

The re-parametrization of α now depends on α itself, via ⟨N⟩, and has to be consistent 
with a nonnegative value for (37), i.e. with 1

2
∑K

ℓ=3 e(α̃ℓ−µ)ℓ ! 1. Expression (36) gives us 
the physical interpretation 

∑K
ℓ=3 ℓ⟨nℓ⟩/⟨N⟩ ! 1. In the limit µ ↓ 0 the condition becomes ∑K

ℓ=3 eℓα̃ℓ ! 2. In the case of inequality we have 
∑K

ℓ=3 ℓ⟨nℓ⟩/⟨N⟩ < 1, so we are in the con-
nected phase. The case of equality reproduces our earlier phase transition condition (21) and 
we enter the disconnected phase; here the thermodynamic limit is reached already for nonzero 
µ, and we can again recover our canonical equations, with exp(−µ) now playing the role of 
the canonical order parameter x.

5. Numerical simulations

Calculating ZN(α) by numerical enumeration for nontrivial values of N is not a realistic option, 
since the size of the set GN  grows super-exponentially with N. Instead, to test our theor etical 
predictions we have sampled graphs from the ensemble (1) using the Markov Chain Monte 
Carlo (MCMC) method described in e.g. [30] or [6]. Starting from an arbitrary 2-regular 
N-node graph, this stochastic process is based on executing repeated (degree-preserving) 
edge swap moves with appropriate nontrivial move acceptance probabilities, constructed such 
that the Markov chain’s equilibrium distribution is the target measure (1). In each simulation 
experiment, the MCMC process was first run for 105 to 106 accepted moves per link, and 
equilibration was confirmed by measuring the Hamming distance between the instantaneous 
and the initial state. After this randomization stage, the instantaneous state A arrived at by the 
chain was defined to be our graph sample. We have limited our simulations to ensembles with 
K  =  3 and K  =  4. The degree of equilibration achieved by the MCMC during a run of 105 
accepted moves per link is illustrated in figure 1, where we show typical evolution curves of 
the order parameter m3 during the stochastic process.

For K  =  3 we have just one control parameter α̃3, and the order parameter is the fraction m3 
of nodes in triangles. The theory claims that, for large N, the graphs from our ensemble will be 
collections of triangles and large rings. The key equations (20)–(22) reduce to the following 
predictions, with α̃c =

1
3 log(2) ≈ 0.231 05 . . .:
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α̃3 < α̃c : m3 = 1
2 e3α̃3 , connected phase,

α̃3 > α̃c : m3 = 1, disconnected phase.
 (38)

Numerical simulations with sizes N  =  1000 and N  =  5000 show excellent agreement with 
these predictions, as shown in figure 2, both in terms of the values of m3 and in terms of the 
location of the transition.

For K  =  4 we have two control parameters, α̃3 and α̃4, and the theory claims that for large 
N the graphs from our ensemble will now be collections of triangles, squares and large rings. 
Here the key equations (20)–(22) predict that the transition line in parameter space is given 
by e3α̃3 + e4α̃4 = 2, and that the fractions m3 and m4 of nodes found in triangles and squares, 
respectively, are solved (together with the auxiliary order parameter x, in the disconnected 
phase) from:

Figure 1. Examples of the evolution of the fraction m3 of nodes in triangles, measured 
during MCMC simulations, for K  =  3. Time is defined as the number of accepted 
edge swap moves per link. The bottom two curves correspond to the connected phase 
of the ensemble, equilibrating to the values m3  =  0.125 for α̃3 = 1

3 log(0.25), and to 
m3  =  0.45 for α̃3 = 1

3 log(0.9). The top curve corresponds to the disconnected phase, 
here the MCMC process is equilibrating to the value m3  =  1.

−0.2 0.0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

m3

α̃3

Figure 2. Values of m3 shown versus α̃3 for ensembles with K  =  3. Numerical results, 
measured upon equilibration of the MCMC processes, are shown as black dots with 
error bars for N  =  1000, and as squares for N  =  5000 (error bars for N  =  5000 are 
not shown; their sizes are similar to or smaller than the squares). The solid line is the 
prediction of (38).
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Figure 3. Left panel: the plane of control parameters for K  =  4. The solid black line 
is the critical line e3α̃3 + e4α̃4 = 2 (here m∞ = 0). The dashed lines correspond to 
parameter combinations with constant m∞, taking the values m∞ ∈ {0.75, 0.5, 0.25}, 
from bottom to top. The markers represent parameter combinations chosen for MCMC 
simulations. Right panel: the fractions (m3, m4) associated with the control parameter 
combinations in the left panel. Here the markers represent the simulation results, 
measured after execution of 104 accepted moves per node in the MCMC to secure 
equilibration. The results are indeed found on the respective lines predicted by the 
theory. Note that the theory predicts that all parameter combinations in the disconnected 
phase e3α̃3 + e4α̃4 ! 2, should be mapped to the line m1 + m2 = 1 in the right panel. 
Error bars were omitted, as they are as big as or smaller than the markers.

Figure 4. Top row: typical graphs sampled numerically via MCMC from the 
canonical ensemble (1) of 2-regular nondirected simple graphs, for N  =  1000. 
Left: (m3, m4) = (0.0, 0.06) and m∞ = 0.94. Middle: (m3, m4) = (0.25, 0.56) and 
m∞ = 0.19. Right: (m3, m4) = (0.39, 0.61) and m∞ = 0. The bottom row shows 
the eigenvalue spectra of the corresponding three adjacency matrices, computed by 
direct numerical diagonalization. The locations of the peaks are seen to agree with the 
theoretical predictions of (29). Note the different scale in the third spectrum graph, to 
emphasize the weights of the δ-peaks.
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e3α̃3 + e4α̃4 < 2 : m3 + m4 < 1, connected phase,
m3 = 1

2 e3α̃3 , m4 = 1
2 e4α̃4 ,

e3α̃3 + e4α̃4 > 2 : m3 + m4 = 1, disconnected phase,
m3 = 1

2 x3e3α̃3 , m4 = 1
2 x4e4α̃4 .

 

(39)

Figure 3 (left panel) shows the resulting predicted phase diagram in the (α̃3, α̃4) plane. The 
mapping (α̃3, α̃4) !→ (m3, m4) will map the lower region of the phase diagram (the connected 
phase) to the interior of the triangle m3 + m4 < 1 in the right panel of figure 3. The upper 
region of the phase diagram on the left (the disconnected phase), including the critical line, 
will be mapped to the line m3 + m4 = 1 in the right panel. To also test these predictions against 
numerical simulations, we have chosen multiple points (α̃3, α̃4) in both regions of the phase 
diagram, grouped such that the predicted values of m∞ = 1 − m3 − m4 were always in the 
set {0.25,0.5,0.75}. The prediction would therefore be that in the (m3, m4) plane these groups 
of points should be found on the lines m3 + m4 = 1 − m∞. Upon measuring the fractions m3 
and m4 via MCMC in the corresponding graph ensembles, these predictions are once more 
validated convincingly. See figure 3.

Graphs sampled from our ensemble with K  =  4 do indeed typically consist of controlled 
numbers of triangles and squares, and a long ring. Figure 4 shows examples of such graphs, 

Figure 5. Top row: typical graphs sampled numerically via MCMC from the 
canonical ensemble (1) of 3-regular nondirected simple graphs, for N  =  1000. Left:  
(m3, m4) = (0.63, 0.65). Middle: (m3, m4) = (3.34, 3.34). Right: (m3, m4) = (0.02, 11.97).  
The bottom row shows the eigenvalue spectra of the corresponding three adjacency 
matrices, computed by direct numerical diagonalization. The locations of the peaks are 
seen to agree with the spectrum of the small subgraphs.
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obtained via MCMC, together with the eigenvalue spectra of their adjacency matrices (obtained 
by numerical diagonalization). Also the observed spectra agree with the corre sponding theor-
etical predictions (29).

6. Discussion

In this paper we presented an analytical solution for an exponential random graph ensemble 
with a controllable density of short cycles. Whereas one would normally not expect such non-
treelike graph ensembles to be solvable, here this is possible as a consequence of imposing a 
local degree constraint of strict 2-regularity. We found a second order phase transition, which 
separates a connected phase with large and small cycles from a disconnected phase where the 
graphs are typically formed only of extensively many short cycles. The short cycles appear in 
controlled proportions, for which we found analytical expressions in terms of the ensemble’s 
parameters. We also derived an analytical expression for the critical submanifold in the phase 
diagram, and for the expected eigenvalue spectrum of the graphs’ adjacency matrices.

We analysed both the canonical and the grand canonical formulation of the ensemble. The 
canonical version was solved via steepest descent integration. In the grand canonical version 
one avoids steepest descent integration, but (as always) the chemical potential takes over the 
role of the steepest descent integration variable of the canonical version. In the thermody-
namic limit, the canonical and grand canonical routes result in identical equations. These 
equations are found to give highly accurate predictions already for modest graph sizes, such 
as N  =  1000, as we confirmed in numerical simulations.

The parameter K represents the largest cycle length that is controlled in our model. For 
K  =  3 one controls only the number of triangles, and our ensemble becomes similar to that 
of Strauss [8, 11, 23] with average degree two. The remaining difference is that in the Strauss 
model the average degree is imposed implicitly via an overall ‘soft’ constraint, while in the 
present model all degree values are imposed as local ‘hard’ constraints. Due to this difference, 
the degeneration of the Strauss model to a phase where the complete clique has the probability 
one (so the number of triangles can no longer be tuned) is avoided in the present ensemble. 
The complete clique is simply no longer an allowed configuration, and hence the number of 
triangles becomes fully tuneable, if the model parameters scale appropriately with the system 
size. In addition, in [25] it is shown that the ‘soft’ version of our model would have a phase 
diagram reminiscent of ours. In both cases the sign of a linear combination of functions of the 
parameters determines the phase of the ensemble. However, in the ‘soft’ case of [25] there is 
a transition from an almost ER-like phase to a clique, while our model exhibits tuneability of 
the densities in both phases.

As we mentioned before, the generalization of the present model to other degree distribu-
tions has been studied for the Poissonian and q-regular cases. Numerical explorations for 
3-regular versions with K  =  4 have been reported in [6], and show phenomenology similar 
to that found here for q  =  2. In particular, one again observes a disconnected phase for large 
values of α3 and α4. One could have thought that the phenomenology of our model, in par-
ticular the emergence of a large number of small clusters, is specific to the simplifications 
induced by the 2-regularity condition, but this is not the case. To emphasize this fact, we redid 
simulations in the same fashion as in figure 4, but now for 3-regular as opposed to 2-regular 
graphs, where analytical solution along the lines followed for q  =  2 is no longer feasible. The 
results are shown in figure 5. It is clear that as the bias towards increased numbers of triangles 
and/or squares is increased, the graph breaks down into small regular graphlets that maximize 
the cycle density per node. For Poissonian graphs, simulations revealed in [26] that, upon 
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boosting triangles, they also break down into small graphlets, similar to the present model. 
Also the effect of boosting triangles on the spectrum of the adjacency matrix was similar to 
what we observed here. However, since the small graphlets that appear in Poissonian models 
are in general different from isolated triangles and from each other, the associated eigenval-
ues are described by a different distribution. Similarly, the spectrum of the large component 
changes in a more complicated way than just by scaling down. Yet, overall we find a similar 
phenomenology. In fact, our present analysis predicts that the parameters in [26] would need 
a scaling with N, in order for the transition not to be a finite size effect but to persist in the 
N → ∞ limit.

We could also combine our present model with the Erdös–Rènyi ensemble, to produce con-
nected random graphs with a varying number of short cycles. Again, while the phenomenol-
ogy of such variations could be explored via simulations, it is not clear how one would be able 
to obtain analytical solutions without the benefit of local tree-like topology.

In our view, the main merit of the present model is that its analytical solution helps us to 
understand more complicated ‘loopy’ graph ensembles. We are aware that the analytical route 
taken in this case is surely impossible for other models. Nevertheless, it provides an explicit 
analytical solution that reproduces the main features of non-treelike random graph ensembles 
with hard degree constraints. It helps us understand phenomenology that had so far only been 
studied numerically. It can also serve as a benchmark model against which more general solu-
tion strategies for non-treelike random graphs can be tested, such as [27], which deals with 
spectrally constrained maximum entropy graph ensembles. The moments of a graph’s spectral 
density are related to its numbers of cycles, via the traces of powers of the adjacency matrix. 
In fact, the present model is a special case of the family of ensembles studied in [27], from 
which it can be obtained by choosing 2-regular degrees and an appropriate polynomial func-
tional Lagrange parameter. The analytical and numerical results of this paper suggest that, to 
obtain phase transitions, the functional Lagrange parameters in spectrally constrained maxi-
mum entropy graph ensembles [27] may need to have a specific scaling with the system size.
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