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Abstract
We present an analytical approach for describing spectrally constrained 
maximum entropy ensembles of !nitely connected regular loopy graphs, valid 
in the regime of weak loop-loop interactions. We derive an expression for the 
leading two orders of the expected eigenvalue spectrum, through the use of 
in!nitely many replica indices taking imaginary values. We apply the method 
to models in which the spectral constraint reduces to a soft constraint on the 
number of triangles, which exhibit ‘shattering’ transitions to phases with 
extensively many disconnected cliques, to models with controlled numbers of 
triangles and squares, and to models where the spectral constraint reduces to a 
count of the number of adjacency matrix eigenvalues in a given interval. Our 
predictions are supported by MCMC simulations based on edge swaps with 
nontrivial acceptance probabilities.

Keywords: random graphs, clustering, cycles, replica trick, spectral graph 
theory

1. Introduction

A huge amount of scienti!c work has been devoted in recent decades to the study of random 
graphs, motivated partly by their interesting mathematical properties [1] and partly because 
of their frequent and fruitful use in the modelling of complex systems [2]. The most famous 
random graph ensembles are probably the Erdös–Renyi model (ER) [3–5] and the con!gura-
tion model (CM) [6]. These are popular because models of interacting systems de!ned on 
their typical graph instances can often be solved analytically, and because sampling graphs 
from these ensembles is easy. Both properties derive mainly from the fact that ER and CM 
graphs are typically locally tree like, which enables the application of many relatively simple 
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mathematical and numerical approaches. In fact, nearly all mathematical and computational 
techniques currently available for analysing processes on large graphs (cavity methods, belief 
propagation and other message passing algorithms, generating functional analysis, conven-
tional replica methods, etc) rely explicitly or implicitly on being able to neglect the presence 
of short loops, or on being able to treat such loops as perturbations of a fundamentally tree-
like architecture.

Ironically, their built-in locally tree like topology makes both ER and CM ensembles, and 
their numerous tree-like variations such as scale-free network models, also rather unsuitable 
as models for real networks. Simplicity comes at a nontrivial cost. Real networks are usually 
not tree like, but have many short loops, i.e. closed non backtracking paths [7]. Moreover, 
their signi!cant ‘loopiness’ cannot be ignored, since it has profound functional implications3 . 
Hence there is a clear need for simple loopy graph ensembles, and for new mathematical tools 
with which to analyse them.

Studying random graphs is also important in the area of null models for real observed 
networks. Null models of networks are unbiased random graph ensembles describing graphs 
that share with the networks the values of a given set of observables, i.e. maximum entropy 
ensembles [8, 9] subject to speci!c topological constraints. The constraints can be imposed 
as ‘soft’ conditions, where observables are matched on average, or as ‘hard’ conditions, 
where observables are matched by every graph in the ensemble. Realistic null models for 
graphs must be sparse and loopy. The simplest approach would be to control the number of 
edges and the number of triangles via soft constraints, leading to e.g. exponential ensemble of 
[10]. Unfortunately, upon varying the control parameters this ensemble was found to switch 
between very weak clustering and dominance by dense graphs [11–13]. See also [14]. The 
alternative is to impose both the number of single edges and of edges in a triangle around a 
node via hard constraints [15], but these graphs do not lend themselves as easily to tractable 
solutions, see e.g. [16–18].

In the present paper we focus only maximum entropy ensembles of q-regular graphs, with 
soft-constrained adjacency matrix eigenvalue spectra to introduce ‘loopiness’. We use the 
imaginary replica approach to obtain analytical results on the dependence of the spectrum 
on the functional Lagrange parameter, following [19], and we build on recent studies such as 
[20–25]. The functional nature of the constraint in our ensemble allows us to bias the num-
ber of eigenvalues in all in!nitesimal intervals simultaneously, while recovering the average 
spectral density through a simple functional derivative. We compute analytically in leading 
two orders in the system size the expected spectrum, a calculation found to take its most 
natural form using Chebyshev polynomials, and is valid in the regime where the loops are 
still suf!ciently rare to prevent loop–loop interactions from becoming relevant. The simplest 
nontrivial members of our family of spectrally constrained maximum entropy ensembles are 
those where the spectral constraint reduces to a constraint on the expected number of triangles 
(equivalently, on the average clustering coef!cient), with a single Lagrange parameter α. We 
show that these models always exhibit transitions into a phase where the graphs shatter into 
an extensive number of disconnected cliques of q  +  1 nodes, analogous to the condensation 
transition in the model in [10]. We are able to present a description of the ensemble for all val-
ues of α for large enough N. We also show how our general theory can be applied to compute 
spectra for other ensembles with more complicated Lagrange parameters.

Our paper is organised as follows. In section 2 we give the relevant de!nitions of our spec-
trally constrained ensembles. Section 3 is devoted to the derivation of the generating function 

3 For instance, extensive loopiness is the main topological difference between the trivially solved ferromagnets on 
Bethe lattices or on random regular graphs with degree six, and the as yet unsolved three-dimensional Ising model.
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for the adjacency matrix spectrum. The theory is then applied in section 4, !rst to existing 
models (recovering known results as a test), followed by applications to other loopy graph 
ensembles. Technical details are often delegated to Appendices, to improve the #ow of the 
paper. We end with a discussion of the results obtained, and an outlook on future work.

2. De"nitions

We study ensembles of simple nondirected N-node regular graphs with degree q. Each graph 
is de!ned by its symmetric N × N  adjacency matrix A, with entries Aij  =  1 if nodes i and j  are 
connected, and Aij  =  0 otherwise (Aii  =  0 for all i). A path of length ! on a graph is a sequence 
of !+ 1 pairwise connected nodes. A closed path starts and ends in the same node. Loops are 
closed paths without repetition of nodes, except for the !rst and the last node. The formula 
for the total number of closed paths of a given length in a graph A is, apart from a simple 
overcounting factor,

Tr(A!) = #of closed paths of length !. (1)

It follows from the relation Tr(A!) = N
∫

dµ !(µ|A)µ!. that controlling the numbers of closed 
paths of all lengths ! in random graphs is equivalent to controlling the moments of the spectral 
density !(µ|A) of A,

!(µ|A) =
1
N

N∑

i=1

δ(µ− µi(A)), (2)

where µi(A) is the ith eigenvalue of A.
In exponential spectrally constrained ensembles [19], the graph probabilities p(A) on 

the set G of simple nondirected N-node graphs are determined by maximising the Shannon 
entropy S[ p] = −

∑
A∈G p(A) log p(A), subject to prescribed values of all degrees and a pre-

scribed expectation value of the spectral density. For q-regular random graphs this gives

p(A) =
eN

∫
dµ !̂(µ)!(µ|A)

Z[!̂]

N∏

i=1

δq,
∑

j Aij , (3)

Z[!̂] =
∑

A∈G

eN
∫

dµ !̂(µ)!(µ|A)
N∏

i=1

δq,
∑

j Aij . (4)

Here, !̂(µ) is a functional Lagrange multiplier. By construction, (3) de!nes the most unbi-
ased ensemble of q-regular nondirected graphs with a prescribed adjacency matrix spectrum. 
We write averages over (3) as 〈f (A)〉 =

∑
A∈G p(A) f (A). The expected eigenvalue density 

!(µ) = 〈!(µ|A)〉 can be obtained from a generating function φ["̂]:

!(µ) =
δφ[!̂]

δ!̂(µ)
, φ[!̂] = N−1 log Z[!̂]. (5)

Our main interest is in !nding an analytical expression for the expected density !(µ) in terms 
of the functional Lagrange parameter !̂(µ).

For the simple choice !̂(µ) = αµ3 we recover from (3) the model of [26], in which the 
number of loops of length three (i.e. of triangles) is constrained:
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p(A) =
eαTr(A3)

Z(α)

N∏

i=1

δq,
∑

j Aij , Z(α) =
∑

A∈G

eαTr(A3)
N∏

i=1

δq,
∑

j Aij . (6)

The number of triangles n!(A) differs from the trace only by an overcounting factor, viz. 
n!(A) = 1

6 Tr(A3). The generating function associated with (6) is φ(α) = N−1 log Z(α).  
From m(α) = ∂φ(α)/∂α = N−1〈Tr(A3)〉 follows the average clustering coef!cient 
〈C(A)〉 = m(α)/q(q − 1). For q  =  2 one can compute φ(α) using standard combinatorics 
[26], for both α = O

(
N0
)
 and α = O (logN). For arbitrary q, the expected loop density m(α) 

always vanishes for N → ∞ if α = O (1). As in [26], one could rescale α with a factor logN . 
While this could give an asymptotic theory with !nite loop densities, we will !nd that it would 
not be a useful network model for applications.

3. Evaluation of the generating function

3.1. Imaginary replica approach

We note that all q-regular graphs of size N have identical probabilities in an Erdös–Renyi (ER) 
ensemble with average degree q,

pER(A) =
( q

N

) Nq
2
(N − q

N

) N
2 (N−1−q)

for all A ∈ G with
N∏

i=1

δq,
∑

j Aij = 1.

 (7)
Hence we can rewrite (5) as an average over this ER ensemble:

φ["̂] =
1
N

log
〈

eN
∫

dµ !̂(µ)!(µ|A)
N∏

i=1

δq,
∑

j Aij

〉

ER
+ constant. (8)

Upon using the Edwards–Jones formula [27] for !(µ|A), writing the integral over eigenvalues 
as 
∫

dµ . . . = lim∆→0 ∆
∑

µ . . ., and after some modest manipulations, the key quantity in 
this expression can be written as follows, with in!nitely many imaginary replicas (two for 
each eigenvalueµ, nµ and mµ):

eN
∫

dµ !̂(µ)!(µ|A) = lim
∆→0

lim
nµ→i ∆π !̂′(µ)

lim
mµ→−nµ

∏

µ

Z(µε|A)nµZ(µε|A)
mµ . (9)

Here, µε = µ+ iε and

Z(µε|A) =

∫ N∏

i=1

dφi exp
[
− i

2

∑

ij

φi(Aij − µεδij)φ
j
]
. (10)

One initially takes nµ, mµ ∈ N, in order to perform the calculation, followed by analytic con-
tinuation to the relevant imaginary values. In its above form, (9) appeared !rst in [19, 28], but 
similar formulae involving limits of replica dimensions to non-zero values have been intro-
duced in different contexts, in particular when counting the number of eigenvalues in certain 
intervals for random matrix ensembles, see e.g. [20–25, 29]. We can combine the integrals in 
(9) as follows:
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∏

µ

Z(µε|A)nµZ(µε|A)
mµ

=

∫
d[Φ,Ψ] exp

(
− i

2

∑

µ,αµ

∑

ij

φi
µ,αµ

φ j
µ,αµ

(Aij − µεδij)
)

× exp
( i

2

∑

µ,βµ

∑

ij

ψi
µ,βµ

ψ j
µ,βµ

(Aij − µεδij)
)

,
 

(11)

where d[Φ,Ψ] =
∏N

i=1
∏

µ

[(∏nµ
αµ=1 dφi

µ,αµ

)(∏mµ

βµ=1 dψi
µ,βµ

)]
. To simplify our notation 

we introduce the vector ϕ ∈ Rd, where d =
∑

µ nµ +
∑

µ mµ, with entries

ϕ =

(
{φµ,αµ}
{ψµ,βµ}

)
, (12)

the dot product

ϕ ·ϕ′ =
∑

µ,αµ

φµ,αµφ
′
µ,αµ

−
∑

µ,βµ

ψµ,βµψ
′
µ,βµ

, (13)

and the following d × d diagonal matrix µ, in which µ ∈ {µ1, . . . ,µM} and In denotes the n 
dimensional identity matrix:

µ =





µ1εInµ1
0 . . . 0

0
. . . 0

0 µMεInµM
0

...
... 0 µ1εImµ1

0

0
. . . 0

0 . . . 0 µMεImµM





. (14)

Here, M denotes the number of µ-values in the discretized eigenvalue integral, so M → ∞ 
when we take the limit ∆ → 0. We !nally introduce the two shorthands

ν(ϕ) = e
1
2 iϕ·µϕ, lim = lim

∆→0
lim

nµ→i ∆π !̂′(µ)
lim

mµ→−nµ
. (15)

The above de!nitions, together with the integral form of the Kronecker delta, δnm =  
(2π)−1 ∫ π

−π dω exp[iω(n − m)], enable us to compute the generating function (8) following 
[19], which in turn is reminiscent of previous spectral calculations for sparse random graphs 
[30, 31]. Upon dropping the irrelevant constant in (8) we get

φ["̂] = lim
1
N

log

∫ N∏

i=1

[
dϕi ν(ϕi)

dωi

2π
eiωiq

] 〈
e−i

∑
i<j Aij[ϕ

i·ϕ j+ωi+ωj]
〉

ER

= lim
1
N

log

∫ N∏

i=1

[
dϕi ν(ϕi)

dωi

2π
eiωiq

]
e
∑

i<j log
[

1+ q
N

(
e−i[ϕi·ϕ j+ωi+ωj]−1

)]
.

 (16)
Since we intend to compute !nite size spectrum #uctuations, in expanding the logarithm for 
large N we keep both the O (N) and O (1) terms in the exponent:

F Aguirre López and A C C Coolen J. Phys. A: Math. Theor. 53 (2020) 065002



6

φ["̂] = −q
2
(1 +

q − 2
2N

) + lim
1
N

log

∫ N∏

i=1

[
dϕiν(ϕi)

dωi

2π
eiωiq− q

2N e−i[ϕi·ϕi+2ωi]
]

× exp
[ q

2N
(1 +

q
N
)
∑

ij

e−i[ϕi·ϕ j+ωi+ωj] − q2

4N2

∑

ij

e−2i[ϕi·ϕ j+ωi+ωj]
]
+O(

1
N2 ).

 
(17)

We now introduce the order parameter

P(ϕ,ω) =
1
N

N∑

i=1

δ(ϕ−ϕi)δ(ω − ωi). (18)

We enforce it by inserting the following functional integral, obtained by writing delta func-
tions for each (ϕ,ω) in integral representation, and with the usual path integral measure 
DP =

∏
φ

∏
ω[dP(φ,ω)

√
N∆ϕ∆ω/2π)] (where ∆ϕ,∆ω → 0):

1 =

∫
DPDP̂ eNi

∫
dϕdωP(ϕ,ω)P̂(ϕ,ω)−i

∫
dϕdωP̂(ϕ,ω)

∑
i δ(ϕ−ϕi)δ(ω−ωi). (19)

The result is:

φ["̂] = lim
1
N

log

∫
DPDP̂ eNS[P,P̂] +O(

1
N2 ), (20)

S[P, P̂] = − q
2
(1 +

q − 2
2N

) + i
∫

dϕdω P(ϕ,ω)P̂(ϕ,ω)

+
q
2
(1 +

q
N
)

∫
dϕdϕdωdω′ P(ϕ,ω)P(ϕ′,ω′)e−iϕ·ϕ′−iω−iω′

− q2

4N

∫
dϕdϕdωdω′ P(ϕ,ω)P(ϕ′,ω′)e−2iϕ·ϕ′−2iω−2iω′

− q
2N

∫
dϕdω P(ϕ,ω)e−iϕ·ϕ−2iω + log

∫
dωdϕ

2π
ν(ϕ)eiωq−iP̂(ϕ,ω).

 
(21)

It was shown in [31] how this type of integral can be reduced to an integral over a single func-
tional variable. In appendix A we work out the details, leading to

φ["̂] = lim
{
log

∫
dϕ ν(ϕ)

[ ∫
dϕ′ U1(ϕ,ϕ′)W0(ϕ

′)
]q

+
1

2N

∞∑

!=3

Tr(T!)
$

}
,

 (22)
in which U1(ϕ,ϕ′) = e−iϕ·ϕ′

, and the function W0(ϕ) is to be solved from

W0(ϕ) =
ν(ϕ)

Zq

[ ∫
dϕ′ U1(ϕ,ϕ′)W0(ϕ

′)
]q−1

, (23)

Zq =

∫
dϕ ν(ϕ)

[ ∫
dϕ′ U1(ϕ,ϕ′)W0(ϕ

′)
]q

, (24)

and

T(ϕ,ϕ′) = (q − 1)r[W0(ϕ)]U1(ϕ,ϕ′)− qW0(ϕ)

∫
dψ U1(ϕ

′,ψ)W0(ψ),
 (25)

F Aguirre López and A C C Coolen J. Phys. A: Math. Theor. 53 (2020) 065002
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r[W0(ϕ)] =
ν(ϕ)

Zq

[ ∫
dϕ′ U1(ϕ,ϕ′)W0(ϕ

′)
]q−2

. (26)

Finally, following [32] we may use the following identity4:

Tr(T!) = (q − 1)![Tr(M!)− 1] + (−1)! (27)

with M(ϕ,ϕ′) = r[W0(ϕ)]U1(ϕ,ϕ′), to simplify (22) modulo an additive constant to

φ["̂] = lim
{
log Zq +

∞∑

!=3

(q − 1)!

2N#
Tr(M!)

}
. (28)

Expression (28) was originally presented in [31], and we have indeed chosen our notation at 
the start deliberately to emphasize and exploit the similarity. However, although identical in 
structure, the present formula (28) differs from the one in [31] in the underlying de!nitions 
of the !elds ϕ, the dot product ϕ ·ϕ′ and the function ν(ϕ), which here all involve the full 
eigenvalue spectrum and describe our present controlled non-uniform measures over the space 
of graphs.

3.2. Replica symmetric solution

In order to continue, we assume that the order parameter W0(ϕ) is replica symmetric (RS), 
i.e. invariant under all permutations of all replicas (noting that in the present problem we 
have a separate replica index for each eigenvalue µ, and that W0(ϕ) is not a normalized 
distribution). The RS assumption is necessary to carry on with the calculation formally. For 
the present type of spectral calculations, RS has in the past always shown accurate results, 
[20–25, 30, 31]. Many of these RS analyses reproduced rigorous expressions for both the 
asymptotic spectral density, [34, 43], and the !nite size #uctuations, [38]. The need to break 
replica symmetry has only been observed so far when calculating higher order objects like 
average correlations of eigenvalues in [23], therefore we do not see a need to consider rep-
lica symmetry breaking at this stage to get exact results. To represent W0(ϕ) in a RS way 
we choose a superposition of zero mean complex Gaussian distributions, following [30, 42] 
where it was shown that this family of distributions is appropriate and natural for a quadratic 
interaction among the variables ϕ, such as in (10). The exactness of our !nal results will 
validate this speci!c choice a posteriori over other possible RS approaches. Therefore we 
use the next ansatz:

W0(ϕ) = C
∫

dX W(X)
1

Z(X)
e−

1
2 iϕ·Xϕ, (29)

Z(X) =

∫
dϕ e−

1
2 iϕ·Xϕ =

∏

µ

( 2π
ix(µ)

) nµ
2
( 2π

ix(µ)

) mµ
2

, (30)

4 The proof of this interesting identity follows directly from the operator properties MB = BM = B2 = 1I, where 
M(ϕ,ϕ′) = r[W0(ϕ)]U1(ϕ,ϕ′) and B(ϕ,ϕ′) = W0(ϕ)

∫
dψ U1(ϕ′,ψ)W0(ψ).
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where X ∈ Rd×d  is a diagonal matrix with the following structure:

X =





x (µ1) Inµ1
0 . . . 0

0
. . . 0

0 x (µM) InµM
0

...
... 0 x (µ1)Imµ1

0

0
. . . 0

0 . . . 0 x (µM)ImµM





. (31)

Expression (30) is indeed invariant under all permutations of replica indices with any !xed 
value of µ, that is {φµ,1, . . . ,φµ,nµ} and {ψµ,1, . . . ,ψµ,mµ}. The new RS order parameter is the 
distribution W(X), where each X is speci!ed by M complex numbers x(µ). Hence the integra-
tion in (13) is over the real and imaginary part of each x(µ), so dX =

∏
µ d Re[x(µ)]d Im[x(µ)]. 

For (29) to be well de!ned, we must restrict all x(µ) to have Im x(µ) < 0. We may assume 
that 

∫
dX W(X) = 1, since possible non-normalization of W0 is re#ected in the inclusion in 

(30) of a constant C.
We note that for the present de!nition (13) of the dot product, the following identity is still 

valid.
∫

dϕ′ e−iϕ·ϕ′− 1
2 iϕ′·Xϕ′

= Z(X)e
1
2 iϕ·X−1ϕ. (32)

Insertion of our RS ansatz (30) into the full order parameter equation (24) shows, using the 
above identity, that the RS ansatz indeed gives a solution of (24), provided the RS order 
parameter satis!es

W(X) =
Z(X)

Zq−1

∫ ( q−1∏

k=1

dXkW(Xk)
)
δ
(

X + µ+
q−1∑

k=1

X−1
k

)
, (33)

Zq =

∫
dX
( q∏

k=1

dXkW(Xk)
)

Z(X) δ
(

X + µ+
q∑

k=1

X−1
k

)
, (34)

C2 = Zq−1/Zq. (35)

We similarly derive Zq = CqZq, giving in combination with (35):

log Zq =
1
2

q logZq−1 −
1
2
(q − 2) logZq. (36)

The above RS order parameter equations (33) and (34) have one speci!c simple solution, 
namely the delta distribution W(X) = δ(X − X!), in which the entries of X! satisfy

x!(µ) = −µε −
q − 1
x!(µ)

. (37)

Of the two possible solutions of this equation we must choose the one with Im x(µ) < 0:

x!(µ) = −1
2
µε −

1
2

i
√

4(q − 1)− µε2. (38)

F Aguirre López and A C C Coolen J. Phys. A: Math. Theor. 53 (2020) 065002
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For this special RS solution we have

W0(ϕ) =
C

Z(X!)
e−

1
2 iϕ·X!ϕ, (39)

Zq−1 = Z(X!), (40)

Zq =

∫
dX Z(X) δ

(
X + µ+ q(X!)−1

)
,

= Z(X! − (X!)−1),
 (41)

and hence also C2 = Z(X!)/Z(X! − (X!)−1). The kernel M which appears in the generating 
function (28) will now have the following entries:

M(ϕ,ϕ′) = Z−1
q−1 e

1
2 iϕ·[µ+(q−2)(X!)−1]ϕ−iϕ·ϕ′

. (42)

In appendix B we work out the traces Tr(M!) for the RS solution, and !nd

Tr(M!) = Z−!
q−1

∏

µ

[
Z(µε|A#!,µ)nµZ(µε|A#!,µ)

mµ
]

 (43)

where Z(µε|A"#,µ) denotes the original complex Gaussian integral de!ned in (10), and A!",µ is 
now the !× ! adjacency matrix of a loop of length ! in the presence of a complex !eld acting 
on the diagonal, of value (2 − q)/x!(µ):

(
A!",µ

)
kk′ = δk,k′+1 + δk,k′−1 +

2 − q
x!(µ)

δkk′ (with k mod "). (44)

Substituting (36) and (44) into expression (28) for the generating function, followed by using 
formulae (40) and (41) for the constants Zq−1 and Zq, then gives

φ["̂] = lim
{1

2
q log Z(X!)− 1

2
(q − 2) log Z(X! − (X!)−1)

+
∞∑

"=3

(q − 1)"

2N#
1

Z"(X!)
∏

µ

[
Z(µε|A!",µ)nµZ(µε|A!",µ)

mµ
]}

.
 

(45)

3.3. Imaginary replica limits

At this stage we can safely take the three limits de!ned in (15), where !rst for each discretized 
eigenvalue µ of the adjacency matrix the replica dimensions nµ and mµ take speci!c imagi-
nary values, followed by the limit ∆ → 0 that converts discretized eigenvalues of adjacency 
matrices into continuous ones. The objects in (45) affected by these limits are all of the fol-
lowing form, with !̂′(µ) = d!̂(µ)/dµ:

lim
∏

µ

f (µ)nµ f (µ)
mµ

= lim
∆→0

lim
nµ→i ∆π !̂′(µ)

lim
mµ→−nµ

e
∑

µ

[
nµ log f (µ)+mµ log f (µ)

]

= e
2
π

∫
dµ !̂(µ) d

dµ Im log f (µ).
 

(46)

In particular, application to f (µ) = [2π/ix!(µ)] 1
2  and to f (µ) = Z(µε|A"#,µ) gives

lim log Z(X∗) = − 1
π

∫
dµ "̂(µ)

d
dµ

Im log x!(µ) (47)
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and

lim
∏

µ

[
Z(µε|A"#,µ)nµZ(µε|A"#,µ)

mµ
]
= e

2
π

∫
dµ $̂(µ) d

dµ Im log Z(µε|A#
$,µ). 

(48)

This gives us

φ["̂] =

∫
dµ "̂(µ)

{ 1
2π

d
dµ

Im
[
(q − 2) log

(
x!(µ)− 1

x!(µ)

)
− q log x!(µ)

]}

+
1
N

∞∑

"=3

(q − 1)"

2$
e

1
π

∫
dµ #̂(µ) d

dµ Im
[
" log x"(µ)+2 log Z(µε|A"

$,µ)
]
.

 

(49)

Since δφ[#̂]/δ#̂(µ) = 〈#(µ|A)〉, the !rst line of (49) is the generator of the asymptotic spec-
trum in the limit N → ∞, whereas the second line will give us the O(N−1) !nite size cor-
rections to the spectrum. In appendix C we show that, upon taking the limit ε→ 0, the factor 
inside the curly brackets in the !rst line indeed works out to be exactly the Kesten–McKay law 
(KM) [33, 34] for random regular graphs:

!0(µ) =
q

2π

√
4(q − 1)− µ2

q2 − µ2 θ
[
2
√

q − 1 − |µ|
]
.

 (50)
This shows that, for regular graphs, the deformation of the measure in the ensemble (6) does 
not alter the resulting spectrum in leading order, but in sub-leading order O(N−1). In regular 
graphs, the Lagrange parameter !̂(µ) apparently needs to be rescaled further with N to induce 
a spectrum that in leading order differs from (50), similar to what was found in [26].

Having simpli!ed the !rst line of (49) to 
∫

dµ !̂(µ)!0(µ), we now work out further the 
exponent in the second line of (49). First, in appendix C we show that

h(µ) = − 1
π

d
dµ

Im log x!(µ) =
1
π

θ
(
2
√

q − 1 − |µ|
)

√
4(q − 1)− µ2

. (51)

We can evaluate the second term in the exponent using the eigenvalues λk = 2 cos(2πk/#) 
of the adjacency matrix Aij = δi,j+1 + δi,j−1 (mod ") of a length-! loop, and the identity 
dx!(µ)/dµ = −ix!(µ)/

√
4(q − 1)− µ2 :

g!(µ) = lim
ε↓0

2
!π

Im
{ d

dµ
log Z(µε|A#!,µ)

}

= − 1
!π

!∑

k=1

Im
{ d

dµ
log
[
i
(
λk +

2 − q
x#(µ)

− µ
)]}

=
1
!π

!∑

k=1

Im
{1 − (2 − q) d

dµ (x
#(µ))−1

λk +
2−q

x!(µ) − µ

}

=
1
!π

Im
{ !∑

k=1

1 + i q−2
x!(µ) [4(q − 1)− µ2]−

1
2

2 cos(2πk/!)− q−2
x!(µ) − µ

}
.

 

(52)

With the above simpli!cations we can write both the leading two orders in N of the generating 
function φ["̂] and of the resulting average spectrum !(µ) = δφ[!̂]/δ!̂(µ) for our ensemble (3), 
for Lagrange parameters !̂(µ) = O(1), in the following transparent form, which represents 
one of the main results of this paper:
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φ["̂] =

∫
dµ "̂(µ)"0(µ) +

1
N

∞∑

!=3

(q − 1)!

2#
e!

∫
dµ "̂(µ)[g!(µ)−h(µ)] + o(

1
N
),

 (53)

!(µ) = !0(µ) +
1
N

∞∑

!=3

(q − 1)!

2"
e!

∫
dµ "̂(µ)[g!(µ)−h(µ)]("[g!(µ)− h(µ)]) + o(

1
N
).

 (54)
The !rst and leading order term !0 corresponds to the Kesten–McKay law, as was explained 

before. The second term is the so called loop series. It is a sum over loop lengths ! (hence it 
starts at ! = 3), and it need not always be convergent, but this has been shown not to neces-
sarily pose problems [31, 32, 35]. The coef!cient (q − 1)!/2! in each term of the series is 
exactly the asymptotic expected number of loops of !nite length ! inside a random regular 
graph [36]. It is amazing that this number can be recovered with a replica calculation just by 
carefully calculating the sub-leading order in 1/N, and leads to an intuitive interpretation of 
(54). In our present ensemble (3), the number of loops of a given length is given by the usual 
number found in random regular graphs, multiplied by a factor that depends on the spectral 
Lagrange parameter !̂(µ), being exp(!

∫
dµ "̂(µ)[g!(µ)− h(µ)]). This means that the number 

of loops of each length ! can be either increased or decreased depending of the choice of !̂ . 
The correction to the Kesten–McKay spectrum formula due to the appearance of a single loop 
of length ! will be given by ![g!(µ)− h(µ)], as discussed in [31, 32]. Given that the effect of 
the loops is additive in (54), we must expect that these spectral corrections come from isolated 
and well separated loops in the graph. In sections 4.2 and 4.4 we verify this interpretation with 
numerical simulations. When tuning the number of loops of length ! individually, we observe 
precisely that the plot of ![g!(µ)− h(µ)] scales as described in (54). The case where many 
loops appear that are not isolated from each other is discussed in section 4.3, here indeed it is 
necessary to add more terms. We wish to point out that, while a cavity approach could account 
for the presence of loops, it would not be able to provide information on their average number 
in an ensemble such as (3). The imaginary replica approach presented here, in contrast, has 
simultaneously provided for the ensemble (3) both the spectrum formula and the expected 
number of loops.

3.4. Remaining integrals over eigenvalues

In our present theory we have an as yet arbitrary functional Lagrange parameter !̂(µ) which 
controls the dependence of the graph probabilities on their expected spectra. In (54) we still 
have integrals over !̂(µ), of the form:

J![!̂] =
∫

dµ !̂(µ)[g!(µ)− h(µ)]. (55)

While expressions (51) and (52) for h(µ) and g!(µ) will turn out useful in establishing links 
with previous research in a subsequent section, here we will continue the further evaluation of 
J![!̂] using the earlier forms

h(µ) = − 1
π

d
dµ

Im log x!(µ), (56)

g!(µ) = − 1
π

d
dµ

1
"

!∑

k=1

Im log
[
i
(
cos(2πk/") +

2 − q
x"(µ)

− µ
)]

. (57)
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These give

J![!̂] = −Im
∫

dµ !̂(µ)
1
"π

!∑

k=1

d
dµ

[
log
(
cos(2πk/") +

2 − q
x"(µ)

− µ
)
− log x"(µ)

]

= Im
∫

dµ !̂(µ)
2
"π

!∑

k=1

d
dµ

log
[ 1

x"(µ)

(
cos(2πk/") +

2 − q
x"(µ)

− µ
)]− 1

2
.

 

(58)

We now use x!(µ) + x!(µ)−1 = −µ− (q − 2)/x!(µ), which follows directly from (37):

J![!̂] = Im
∫

dµ !̂(µ)
2
"π

!∑

k=1

d
dµ

log
(

1 +
cos(2πk/")

x"(µ)
+

1
(x"(µ))2

)− 1
2
.

 (59)
In this expression we recognize the generating function of the Chebyshev polynomials Tn(t) 
[37]. These are de!ned for t ∈ [−1, 1], and can be written in explicit form as

Tn(t) = Re
(

t + i
√

1 − t2
)n

. (60)

They obey the orthogonality relation

2
π

∫ 1

−1

dt√
1 − t2

Tn(t)Tm(t) = δnm(1 + δm0) (61)

as well as

Tn(cos(θ)) = cos(nθ), Tn(−t) = (−1)nTn(t). (62)

The !rst !ve Chebyshev polynomials are [37]:

T0(t) = 1, T1(t) = t, T2(t) = 2t2 − 1,
T3(t) = 4t3 − 3t, T4(t) = 8t4 − 8t2 + 1. (63)

For the evaluation of (59), in particular, we may apply the generating function identity
∞∑

n=1

Tn(t)
xn

n
= log

(
1 − 2tx + x2)− 1

2 for |x| < 1 (64)

to the choices x = 1/x!(µ) and t = − cos(2πk/"), in order to obtain

J![!̂] = Im
∫

dµ !̂(µ)
2
"π

!∑

k=1

∞∑

n=1

(−1)n

n
Tn(cos(2πk/"))

d
dµ

(x"(µ))−n

= Im
∫

dµ !̂(µ)
2
"π

!∑

k=1

∞∑

n=1

(−1)n+1 Tn(cos(2πk/"))
(x"(µ))n+1

d
dµ

x"(µ).

 

(65)

We next use dx!(µ)/dµ = −ix!(µ)/
√

4(q − 1)− µ2  and the short-hands

dn,! =
1
!

!∑

k=1

Tn(cos(2πk/!))

=
1
!

!∑

k=1

cos(2πnk/!) =
∑

p∈Z
δn,p!.

 

(66)
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This results in

J![!̂] = Im
∫

dµ !̂(µ)
2
π

∞∑

n=1

(−1)n dn,!

(x"(µ))n
i√

4(q − 1)− µ2

=
∞∑

n=1

(−1)ndn,!
2
π

∫
dµ !̂(µ)Re

[ 1
(x"(µ))n

1√
4(q − 1)− µ2

]

=
∞∑

n=1

(−1)ndn,!
2
π

∫
dµ

!̂(µ)

|x"(µ)|2n Re
[ x"(µ)

n

√
4(q − 1)− µ2

]
.

 

(67)

If µ2 < 4(q − 1) one has |x!(µ)|2 = q − 1 and 
√

4(q − 1)− µ2 ∈ [0,∞). For µ2 > 4(q − 1), 
on the other hand, we have x!(µ) ∈ IR and 

√
4(q − 1)− µ2  is purely imaginary. We also note 

that for µ2 < 4(q − 1) we may write

Re
(

x!(2t
√

q − 1)
n)

= (q − 1)n/2 Re
(
− t + i

√
1 − t2

)n

= (−1)n(q − 1)n/2 Tn(t).
 (68)

In combination these properties allow us to simplify J![!̂] to

J![!̂] =
∞∑

n=1

(−1)ndn,!

(q − 1)n
2
π

∫ 2
√

q−1

−2
√

q−1

dµ !̂(µ)Re
[
x"(µ)

n]
√

4(q − 1)− µ2

=
∞∑

n=1

dn,!

(q − 1)n/2
2
π

∫ 1

−1

dt√
1 − t2

!̂(2t
√

q − 1)Tn(t)

=
∞∑

p=1

1
(q − 1) p!/2

2
π

∫ 1

−1

dt√
1 − t2

!̂(2t
√

q − 1)Tp!(t).

 

(69)

The above result shows that the Chebyshev polynomials form the natural basis in terms of 
which to express the functional Lagrange parameter !̂(µ), and is inserted into our spectrum 
formula (54) to give

!(µ) = !0(µ) +
1

2N

∞∑

!=3

(q − 1)!e!J!["̂][g!(µ)− h(µ)] + o(
1
N
). (70)

It is instructive to work out J![!̂] for ! ! 3 and some simple choices of !̂(µ):

 •  ̂!(µ) = µ3:

  This choice corresponds to random regular graphs in which the number of triangles is 
controlled. We use t3 = 1

4 T3(t) + 3
4 T1(t) and the orthogonality relation (61):

J![!̂] =
∞∑

p=1

2
(q − 1)( p!−3)/2

2
π

∫ 1

−1

dt√
1 − t2

[
T3(t) + 3T1(t)

]
Tp!(t)

= 2
∞∑

p=1

δ3,p! + 3δ1,p!

(q − 1)( p!−3)/2 = 2
∞∑

p=1

δ3,p! = 2δ!3.
 

(71)
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 •  ̂!(µ) = µ4:

  This choice corresponds to random regular graphs in which the number of squares is 
controlled. We use t4 = 1

8 T4(t) + 1
4 T2(t) + 3

8 T0(t) and the orthogonality (61):

J![!̂] =
∞∑

p=1

2
(q − 1)( p!−4)/2

2
π

∫ 1

−1

dt√
1 − t2

[
T4(t) + 2T2(t) + 3T0(t)

]
Tp!(t)

= 2
∞∑

p=1

δ4,p! + 2δ2,p! + 3δ0,p!

(q − 1)( p!−4)/2 = 2
∞∑

p=1

δ4,p! = 2δ!4.

 

(72)

4. Applications of the general theory

4.1. Recovering previous results as a test

Upon making the trivial choice !̂(µ) = 0 we return to the conventional ensembles with uni-
form probabilities, and our equations (53) and (54) recover the natural spectrum #uctuations 
of random regular graphs, as previously studied in detail in [38] and with the traditional rep-
lica method (where n → 0) in [31]:

!(µ) = !0(µ) + N−1!1(µ) + o(N−1) (73)

with

!1(µ) =
∞∑

!=3

(q − 1)!

2
[g!(µ)− h(µ)]. (74)

This series was summed in [31], and we can connect the result of the summation, in the nota-
tion of [31], directly to the theory developed in the present paper as follows:

!1(µ) = h(µ) Re
[

(q − 1)gc(µ)

1 − (q − 1)gc(µ)
+

(q − 1)g2
c(µ)

1 − (q − 1)g2
c(µ)

]

+ h(µ) Re

[ ∞∑

!=3

(q − 1)!
g3!

c (µ)

1 − g!c(µ)
− K(gc(µ))

]
,

 
(75)

in which now

gc(µ) = −1/x!(µ), (76)

K(g) = (q − 1)g + q(q − 1)g2 + (q − 1)2g4. (77)

Here, h(µ) and x!(µ) are given in (51) and (38), respectively.
As a second test we can make the special choices q  =  2 and !̂(µ) = αµ3, resulting in the 

ensemble that was studied in [26] via direct combinatorics, i.e. without the replica method. 
This particular model represents the simplest solvable non-uniform random graph ensemble 
with tuneability of the frequency of short loops. First, by setting q  =  2 our general results (51), 
(52) and (54) simplify greatly. We now !nd that

!0(µ) =
1
π

θ(2 − |µ|)√
4 − µ2

, h(µ) = !0(µ) (78)
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g!(µ) = lim
ε↓0

1
!π

Im
{ !∑

k=1

1
2 cos(2πk/!)− µ− iε

}
=

1
!

!∑

k=1

δ
[
µ− 2 cos(

2πk
!

)
]
.

 (79)
Upon inserting also !̂(µ) = αµ3 into (54) we need the values of

∫
dµ µ3!0(µ) = 0 (80)

∫
dµ µ3g!(µ) =

8
!

!∑

k=1

cos3(
2πk
!

) = 2δ!3 + 8δ!1. (81)

With this the ensemble spectrum becomes

!(µ) = !0(µ) +
1

2N

∞∑

!=3

e6αδ!3

{1
"

!∑

k=1

δ
[
µ− 2 cos(

2πk
"

)
]
− 1
π

θ(2 − |µ|)√
4 − µ2

}
+ o(

1
N
) (82)

and for the triangle density m(α) =
∫

dµ "(µ)µ3 we obtain

m(α) = N−1e6α. (83)

These results are indeed identical to those derived combinatorially in [26].

4.2. Triangularly constrained regular graph ensemble with arbitrary degree

We proceed to apply the general theory developed in the previous section to the graph ensem-
ble (6) with controlled numbers of triangles, i.e. with !̂(µ) = αµ3, but now for arbitrary values 
of the degree q where the direct combinatorial approach of [26] is no longer possible. We can 
start directly by inserting (71) into (70), upon adding the control parameter α, giving

!(µ) = !0(µ) +
1

2N

∞∑

!=3

(q − 1)!e6αδ!3 [g!(µ)− h(µ)] + o(
1
N
)

= !0(µ) +
1
N
!1(µ) +

1
N
!̃1(µ) + o(

1
N
),

 
(84)

!̃1(µ) =
1
2
(q − 1)3(e6α − 1)[g3(µ)− h(µ)]. (85)

Here, !1(µ) is the function (74) that already appeared in the spectrum of the non-deformed 
ensembles of [31], and for which we can use the resummation (75). The impact of controlling 
the graph probabilities (6) with a nonzero Lagrange parameter !̂(µ) = αµ3 is fully concen-
trated in !̃1(µ). We next insert our earlier expressions for g!(µ) and h(µ) into (85) and simplify 
the result where possible:

!̃1(µ) =
(q − 1)3

2π
(e6α − 1) θ[2

√
q − 1 − |µ|]

×
{

Im
[1

3

3∑

k=1

1 + i q−2
x!(µ) [4(q − 1)− µ2]−

1
2

2 cos(2πk/3)− q−2
x!(µ) − µ

]
− 1√

4(q − 1)− µ2

}

=
(q − 1)3

2π
(e6α − 1)

θ[2
√

q − 1 − |µ|]√
4(q − 1)− µ2

{
q − 2

3

[ 2q + µ

q2 − 3(q − 1) + µq + µ2 +
1

q − µ

]
− 1

}
.

 (86)
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The results of testing this prediction against numerical simulations are shown in !gure 1, and 
reveal excellent agreement. In the simulations we sampled numerically from (6) with an edge 
swap based Markov Chain Monte Carlo algorithm (MCMC) with nontrivial acceptance prob-
abilities. Edge swaps are accepted or rejected depending on the change in the number of loops 
and on the change in the possible number of possible swaps. This corrects for entropic effects, 
see e.g. [39] or [9]. Since we work with a system of !nite size N, our predictions refer to the 
average eigenvalue density, not to the density of individual graph instances. The error bars 
in !gure 1 are computed following 10 different initialization seeds of the MCMC algorithm, 
consisting of distinct regular graphs sampled uniformly with a CM algorithm. Following each 
initialization, 20 samples were taken, separated in algorithmic time by  ∼103 accepted MCMC 
swaps per link in the graph.

We can also calculate the expected triangle density m(α) =
∫

dµ "(µ)µ3 for the ensemble 
(6). It is easier to do this by integrating over (70) rather than via (84) and (86), although both 
routes give the same result:

m(α) =
1

2N

∞∑

!=3

(q − 1)!eα!
∫

dµ µ3[g!(µ)−h(µ)]
∫

dµ µ3[g!(µ)− h(µ)] + o(
1
N
)

=
1

2N

∞∑

!=3

(q − 1)!e2δ!3α!2δ!3 + o(
1
N
)

=
1
N
(q − 1)3e6α + o(

1
N
).

 

(87)

This formula gives very accurate results for α values up to a certain point, de!ned as α1(N) 
in the next section. This can be seen very clearly in !gures 2 and 4, where we test its predic-
tions for ensembles (6) with q  =  3. Since m(α) represents an ensemble average, we com-
pare (87) against the average loop density over multiple graphs drawn from the ensemble, 

Figure 1. Average spectral densities for q-regular graphs sampled from (6). We show 
the rescaled !nite size deviations from the standard Kersten–McKay formula !0(µ), by 
plotting δ"(µ) = N["(µ)− "0(µ)] = "1(µ) + "̃1(µ). Left panel: q  =  3, N  =  1000 and 
α = 0.416, giving average clustering coef!cient 〈C(A)〉 = 0.016. Right !gure: q  =  5, 
N  =  2000 and α = 0.431, giving average clustering coef!cient 〈C(A)〉 = 0.02. Each 
marker shows the average spectral density contribution obtained from 200 histograms 
of samples of (6), generated with an appropriate MCMC process, and error bars indicate 
± one standard deviation. The dotted line shows the theoretical prediction (84) and 
(86), and circles show the density prediction computed for exactly the eigenvalue bins 
that were also used for the histograms of the simulation samples.
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m̂(α) = M−1∑M
m=1 Tr(A3

m). Figures 2 and 4 show averages and standard deviations of the 
estimator m̂(α), for 50 different small samples sampled during MCMC simulations, sepa-
rated in algorithmic time by ∼ 103 swaps per link (in order to ensure independence of the M 
samples).

We have developed a theory that quanti!es the O (1/N) effects on the eigenvalue spectrum 
of probability deformations in ensembles of the general family (3), in which loops can be 
induced via the functional Lagrange parameter !̂(µ), and we applied our results to a speci!c 
member (6) of this family. As mentioned before, the theory implicitly assumes that loops inside 
the graph are far away from each other. As the control parameter α in (6) is increased for !xed 
system size N, we must therefore expect the behaviour of the ensemble to start deviating from 
the predictions (84), (86) and (87) as soon as the loops start to interact. This can indeed be seen 
in !gure 2. As α increases the clustering coef!cient starts deviating from (87), which is shown 
as a dashed line. Mathematically, one can explain the deviations from (87) as the emergence 
of higher order corrections to the saddle point approximation, O (N−γ) with γ > 1, that were 
not incorporated into the replica calculation. These would account for the presence of loops 
that are not isolated from each other. The accuracy of (84), (86) and (87) suggests that calcu-
lating higher order corrections in the replica calculation would improve our predictions, but 
this would require of course a much more complicated calculation. In the next section we will 
explore what happens as we keep increasing α beyond the validity of our replica calculation.

4.3. Phases of the ensemble and the shattering transition

We will now give a qualitative picture of the behaviour of the ensemble (6) for all values of 
α ∈ [0,∞). We will focus on q ! 3, since the case q  =  2 was already covered in [26]. In 

Figure 2. Plot of the clustering coef!cient C(A) versus α. Circles show results from 
MCMC sampling with N = 1000, q = 3 (average plus/minus one standard deviation). 
Solid line: predicted values computed from the theory (87), via 〈C(A)〉 = m(α)/q(q − 1). 
We also show separately the two distinct contributions to the theoretical prediction, 
viz. 〈C(A)〉T (those from disconnected triangles, dashed line) and 〈C(A)〉K  (those from 
triangles in cliques, dotted dashed line). Typical graph examples generated within each 
α regime are shown in !gure 3.
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MCMC simulations one observes three distinct regimes, which are not phases in a rigorous 
thermodynamic sense, but size dependent ranges of α values that exhibit qualitatively differ-
ent phenomenology:

 •  Small α: connected phase
  The triangle promoting probability bias in the ensemble introduces isolated loops 

embedded in the giant component. Here the analysis of the previous section should apply, 
as is con!rmed in !gures 2 and 4 for different values of q. Indeed one observes only small 
deviations from (87), as one approaches the next phase.

 •  Intermediate α: partially connected phase
  Edges can now be part of more than one triangle, and the graphs contain an increasing 

number of cliques of q  +  1 nodes, denoted by Kq+1. The triangle density and hence the 
clustering coef!cient grow considerably faster than in the previous phase, increasingly so 
for larger degrees q.

 •  Large α: disconnected phase

  Here the graphs break down completely into large collections of those cliques that had 
started to appear in the previous phase. The resulting con!gurations correspond to q 
regular graphs with the maximum possible number of triangles. In analogy with physics, 
we call these ground states.

We label the transition points between the phases α1(N) and α2(N), see !gure 2. Both α1(N) 
and α2(N) grow logarithmically with N. We refer to the transition from connected to partially 
connected as the shattering transition to highlight its topological nature. In !gure 3 we show 
typical graphs sampled via MCMC in the three phases.

In order to complement the previous distinctions with quantitative estimates, we will next 
give an alternative derivation of (87) that incorporates higher order effects. We can always 
write averages over (6) in terms of averages over random regular graphs (RRG), described by 
the ensemble p0(A) = N−1

q
∏

i!N δq,
∑

j Aij with uniform probabilities. We will write average 
over the unbiased random regular graph ensemble p0(A) as 〈. . .〉RRG. In particular,

φ(α) = N−1 log
(∑

A∈G

eαTr(A3)
N∏

i=1

δq,
∑

j Aij

)

= N−1 log
〈
eαTr(A3)

〉
RRG + N−1 logNq.

 
(88)

We can therefore use some of the rigorous results from random graph theory [40] established 
for unbiased ensembles. For instance, a standard result on RRGs [36] concerns the asymptotic 
distribution of triangles:

pN(!) =
〈
δ!,!(A)

〉
RRG −−−−→

N→∞
Poiss(!,λ), λ =

1
6
(q − 1)3, (89)

in which !(A) is the number of triangles in graph A. To understand the shattering transition, 
we also need to know the statistics of cliques Kq+1 in RRGs. We do this by splitting the tri-
angle count in two contributions, one from the triangles inside the giant component and the 
other from the triangles in the cliques Kq+1. We denote the numbers of each type by T(A) and 
K(A) respectively. Thus

Tr(A3) = 6T(A) + (q + 1)q(q − 1)K(A). (90)
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We now assume that also K(A) follows a Poisson distribution, and that for large N the joint 
distribution of T and K factorizes asymptotically. This assumption is to be con!rmed a poste-
riori in MCMC simulations5. Now

pN(T , K) =
〈
δT ,T(A)δK,K(A)

〉
RRG ≈ Poiss(T ,λT)Poiss(K,λK). (91)

Here, λT = 1
6 (q − 1)3, and we can obtain the parameter λK for the Poisson distribu-

tion for the cliques Kq+1 from [41]. Details are given in appendix D. Upon approximating 
N!/(N − q − 1)! ≈ Nq+1 we obtain

λK =
1

N 1
2 (q−2)(q+1)

(q!)q+1

q
q
2 (q+1)(q + 1)!

. (92)

We can now proceed with the evaluation of (88):

φ(α) ≈ 1
N

[
log
∑

T!0

Poiss(T ,λT)e6αT + log
∑

K!0

Poiss(K,λK)eαq(q2−1)

+ logNq

]

=
1
N
[
λTe6α + λKeαq(q2−1) − λT − λK + logNq

]
.

 (93)

From this directly follows m(α) = ∂φ(α)/∂α:

m(α) ≈ 1
N
(q − 1)3e6α +

1
N1+ 1

2 (q−2)(q+1)

(q!)q+1

q
q
2 (q+1)(q − 2)!

eαq(q2−1). (94)

Figure 3. Three typical three-regular graphs, of size N  =  1000, sampled numerically 
via MCMC from the canonical ensemble (6). The value of the tuning parameter α 
increases from left to right, and each graph shown is generated from one of the three 
distinct phases de!ned in !gure 2.

5 We hereby disregard as insuf!ciently relevant the correlation between these two quantities. This step, which is 
motivated by what is observed in the MCMC simulations, will be validated a posteriori by the accuracy of the 
resulting prediction.
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The !rst term coincides with formula (87) from the previous section. The second term in (94) 
represents the impact of cliques, and, according to !gure 4, accounts for most of the deviations 
from (87). In spite of our approximation of only accounting for isolated loops and isolated 
cliques, the resulting description is seen to give very good agreement with simulations for the 
whole range of α values.

As one might expect, the MCMC sampling algorithm slows down as it approaches the 
ground state. While we will not carry out a detailed dynamical analysis, we will mention the 
MCMC process slows down considerably precisely in the partially connected phase. To obtain 
good (i.e. suf!ciently independent) samples even close to the ground state, we increased the 
number of accepted swaps per link in between samples beyond α1(N) to values in the range 
of 104–105 accepted swaps per link. We also increased considerably the waiting time before 
the !rst sample to  ∼108 accepted swaps per link, to allow the system to escape from possible 
metastable states.

Expression (94) has a clear interpretation: the expected number of subgraphs of the types 
T and K are boosted independently when increasing α, each with an exponential factor in 
accordance with the model (6). This already provides an explanation for the phases described 
previously. If we denote by mT(α) and mK(α) the !rst and second term of (94), then we can 
describe the phases in terms of the relation between these two terms.

 •  Small α: connected phase
  Here we have mT(α) ! mK(α). Even though cliques Kq+1 may be present, their prob-

ability is too small to be relevant.
 •  Intermediate α: partially connected phase
  Here mK(α) becomes signi!cant. We may de!ne the onset α1(N) of the partially con-

nected phase to be the point where mK(α) = ηmT(α) for some !nite η ∈ (0, 1). Here we 
chose η = 1/10, which was found appropriate in the ranges q ! 6 and N ! 2000. The 
shattering transition point is then given by

Figure 4. In this !gure  we show the agreement between the clustering coef!cients 
predicted by (94), with lines, and the values measured MCMC simulations (markers, 
showing average plus/minus one standard deviation) with N  =  1000. Full details on the 
number of samples generated and their separation in MCMC edge swaps are given in the 
main text. These results con!rm that (94) captures the essence of the phenomenology 
of the ensemble.
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α1(N) =
1
2
(q − 2)(q + 1)
q(q2 − 1)− 6

logN

+
1

q(q2 − 1)− 6
log

(
η
(q − 1)2q

q
2 (q+1)−1

(q!)q

)
.

 (95)

 •  Large α: disconnected phase
  Here, the contribution from mK(α) dominates, and the whole graph is made of discon-

nected cliques. The critical value α2(N) marking the start of this phase is de!ned by the 
instance where m(α2(N)) = q(q − 1), i.e. where the maximum possible density of loops 
is achieved. We can replace m(α2(N)) by mK(α2(N)) since the contribution from discon-
nected triangles is now very small, giving

α2(N) =
1
2
(q − 2)(q + 1) + 2

q(q2 − 1)
log(N) +

log(q)
2(q − 1)

− log(q!)
q2 − 1

. (96)

Even though mK(α) in (94) has a higher power of 1/N compared to mK(α), the prefactor of α 
for mK(α) is higher in the exponential, viz. (q + 1)q(q − 2) > 6 for q ! 3. This means that 
for any N, the clique contribution mK(α) will always grow faster with α than mT(α), which 
implies it will always surpass it for large enough α. We do not claim that graphs will only be 
made either of isolated loops in a giant component, but only that knowing the behaviour of 
the two quantities mT(α) and mK(α) appears suf!cient to understand the overall behaviour of 
the loopy ensemble (6).

Let us brie#y discuss the potential practical utility of (6) in light of the previous results. 
Our ensemble is the maximally unbiased random graph ensemble over regular graphs that 
satis!es the condition of having a particular clustering coef!cient C. In order to achieve 
one’s desired value of C it is only necessary to !nd the appropriate α(C) by solving 
C = C(α) = m(α)/q(q − 1) using (94). However, if one’s interest is in using (6) as a null 
model for real networks with link clustering, the presence of cliques is undesirable. If we 
aim to generate graphs with a single component and a nontrivial number of loops, we need to 
stay in the connected phase. Moreover, in this phase we have a very accurate control of m(α) 
and the spectral density through (84). We conclude that (6) can be a useful null model when 
C ∈ (0, C(α1(N))). In that clustering range we can simply take

α(C) =
1
6
log
(
NqC/(q − 1)2). (97)

While the shattering transition occurs at α = α1(N), the !nite size nature of the problem 
makes it possible that some cliques appear already somewhat earlier. However, it is clear 
from !gure  2 that an upper bound to the level of clustering achievable without cliques is 
given by Cmax = CT(α2(N)), the contribution to clustering from disconnected triangles at 
the transition point to the disconnected phase. Values C ! Cmax are impossible to achieve 
in the ensemble (6) without triangles appearing outside the giant component, and additional 
constraints would have to be introduced into the model to prevent the formation of isolated 
cliques. This depend ence on N of the hard upper bound, shown also in !gure 5, is somewhat 
unexpected. In particular,

lim
N→∞

Cmax = lim
N→∞

CT(α2(N)) = 0. (98)
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Hence for very large sizes, N ! 1, even very small clustering coef!cients are not accessible in 
the connected regime. This can be understood intuitively as an entropic effect. For !xed value 
of C(α) and large enough N, there are simply many more graphs that achieve C(A) = C(α) 
through cliques than graphs that achieve it through loops embedded in the giant component.

4.4. Other ensembles

So far we have focused speci!cally on the ensemble (6) as the simplest nontrivial instance of 
the more general family (5), suitable for testing limits and for developing further our intuition 
for the phenomenology of ‘loopy’ random graph ensembles. However, we have the more 
general results (69) and (70), applicable to any functional Lagrange parameter !̂[µ], with the 
key integral expressed as an expansion in Chebyshev polynomials. We will now turn to other 
choices for !̂[µ].

Our !rst choice is !̂[µ] = αµ3 + βµ4 , which generalizes the ensemble (6) in that we now 
control the number of closed paths of both length 3 and length 4:

p(A) =
eαTr(A3)+βTr(A4)

Z(α,β)

N∏

i=1

δq,
∑

j Aij , (99)

Z(α,β) =
∑

A∈G

eαTr(A3)+βTr(A4)
N∏

i=1

δq,
∑

j Aij . (100)

The calculations for this ensemble (99) are very similar to those carried out for (6), which 
allows us to be brief. We have already computed the relevant integrals in (71) and (72), and 
we can therefore immediately proceed to the spectral density:

Figure 5. The upper bound Cmax on the tuneable level of clustering within the giant 
component, for graphs from the ensemble (6), plotted against the graph size N. This is 
shown for different degrees of the regular random graphs. Values for clustering above 
the lines cannot be achieved in the connected phase, but would require the formation 
of isolated cliques.
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!(µ) = !0(µ) +
1
N
!1(µ) +

∞∑

!=3

(q − 1)!

2N

(
e6αδ3,!+8βδ4,! − 1

)
[g!(µ)− h(µ)] + o(

1
N
)

= !0(µ) +
1
N
!1(µ) +

(q − 1)3

2N
(e6α − 1)[g3(µ)− h(µ)]

+
(q − 1)4

2N
(e8β − 1)[g4(µ)− h(µ)] + o(N−1),

 

(101)

in which the functions g!(µ) and h(µ) are given in (56) and (57). A comparison of the predicted 
spectrum (101) with measurents in MCMC simulations, for N  =  2000 and α = β = 0.2, is 
shown in the left panel of !gure 6. The MCMC algorithm used was similar to the one described 
before, but now they also require monitoring the evolution of Tr(A4) (in addition to Tr(A3)), 
as both appear in the move acceptance probabilities. In each run 100 samples were generated 
from each initial seed, after a burn-in (waiting time) of ∼103 swaps per link. Error bars give 
the standard deviation corresponding to #uctuations between 10 different initial seeds, so that 
a total of 1000 graphs were averaged. As in the previous case, we recover the results from [26] 
when setting q  =  2. As one would expect, (101) is only valid in the vicinity of (α,β) = (0, 0), 
to avoid the emergence of extensively many small fully connected q-regular bipartite graph-
lets, which maximize the number of 4  −  loops around a node.

Our second alternative choice for !̂[µ] is the following block function, which introduces 
a bias in the graph probabilities depending on the number of eigenvalues inside the interval 
[−1, 1]:

!̂(µ) = α θ(1 − |µ|). (102)

Now we have N
∫

dµ !̂(µ)!(µ|A) = αI(A|[−1, 1]), where I(A|[−1, 1]) denotes the number  
of eigenvalues of A inside the interval [−1, 1]. In contrast to powers of µ, under-
standing intuitively the topological effects of the choice (102) is not straightforward, 

Figure 6. Average spectral densities for more complicated spectrally constrained q-
regular graph ensembles. As before we show the rescaled !nite size deviations from the 
Kseten–MacKay law δ"(µ) = N["(µ)− "0(µ)]. Left: results for the ensemble (101), 
with q  =  3, N  =  2000, and α = β = 0.2. Right: results for the ensemble (103), with 
q  =  3, N  =  1000, and α = 0.5. Markers show the average density computed from from 
histograms of samples obtained via MCMC simulations. The dotted line shows the 
theoretical predictions, circles show the density prediction for the exact bins as those 
used for the histograms of the numerical samples. See the main text for further details.
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notwithstanding the clear nontrivial effect on the observed spectrum. In this case we have 
J![!̂] = α

∫
dµ θ[1 − |µ|][g!(µ)− h(µ)] "= 0 for all !, so we introduce a (suf!ciently large) 

cutoff L in the summation of (70). Since |J![!̂]| ! 1 we set this integral to zero for ! > L , as 
was done previously in [32], leaving the truncation

!(µ) = ρ0(µ) +
1
N
ρ1(µ)

+
L∑

!=3

(q − 1)!

2N

[
eα!

∫ 1
−1 dµ [g!(µ)−h(µ)] − 1

]
[g!(µ)− h(µ)],

 
(103)

in which the integrals can be worked out in more explicit form, as we did for the previous 
cases. In !gure 6 (right panel) we compare the prediction (103) with results from numerical 
MCMC samples, and observe a good agreement. We point out that generating graph samples 
from the spectrally constrained ensemble (5, 102) numerically is considerably more computa-
tionally expensive than the for the previous models. Here, instead of the number of triangles 
or squares, the number of eigenvalues inside the interval [−1, 1] has to be monitored. This 
requires that the full set of eigenvalues of the graph A has to be calculated after each edge 
swap, which necessitated parallel execution in multi-core computers, to reduce CPU time to 
a few weeks. We seen in !gure 6 that the deviations from !0(µ) are quite small, nevertheless 
they are nontrivial and are predicted accurately. To measure spectra at this level of detail, we 
averaged over 104 graphs, separated during the MCMC process by  ∼1 swaps per link. Error 
bars are obtained by splitting this data set in groups of 10.

The above results are similar in form to the ones derived for weighted graphs in [25], the 
main difference is that in [25] a second set of replicas with the traditional limit n → 0 is intro-
duced to get the spectrum. It is interesting to see that with the functional formalism (5) both 
the observable 

∫
dµ !̂(µ)!(µ) and the spectrum !(µ) itself are calculated at the same time.

5. Discussion

In this paper we have extended and applied an analytic approach for describing constrained 
maximum entropy ensembles of !nitely connected random loopy graphs of large but !nite 
size. We focused on regular random graphs with soft constrained adjacency matrix eigenvalue 
spectra. We were able to develop a general theory describing the O (1/N) contributions to the 
expected eigenvalue spectrum, through the use of an in!nite number of replica indices tak-
ing values in the imaginary axis [19], and building on techniques from earlier studies such as  
[25, 30–32].

The simplest nontrivial spectrally constrained ensembles are those in which the spectral 
constraint reduces to a soft constraint on the number of triangles. We quanti!ed the behaviour 
of such systems, which following [26] we have come to regard as the ‘harmonic oscillators’ of 
loopy graph ensembles, and showed how they allow for !ne tuning of their average clustering 
coef!cients. A limitation on their use as null models for regular graphs with nontrivial cluster-
ing is that there is a maximum achievable clustering coef!cient, whose value depends on the 
size of the graph, beyond which the ensemble undergoes a transition into a new phase, where 
high clustering levels are achieved by the graph fracturing into extensively many disconnected 
cliques. We presented a precise analytic estimate for an upper bound on the maximum clus-
tering coef!cient that is achievable without fracturing of the graph. We also showed how the 
general theory applies to other spectrally constrained ensembles, such as those where both 
the number of triangles and the number of squares are controlled, and to ensembles where the 
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spectral constraint reduces to a count of the number of adjacency matrix eigenvalues in a given 
interval. We carried out numerical simulations via MCMC processes based on edge swaps 
with nontrivial acceptance probabilities, which are themselves generally nontrivial in view 
of the need to recompute eigenvalue spectra after each accepted move. In comparing triangle 
counts and spectra, we found excellent agreement between the theoretical predictions and the 
MCMC measurements in all cases, provided we remain in the parameter regime where higher 
orders in N of the generating function are not yet important.

The most natural generalization of the presently studied family of models would be to 
extend the imaginary replica approach to sparse graphs with an arbitrary degree distribution 
p(k). Preliminary numerical simulations show that these non-regular graph ensembles behave 
in a very similar way to what has been observed for regular graphs. We expect to !nd a similar 
theory for bounded degree distributions, and the same !rst sub-leading term for degree distri-
butions with well de!ned moments. For the case of other degree distributions, such scale free 
ones, if the !rst and second moments do not exist even simple expressions like (87) are not 
properly de!ned, so that a different approach will be needed. In addition, controlling larger 
!nite loop lengths, in the same way as in [26], could be explored. As an example we could 
set !(µ) = αµ5, which would introduce a bias for the closed paths of length 5. The spectral 
calculation upon making this modi!cation would only be a matter of calculating J5[!̂]. Our 
analysis in section 4.3 relies on splitting the number of loops among different possible sub-
graphs favoured by the bias. Since the statistical properties of these subgraphs in uniform 
RRG’s is detailed in [41], it is possible to do develop a similar approximation as in (93). The 
range of validity of this approximation is yet to be tested numerically, but we anticipate a 
quick transition into a disconnected phase. Work in both these directions is currently being 
explored by the authors.

In addition, it would be interesting to explore further the possibility of controlling short 
loops in !nitely connected graphs without this being realized microscopically by such graphs 
fracturing into extensively many disconnected graphlets, even at high loop densities. This 
would seem to require more complicated choices of the functional Lagrange parameter !̂(µ) 
than the ones studied so far, possibly including choices that scale differently with N. Also 
further research in this direction is currently being explored by the authors.
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Appendix A. The functional integral

A.1. Transformation to Fourier components

In this appendix we simplify expression (20) and (21) for our generating function φ["̂]. We 
!rst introduce a number of de!nitions to compactify our formulae:

P(ϕ,ω) =
∑

!∈Z
W!(ϕ)

ei!ω

2π
, W!(ϕ) =

∫ π

−π
dω P(ϕ,ω)e−i!ω , (A.1)
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P̂(ϕ,ω) =
∑

!∈Z
Ŵ!(ϕ)e−i!ω , Ŵ!(ϕ) =

∫ π

−π

dω
2π

P̂(ϕ,ω)ei!ω . (A.2)

We then write S[P, P̂] strictly in terms of the Fourier transforms {W!(ϕ), Ŵ!(ϕ)}, noting that 
ω ∈ [−π,π]. The result is

S[P, P̂] = S[W1, Ŵ1, W2, Ŵ2] + S0[{W!, Ŵ!}], (A.3)

where, using the notation r = {r! ! 0, ! ∈ Z},

S0[{W!, Ŵ!}] = i
∑

!/∈{1,2}

∫
dϕ W!(ϕ)Ŵ!(ϕ)

+ log

∫
dϕ ν(ϕ)

∑

r
δq,

∑
!∈Z !r!

∏

!∈Z

[−iŴ!(ϕ)]r!

r!!
,

 
(A.4)

S[W1, Ŵ1, W2, Ŵ2] =− q
2
(1 +

q − 2
2N

) + i
∫

dϕ
[
W1(ϕ)Ŵ1(ϕ) + W2(ϕ)Ŵ2(ϕ)

]

− q
2N

∫
dϕ W2(ϕ)e−iϕ·ϕ +

q
2
(1 +

q
N
)

∫
dϕdϕ′ W1(ϕ)W1(ϕ

′)e−iϕ·ϕ′

− q2

4N

∫
dϕdϕ′ W2(ϕ)W2(ϕ

′)e−2iϕ·ϕ′
.

 

(A.5)

The integration in (20) can be replaced by integration over the functional Fourier comp onents, 
since (apart from an irrelevant multiplicative constant) the Jacobian of this coordinate trans-
formation is unitary. We de!ne DW =

∏
ϕ[dW(ϕ)

√
N∆ϕ/2π], and the functional delta dis-

tribution δ[W] =
∏

ϕ[δ(W(ϕ))
√

2π/N∆ϕ], where δ(x) is the ordinary delta distribution, so 
that for any smooth F[W] we will have:

∫
DW F[W]δ[W] = F[0], δ[W] =

∫
DŴ eiN

∫
dϕ W(ϕ)Ŵ(ϕ)], (A.6)

and the generating function can be written as, modulo an irrelevant additive constant:

φ["̂] = lim
1
N

log

∫ [∏

!∈Z
DW!DŴ!

]
eNS[W1,Ŵ1,W2,Ŵ2]+NS0[{W!,Ŵ!}]. (A.7)

With (A.6), integration over the Fourier components with ! = 1, 2 has become trivial:
∫ ∏

!/∈{1,2}

[DW!DŴ!] eNS0[{W!,Ŵ!}] = eiN
∑2

!=1
∫

dϕ W!(ϕ)Ŵ!(ϕ)

×
∫ ∏

!/∈{1,2}

[
DŴ! δ[Ŵ!]

]
exp

(
N log

∫
dϕ ν(ϕ)

∑

r
δq,

∑
!∈Z !r!

∏

!∈Z

[−iŴ!(ϕ)]r!

r!!

)

= exp
(

iN
2∑

!=1

∫
dϕ W!(ϕ)Ŵ!(ϕ)

+ N log

∫
dϕ ν(ϕ)

∑

0!r!q/2

[−iŴ1(ϕ)]q−2r

(q − 2r)!
[−iŴ2(ϕ)]r

r!

)]
.

 

(A.8)
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Hence (20) can be written as follows:

φ["̂] = −q
2
(1 +

q − 2
2N

) + lim
1
N

log

∫
DŴ1DŴ2 exp

{
N
(

S1[Ŵ1] + S2[Ŵ2]

+ N log

∫
dϕ ν(ϕ)

∑

0!r!q/2

[−iŴ1(ϕ)]q−2r

(q − 2r)!
[−iŴ2(ϕ)]r

r!

)}
,

 

(A.9)

with the following two functionals S1,2[Ŵ]:

S1[Ŵ] =
1
N

log

∫
DW exp

(
iN
∫

dϕ W(ϕ)Ŵ(ϕ)

+
q
2
(N + q)

∫
dϕdϕ′ W(ϕ)U1(ϕ,ϕ′)W(ϕ′)

) 
(A.10)

S2[Ŵ] =
1
N

log

∫
DW exp

(
iN
∫

dϕ W(ϕ)Ŵ(ϕ)− q
2

∫
dϕ W(ϕ)V(ϕ)

− 1
4

q2
∫

dϕdϕ′ W(ϕ)U2(ϕ,ϕ′)W(ϕ′)
)

,
 

(A.11)

where we used the short-hands Un(ϕ,ϕ′) = exp(−inϕ ·ϕ′) and V(ϕ) = U1(ϕ,ϕ).

A.2. Gaussian functional integrals

Both S1[Ŵ] and S2[Ŵ] involve complex Gaussian functional integrals, of the following form, 
with d = dim(ϕ) and ∆ϕ → 0 in the functional integration limit:

J[U, Q] =

∫
DW e−

1
2

∫
dϕdϕ′ W(ϕ)U(ϕ,ϕ′)W(ϕ′)+

∫
dϕ W(ϕ)Q(ϕ)

=

∫ ∏

ϕ

dW(ϕ)√
2π/N∆ϕ

e−
1
2 ∆

2
ϕ

∑
ϕϕ′ W(ϕ)U(ϕ,ϕ′)W(ϕ′)+∆ϕ

∑
ϕ W(ϕ)Q(ϕ)

=
( N
∆ϕ

)d/2 1√
DetU

e
1
2 ∆

2
ϕ

∑
ϕϕ′ (∆

2
ϕU)−1(ϕ,ϕ′)Q(ϕ)Q(ϕ′).

 

(A.12)

U is the matrix of discretized values U(ϕ,ϕ′). The entries of the inverse functional ker-
nel U−1(ϕ,ϕ′), de!ned by the condition δ(ϕ−ϕ′) =

∫
dϕ′′ U−1(ϕ,ϕ′′)U(ϕ′′,ϕ′), are 

U−1(ϕ,ϕ′) = (∆2
ϕU)−1(ϕ,ϕ′). Hence the following identities hold:

J[U, Q] =
( N
∆ϕ

)d/2 1√
DetU

e
1
2

∫
dϕdϕ′Q(ϕ)U−1(ϕ,ϕ′)Q(ϕ′), (A.13)

J[U−1, Q] = (N∆ϕ)
d/2

√
DetU e

1
2

∫
dϕdϕ′Q(ϕ)U(ϕ,ϕ′)Q(ϕ′). (A.14)

We can now work out (A.10) and (A.11), and !nd

eNS1[Ŵ] = J
[
− q(N + q)U1, iNŴ

]

=
( N
−q(N + q)∆ϕ

)d/2 1√
DetU1

e
N2

2q(N+q)

∫
dϕdϕ′ Ŵ(ϕ)U−1

1 (ϕ,ϕ′)Ŵ(ϕ′),

 (A.15)
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eNS2[Ŵ] = J
[1

2
q2U2, iNŴ − 1

2
qV
]

=
( 2N

q2∆ϕ

)d/2 1√
DetU2

e−
1

q2
∫

dϕdϕ′[NŴ(ϕ)+ q
2 iV(ϕ)]U−1

2 (ϕ,ϕ′)[NŴ(ϕ′)+ q
2 iV(ϕ′)].

 (A.16)

For (A.9) this implies:

φ["̂] =− q
2
(1 +

q − 2
2N

) + lim
1
N

log
( 2N

q2∆ϕ

)d/2 1√
DetU2

∫
DŴ1 eNS1[Ŵ1]

×
∫

DŴ2 e−
1

q2
∫

dϕdϕ′[NŴ2(ϕ)+ q
2 iV(ϕ)]U−1

2 (ϕ,ϕ′)[NŴ2(ϕ
′)+ q

2 iV(ϕ′)]

× exp
{

N log

∫
dϕ ν(ϕ)

∑

0!r!q/2

[−iŴ1(ϕ)]q−2r

(q − 2r)!
[−iŴ2(ϕ)]r

r!

}
.

 

(A.17)

We transform Ŵ2(ϕ) → Ŵ2(ϕ)/N − qiV(ϕ)/2N and and expand for large N, following 
[31]6. This assures that φ["̂] remains well-de!ned and nontrivial, and that the leading orders in 
N of the generating function can be written as follows (assuming that q > 1):

φ["̂] =− q
2
(1 +

q − 2
2N

) + lim
1
N

log
( 2

Nq2∆ϕ

)d/2 1√
DetU2

∫
DŴ1 eNS1[Ŵ1]

× eN log
∫

dϕ ν(ϕ)[−iŴ1(ϕ)]q/q!
∫

DŴ2 e−
1
2

∫
dϕdϕ′ Ŵ2(ϕ)( 1

2 q2U2)
−1(ϕ,ϕ′)Ŵ2(ϕ

′)

× exp
{
− iq(q − 1)

∫
dϕ ν(ϕ)[−iŴ1(ϕ)]q−2[Ŵ2(ϕ)− 1

2 iqV(ϕ)]
∫

dϕ′ ν(ϕ′)[−iŴ1(ϕ′)]q
+O(

1
N
)
}

.

 

(A.18)

We can now integrate over Ŵ2, and with the short-hand

R[Ŵ(ϕ)] = q(q − 1)
ν(ϕ)[−iŴ(ϕ)]q−2

∫
dϕ′ ν(ϕ′)[−iŴ(ϕ′)]q

 (A.19)

the result takes the form

φ["̂] = −q
2
(1 +

q − 2
2N

) + lim
1
N

log

∫
DŴ1 e−

1
4 q2 ∫ dϕdϕ′R[Ŵ1(ϕ)]U2(ϕ,ϕ′)R[Ŵ1(ϕ

′)]

× eNS1[Ŵ1]+N log
∫

dϕ ν(ϕ)[−iŴ1(ϕ)]q/q!− 1
2

∫
dϕ R[Ŵ1(ϕ)]V(ϕ)+O(N−1)

= −q
2
(1 +

q − 2
2N

) + lim
1
N

log

∫
DŴ1 e−

1
4 q2 ∫ dϕdϕ′R[Ŵ1(ϕ)]U2(ϕ,ϕ′)R[Ŵ1(ϕ

′)]

×
( N
−q(N + q)∆ϕ

)d/2 1√
DetU1

e
N2

2q(N+q)

∫
dϕdϕ′ Ŵ1(ϕ)U−1

1 (ϕ,ϕ′)Ŵ1(ϕ
′)

× eN log
∫

dϕ ν(ϕ)[−iŴ1(ϕ)]q/q!− 1
2 q

∫
dϕ R[Ŵ1(ϕ)]V(ϕ)+O(N−1).

 
(A.20)

Finally we transform Ŵ1(ϕ) = i
∫

dϕ′ U1(ϕ,ϕ′)W(ϕ′), which gives apart from irrelevant 
additive constants:

6 Note that we could also have chosen the transformation Ŵ2(ϕ) → Ŵ2(ϕ)/
√

N − qie−iϕ·ϕ/2N , but this would in 
subsequent stages of the calculation have prompted a further rescaling of Ŵ2 by 

√
N .
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φ["̂] = lim
1
N

log
{√

Det(qU1)

∫
DW eNS0[W]+S1[W]+O(N−1)

}
, (A.21)

with

S0[W] = −q
2

∫
dϕdϕ′ W(ϕ)U1(ϕ,ϕ′)W(ϕ′)

+ log

∫
dϕ ν(ϕ)

[ ∫
dϕ′ U1(ϕ,ϕ′)W(ϕ′)

]q
,

 
(A.22)

S1[W] = −1
4
(q − 1)2

∫
dϕdϕ′ r[W(ϕ)]U2(ϕ,ϕ′)r[W(ϕ′)]

+
1
2

q2
∫

dϕdϕ′ W(ϕ)U1(ϕ,ϕ′)W(ϕ′)− 1
2
(q − 1)

∫
dϕ r[W(ϕ)]V(ϕ),

 (A.23)
and

r[W(ϕ)] =
ν(ϕ)[

∫
dϕ′ U1(ϕ,ϕ′)W(ϕ′)]q−2

∫
dϕ′ ν(ϕ′)[

∫
dϕ′′ U1(ϕ′,ϕ′′)W(ϕ′′)]q

. (A.24)

A.3. Leading two orders via saddle point integration

Expression (A.21) allows us in the usual manner to calculate the leading two orders in N of the 
generating function, by substituting W = W0 + N− 1

2 W1, where W0 is the saddle point of S0[W] 
and where W1 = O(1). We obtain, again modulo a constant:

φ["̂] = lim
{
S0[W0] +

1
N
S1[W0] +

1
N

log
[√Det(qU1)√

Det(−Γ)

]}
+O(N− 3

2 ), (A.25)

in which we have the functional curvature at the saddle point:

Γ(ϕ,ϕ′) =
δ2S[W]

δW(ϕ)δW(ϕ′)

∣∣∣
W0

. (A.26)

What remains is to compute W0(ϕ) and Γ(ϕ,ϕ′). Setting δS0/δW = 0, and using the sym-
metry of U1, gives the saddle point equation from which to solve W0:

W0(ϕ) =
1
Zq
ν(ϕ)

[ ∫
dϕ′ U1(ϕ,ϕ′)W0(ϕ

′)
]q−1

, (A.27)

Zq =

∫
dϕ ν(ϕ)

[ ∫
dϕ′ U1(ϕ,ϕ′)W0(ϕ

′)
]q

, (A.28)
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and the curvature at the saddle point is found to be

Γ(ϕ,ϕ′) =
q(q − 1)

Zq

∫
dψ ν(ψ)U1(ϕ,ψ)U1(ψ,ϕ′)

[ ∫
dψ′ U1(ψ,ψ′)W0(ψ

′)
]q−2

− qU1(ϕ,ϕ′)− q2

Z2
q

∫
dψ ν(ψ)U1(ψ,ϕ)

[ ∫
dψ′ U1(ψ,ψ′)W0(ψ

′)
]q−1

×
∫

dψ ν(ψ)U1(ψ,ϕ′)
[ ∫

dψ′ U1(ψ,ψ′)W0(ψ
′)
]q−1

= q(q − 1)
∫

dψ U1(ϕ,ψ)r[W0(ψ)]U1(ψ,ϕ′)− qU1(ϕ,ϕ′)

− q2
[ ∫

dψ U1(ϕ,ψ)W0(ψ)
][ ∫

dψ U1(ϕ
′,ψ)W0(ψ)

]

=− q
∫

dψ U1(φ,ψ)
[
δ(ψ −ϕ′)− T(ψ,ϕ′)

]
,

 

(A.29)

with

T(ϕ,ϕ′) = (q − 1)r[W0(ϕ)]U1(ϕ,ϕ′)− qW0(ϕ)

∫
dϕ′′U1(ϕ

′,ϕ′′)W0(ϕ
′′).

 

(A.30)

We could also have written the curvature in the form Γ = −qU 1
2 (1I − T)U

1
2
1  with a symmetric 

kernel T, but since we only require the determinant of Γ this would not make a difference. 
Various terms in φ["̂] can be simpli!ed using equations (A.27) and (A.28). For instance, with 
the simple identity 

∫
dϕdϕ′W0(ϕ)U1(ϕ,ϕ′)W0(ϕ′) = 1 we !nd that

S0[W0] = −q
2
+ log Zq, (A.31)

S1[W0] =
1
2

q2 − 1
4
(q − 1)2

∫
dϕdϕ′ r[W(ϕ)]U2(ϕ,ϕ′)r[W(ϕ′)]

− 1
2
(q − 1)

∫
dϕ r[W(ϕ)]V(ϕ).

 

(A.32)

Hence, using logDetA = Tr logA and apart from irrelevant additive constants:

φ["̂] = lim
{
log Zq −

(q − 1)2

4N

∫
dϕdϕ′ r[W0(ϕ)]U2(ϕ,ϕ′)r[W0(ϕ

′)]

− q − 1
2N

∫
dϕ r[W0(ϕ)]V(ϕ)− 1

2N
Tr log(1I − T)

}
+O(N− 3

2 ).
 

(A.33)

We can expand the last nontrivial term using Tr log(1I − T) = −
∑∞
!=1 Tr(T!)/! . The !rst 

two terms in this sum give, after some simple manipulations:

Tr(T) =
∫

dϕ T(ϕ,ϕ) = (q−)

∫
dϕ r[W0(ϕ)]V(ϕ)− q, (A.34)

Tr(T2) =

∫
dϕdϕ′ T(ϕ,ϕ′)T(ϕ′,ϕ)

= 2q − q2 + (q − 1)2
∫

dϕdϕ′ r[W0(ϕ)]U2(ϕ,ϕ′)r[W0(ϕ
′)].

 
(A.35)
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Thus the !rst two terms ! = 1, 2 precisely remove those non-constant terms in φ["̂] that origi-
nated from S1[W0]. This simpli!es φ["̂] to the following expression, modulo additive constants 
and O(N− 3

2 ) terms, and upon inserting the de!nition of Zq:

φ["̂] = lim
{
log

∫
dϕ ν(ϕ)

[ ∫
dϕ′ U1(ϕ,ϕ′)W0(ϕ

′)
]q

+
1

2N

∞∑

!=3

Tr(T!)
$

}
.

 (A.36)

Appendix B. Replica symmetric value of the traces

Here we compute the traces Tr(M!), that appear in the generating function φ["̂], for the kernel 
(42). Upon de!ning µ! = µ+ (q − 2)(X∗)−1 we can write this kernel as

M(ϕ,ϕ′) = Z−1
q−1e

1
2 iϕ·µ!ϕ−iϕ·ϕ′

. (B.1)

We can write the !th trace of M as follows, with the identi!cation ϕ!+1 ≡ ϕ1, and that both 
µ and X! (and its inverse) are diagonal matrices in the space of ϕ:

Tr(M!) = Z−!
q−1

∫ ( !∏

k=1

dϕk

)( !∏

k=1

e
1
2 iϕk·µ

!ϕk−iϕk·ϕk+1

)

= Z−!
q−1

∫ ( !∏

k=1

dϕk

)
e

1
2 i

∑"
kk′=1 ϕk·

[
µ!δkk′−(δk+1,k′+δk−1,k′ )1I

]
ϕk′

= Z−!
q−1

∏

µ

{ nµ∏

αµ=1

[ ∫ ( !∏

k=1

dφk

)
e−

i
2
∑"

kk′=1 φk(δk,k′+1+δk,k′−1−δkk′µ
!)φk′

]

×
mµ∏

βµ=1

[ ∫ ( !∏

k=1

dψk

)
e

i
2
∑"

kk=1′ ψk(δk,k′+1+δk,k′−1−δkk′µ
!)ψk′

]}

= Z−!
q−1

∏

µ

[
Z(µε|A(!,µ)nµZ(µε|A(!,µ)

mµ
]
.

 

(B.2)

Here Z(µε|A"#,µ) denotes the original complex Gaussian integral de!ned in (10), and A!",µ is 
now the adjacency matrix of a loop of length ! in the presence of a complex !eld acting on the 
diagonal, of value (2 − q)/x!(µ):

(
A!",µ

)
kk′ = δk,k′+1 + δk,k′−1 +

2 − q
x!(µ)

δkk′ (with k mod "). (B.3)

Appendix C. Recovering the Kesten–MacKay law

Here we derive expressions (50) and (51). The factor between curly brackets in the !rst line 
of the generating function (49), which will give the eigenvalue spectrum for graphs from the 
ensemble (6) in the limit N → ∞, is given by the following expression, in which x!(µ) is 
given by (38):
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!0(µ) =
1

2π
d

dµ
Im
[
(q − 2) log

(
x!(µ)− 1

x!(µ)

)
− q log x!(µ)

]

=
1

2π
d

dµ

[
(q − 2)Arg

(
x!(µ)− 1

)
+ (q − 2)Arg

(
x!(µ) + 1

)
− 2(q − 1)Arg

(
x!(µ)

)]
.

 (C.1)
We note that as soon as µ2 > 4(q − 1) we have x!(µ) ∈ IR, hence for all such eigenval-
ues Arg

(
x!(µ) + a

)
= 0 for any real a, and thus !0(µ) = 0. For eigenvalues µ2 < 4(q − 1),  

on the other hand, we may use identities such as dArg(z)/dµ = Im(z−1dz/dµ) and 
dx!(µ)/dµ = −ix!(µ)/

√
4(q − 1)− µ2  to derive:

!0(µ) =
1

2π
Im
{dx!(µ)

dµ

[ q − 2
x!(µ) + 1

+
q − 2

x!(µ)− 1
− 2(q − 1)

x!(µ)

]}

=
1

π
√

4(q − 1)− µ2
Re
{

q − 1 − (q − 2)
x!2(µ)

x!2(µ)− 1

}

=
q

2π

√
4(q − 1)− µ2

q2 − µ2 .

 

(C.2)

Hence, in combination,

!0(µ) =
q

2π

√
4(q − 1)− µ2

q2 − µ2 θ
[
2
√

q − 1 − |µ|
]
. (C.3)

In the same way we derive expression (51) for the function h(µ):

h(µ) = − 1
π

Im
[ −ix!(µ)√

4(q − 1)− µ2

]
=

1
π

θ
(
2
√

q − 1 − |µ|
)

√
4(q − 1)− µ2

. (C.4)

Appendix D. Expected number of subgraphs in a RRG

Here we restate and apply a result in [41] on the expected number E[J] of strictly balanced 
subgraphs J with k nodes and ! edges, in a random regular graph A with N nodes and degree 
q (see [41] for the precise de!nition of strictly balanced subgraphs, here we only require that 
these include loops and cliques). This number is given by

E[J] = P(J ⊂ A)
[N]k
a(J)

, P(J ⊂ A) =

∏N
i=1[q]ji
(qN)!

(
1 +O

(
(

qk
N
)2)
)

. (D.1)

Here P(J ⊂ A) is the probability of J being a subgraph of A, j i is the degree of node i when 
computed only via incident links that belong to J, [r]s  =  r!/(r  −  s)!, and a(J) is the number of 
automorphisms of J. For the case of a length-! loop, J = A!, we have k = ! and a(J) = 2!, 
and hence

E[A!] = (q − 1)!/2!. (D.2)

For (q + 1)-node cliques we have k  =  q  +  1, ! = 1
2 q(q + 1), and a(J) = (q + 1)!, so

E[Kq+1] =
(q!)q+1

(Nq)
q
2 (q+1)

[N]q+1

(q + 1)!
. (D.3)
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