
Statistical physics of tailored random graphs:
entropies, processes, and generation

II. Tailored sparse random graphs
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Background - tailored random graphs

networks/graphs:

number of nodes: N
nodes (vertices): i , j ∈ {1, . . . ,N}

links (edges): cij ∈ {0, 1}
no self-links: cii = 0 for all i

graph: c = {cij}

�
�
�@
@
@ �

�
�@
@
@

�
cij =1

•i • j

nondirected graph: ∀(i , j) : cij = cji

directed graph: ∃(i , j) : cij 6= cji

if we model real-world systems by graphs
we want these graphs to be realistic ...
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Networks in cell biology

protein interaction networks:

nodes: proteins i , j = 1 . . .N
links: cij =cji =1 if i can bind to j

cij =cji =0 otherwise

nondirected graphs,
N ∼ 104, links/node ∼ 7

gene regulation networks:

nodes: genes i , j = 1 . . .N
links: cij =1 if j is transcription factor of i

cij =0 otherwise

directed graphs,
N ∼ 104, links/node ∼ 5
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Quantify topology of nondirected graphs

degrees,
degree sequence: ki (c) =

∑
j cij , k(c) = (k1(c), . . . , kN(c))

degree distribution:

p(k |c) =
1
N

N∑
i=1

δk,ki (c)

kjoint degree statistics
of connected nodes

�
�
�@
@
@ �

�
�@
@
@

cij =1•

ki = k?

•

kj = k ′?

W (k , k ′|c) =
1

N〈k〉
∑

ij

cijδk,ki (c)δk′,kj (c)

normalisation: ∑
k,k′≥0

W (k , k ′|c) =
1

N〈k〉
∑

ij

cij =
1

N〈k〉
∑

i

ki (c) = 1
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relation between p and W :

W (k |c) =
∑

k′

W (k , k ′|c) =
1

N〈k〉
∑

ij

cijδk,ki (c)

=
1

N〈k〉
∑

i

ki (c)δk,ki (c) =
k

N〈k〉
∑

i

δk,ki (c) = p(k |c)k/〈k〉

hence maginals of W carry no info beyond degree statistics
so focus on:

Π(k , k ′|c) =
W (k , k ′|c)

W (k |c)W (k ′|c)

if ∃(k , k ′) with Π(k , k ′|c) 6= 1:
structural information in degree correlations

k

p(k) Π(k, k′)

k

k′ H sapiens PIN
N = 9306
〈k〉 = 7.53
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Quantify topology of directed graphs
links now become arrows

degrees,
degree sequences: k in

i (c) =
∑

j cij , kin(c) = (k in
1 (c), . . . , k in

N (c))

kout
i (c) =

∑
j cji , kout(c) = (kout

1 (c), . . . , kout
N (c))

degree distribution:

ki → ~ki = (k in
i , k

out
i ) p(~k |c) =

1
N

∑
i

δ~k,~ki (c)

joint in-out degree statistics
of connected nodes

?
�
�
��@
@
@R

@@R

?
�
�
��@
@
@

@@R� cij =1•

~ki = ~k?

•

~kj = ~k ′?
W (~k , ~k ′|c) =

1
N〈k〉

∑
ij

cijδ~k,~ki (c)δ~k′,~kj (c)

note:

W (~k , ~k ′|c)−W (~k ′, ~k |c) =
1

N〈k〉
∑

ij

(cij−cji ) δ~k,~ki (c)δ~k′,~kj (c) 6= 0
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relation between p and W :

W1(~k |c) =
∑
~k′

1
N〈k〉

∑
ij

cijδ~k,~ki (c)δ~k′,~kj (c) =
1

N〈k〉
∑

ij

cijδ~k,~ki (c)

=
1

N〈k〉
∑

i

k in
i (c)δ~k,~ki (c) =

k in

N〈k〉
∑

i

δ~k,~ki (c) = p(~k |c)k in/〈k〉

W2(~k ′|c) =
∑
~k

1
N〈k〉

∑
ij

cijδ~k,~ki (c)δ~k′,~kj (c) =
1

N〈k〉
∑

ij

cijδ~k′,~kj (c)

=
1

N〈k〉
∑

j

kout
j (c)δ~k′,~kj (c) =

kout′(c)

N〈k〉
∑

j

δ~k′,~kj (c) = p(~k ′|c)kout′/〈k〉

so focus on:

Π(~k , ~k ′|c) =
W (~k , ~k ′|c)

W1(~k |c)W2(~k ′|c)

if ∃(~k , ~k ′) with Π(~k , ~k ′|c) 6= 1:
structural information in degree correlations
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Information in degree correlations?

plot Π(k , k ′) = W (k , k ′)/W (k)W (k ′)
for protein interaction networks:
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S.cerevisiae X (AP-MS 2007) 
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S.cerevisiae XI (PCA 2008) 
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Graph classification
via increasingly detailed
feature prescription

e.g. nondirected graphs:'

&

$

%

G = {0, 1}
1
2 N(N−1)'

&

$

%

〈k〉 = ...'

&

$

%
p(k) = . . .#

"
 
!

W (k, k′) = . . .

Tailored
random graph
ensembles

maximum entropy random graph ensembles,
p(c) with prescribed values for 〈k〉, p(k), W (k , k ′), . . .

– proxies for real networks in stat mech models
– complexity: how many networks exist with same features as c? counting
– hypothesis testing: graphs with controlled features as null models generating

N =1000: 2
1
2 N(N−1)≈10150,364 graphs

(universe has ∼1082 atoms ...)
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random graph ensembles

(i) set G of allowed graphs,
(ii) probability measure p(c) on G

Tailoring via hard constraints

(i) impose values for specific observables: Ωµ(c) = Ωµ for µ = 1 . . . p
(ii) p(c): all graphs that meet constraints are equally likely

p(c|Ω) =
δΩ(c),Ω
N (Ω)

, N (Ω) =
∑

c

δΩ(c),Ω (nr of graphs in ensemble)

with Ω = (Ω1, . . . ,Ωp)
note 1:

p(c) maximises Shannon entropy S
on G[Ω] = {c| Ω(c) = Ω} S = − 1

N〈k〉
∑

c

p(c) log p(c)

note 2:

eN〈k〉S[Ω] = e−
∑

c p(c) log p(c) = e
−

∑
c

δΩ(c),Ω
N (Ω)

(
log δΩ(c),Ω−logN (Ω)

)
= N (Ω)

ACC Coolen, King’s College London 13 / 61



Tailoring via soft constraints

(i) impose averages for specific observables: Ωµ(c) = Ωµ for µ = 1 . . . p
(ii) p(c): maximum entropy, subject to constraints

p(c|Ω) = Z−1(Ω) e
∑
µ ωµ(Ω)Ωµ(c), Z (Ω) =

∑
c

e
∑
µ ωµ(Ω)Ωµ(c)

parameters ωµ(Ω):
to be solved from ∀µ :

∑
c

p(c|Ω)Ωµ(c) = Ωµ

note 1:
all graphs c can in principle emerge; those with Ω(c) ≈ Ω are the most likely

note 2:
effective number of graphs N (Ω) defined via entropy:

N (Ω) = eN〈k〉S[Ω], S[Ω] = − 1
N〈k〉

∑
c∈G

p(c|Ω) log p(c|Ω)

note 3:
for observables Ω(c) that are macroscopic in nature and O(N0),
one will generally find deviations from Ω(c) = Ω to tend to zero as N →∞
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Example 1a

nondirected graphs, cii = 0 for all i ,
impose average connectivity via hard constraint,
Ω(c) =

∑
ij cij

demand
∑

ij cij = N〈k〉

p(c|〈k〉) =
δ∑

ij cij ,N〈k〉

N (〈k〉) , N (〈k〉) =
∑

c

δ∑
ij cij ,N〈k〉

calculate N (〈k〉):

use δnm = (2π)−1 ∫ π
−πdω ei(n−m)ω

N (〈k〉) =

∫ π

−π

dω

2π
eiωN〈k〉

∑
c

e−iω
∑

ij cij =

∫ π

−π

dω

2π
eiωN〈k〉

∏
i<j

[∑
cij

e−2iωcij
]

=

∫ π

−π

dω

2π
eiωN〈k〉(1+e−2iω)

1
2 N(N−1)

=

1
2 N(N−1)∑
`=0

( 1
2 N(N−1)

`

)∫ π

−π

dω

2π
eiωN〈k〉−2i`ω =

( 1
2 N(N−1)

1
2 N〈k〉

)
= e

1
2 N〈k〉

[
log(N/〈k〉)+1

]
+O(log N) Stirling : n! = en log n−n+O(log n) n→∞
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Example 1b

nondirected graphs, cii = 0 for all i ,
impose average connectivity via soft constraint,
Ω(c) =

∑
ij cij

demand 〈
∑

ij cij〉 = N〈k〉

p(c|〈k〉) =
1

Z (ω)
eω

∑
ij cij , Z (ω) =

∑
c

eω
∑

ij cij

ω solved from : 〈k〉 =
1

Z (ω)

∑
c

( 1
N

∑
k`

ck`

)
eω

∑
ij cij =

d

dω

1
N

log Z (ω)

calculate Z (ω) and ω:

〈k〉 =
d

dω

1
N

log(e2ω+1)
1
2 N(N−1) = (N−1)

e2ω

e2ω+1

Equivalently:

p(c|〈k〉) =
1

Z (ω)

∏
i<j

e2ωcij =
1

Z (ω)

∏
i<j

[
e2ωδcij ,1 + δcij ,0

]
=

∏
i<j

e2ωδcij ,1 + δcij ,0

e2ω + 1
=
∏
i<j

[ e2ω

e2ω+1
δcij ,1 +

1
e2ω+1

δcij ,0

]
Erdös-Rényi ensembleACC Coolen, King’s College London 16 / 61



Example 2a

nondirected graphs, cii = 0 for all i ,
impose degree sequence via hard constraint,
Ωi (c) =

∑
j cij , i = 1 . . .N

demand:
∑

j cij = ki for all i

p(c|k) =

∏
i δ

∑
j cij ,ki

N (k)
, N (k) =

∑
c

∏
i

δ∑
j cij ,ki

calculate N (k):

use δnm = (2π)−1 ∫ π
−πdω ei(n−m)ω

N (k) =

∫ π

−π

∏
i

(dωi

2π
eiωi ki

)∑
c

e−i
∑

i ωi
∑

j cij =

∫ π

−π

dωeiω·k

(2π)N

∏
i<j

[∑
cij

e−i(ωi +ωj )cij
]

=

∫ π

−π

dω eiω·k

(2π)N

∏
i<j

(1+e−i(ωi +ωj )) = ? possible (leading orders in N),

but no longer obvious ...
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Example 2b

nondirected graphs, cii = 0 for all i ,
impose degree sequence via soft constraint,
Ωi (c) =

∑
j cij , i = 1 . . .N

demand: 〈
∑

j cij〉 = ki for all i

p(c|k) =
1

Z (ω)
e
∑

i ωi
∑

j cij , Z (ω) =
∑

c

e
∑

i ωi
∑

j cij

ω solved from : ∀m : km =
1

Z (ω)

∑
c

(∑
n

cmn

)
e
∑

i ωi
∑

j cij =
∂

∂ωm
log Z (ω)

calculate Z (ω) and ω:

km =
∂

∂ωm
log
∑

c

e
∑

i<j cij (ωi +ωj ) =
∂

∂ωm
log
∏
i<j

[∑
cij

ecij (ωi +ωj )
]

=
∑
i<j

∂

∂ωm
log(1+eωi +ωj ) =

1
2

∑
i 6=j

(δim +δjm)
eωi +ωj

1+eωi +ωj
=
∑
i 6=m

eωi +ωm

1+eωi +ωm

N transcendental eqns to be solved ...
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Example 3a

nondirected graphs, cii = 0 for all i ,
impose degree sequence and kernel W (k , k ′) via hard constraint,
Ωi (c) =

∑
j cij , i , j = 1 . . .N,

Ωkk′(c) =
∑

ij cijδk,
∑
` ci`δk′,

∑
` cj` , k , k ′ ∈ IN

demand:
∑

j cij = ki for all i , and∑
ij cijδk,

∑
` ci`δk′,

∑
` cj` = N〈k〉W (k , k ′) for all (k , k ′)

(with 〈k〉 = N−1∑
i ki )

p(c|k,W ) =

[∏
i δ

∑
j cij ,ki

][∏
k,k′ δ∑ij cijδk,ki

δk′,kj
,N〈k〉W (k,k′)

]
N (k,W )

,

N (k,W ) =
∑

c

[∏
i

δ∑
j cij ,ki

][∏
k,k′

δ∑
ij cijδk,ki

δk′,kj
,N〈k〉W (k,k′)

]
calculate N (k,W ):

N (k,W ) =

∫ π

−π

∏
i

(dωi

2π
eiωi ki

)(∏
k,k′

dψkk′

2π
eiψkk′N〈k〉W (k,k′)

)
×
∑

c

e
−i

∑
i ωi

∑
j cij−i

∑
kk′ψkk′

∑
ij cijδk,ki

δk′,kj doable, but increasingly complicated ....
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Counting tailored graphs

'

&

$

%

G = {0, 1}
1
2 N(N−1)'

&

$

%

〈k〉 = ...'

&

$

%
p(k) = . . .#

"
 
!

W (k, k′) = . . .

-PPPPPPPPPq

Z
Z
Z
Z
Z
Z
Z
Z~

@
@
@
@
@
@
@@R

how many graphs
in each family?
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entropy and complexity

properties of Shannon entropy (information theory)

effective nr of graphs in ensemble p(c|?):
(?: imposed observables)

N (?) = eN〈k〉S(?), S(?) = − 1
N〈k〉

∑
c

p(c|?) log p(c|?) (entropy per link)

S(?): proportional to the average nr of bits one needs to specify
to identify a member graph c in the ensemble

complexity of graphs in ensemble p(c|?):

C(?) = S(∅)− S(?)

∅: no constraints
nondirected, cii = 0 ∀i :

p(c|∅) = 2−
1
2 N(N−1), S(∅) = − 1

N〈k〉 log 2−
1
2 N(N−1) =

N−1
2〈k〉 log 2

∃ many graphs with feature ?: graphs with ? have low complexity
∃ few graphs with feature ?: graphs with ? have high complexity
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Shannon entropy per bond
final result for nondirected graphs

P(c) =
∑

k

[∏
i

dki p(ki )
]∏

i δki ,ki (c)

Z (k,W )

∏
i<j

[ 〈k〉
N

W (ki , kj )

p(ki )p(kj )
δcij ,1 +

(
1− 〈k〉

N
W (ki , kj )

p(ki )p(kj )

)
δcij ,0

]

S =
1
2

[1+log(
N
〈k〉 )]︸ ︷︷ ︸

Erdos−Renyi entropy

−
{ 1
〈k〉

∑
k

p(k) log[
p(k)

π(k)
]︸ ︷︷ ︸

degree complexity

+
1
2

∑
k,k′

W (k , k ′) log
[ W (k , k ′)

W (k)W (k ′)

]
︸ ︷︷ ︸

wiring complexity

}

+ εN

limN→∞ εN = 0

π(`) = e−〈k〉〈k〉`/`!
degree distr of Erdös-Renyi graphs

degree complexity: proportional to Kullback-Leibler distance (so ≥ 0)
wiring complexity: proportional to mutual information (so ≥ 0)
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Shannon entropy per bond
final result for directed graphs:
~ki = (k in

i , k
out
i )

p(c) =
∑
~k

∏
i

[
d~ki p(~ki )

]∏
i δ~ki ,

~ki (c)

Z (~k,W )

∏
i<j

[ 〈k〉
N

W (~ki , ~kj )

p(~ki )p(~kj )
δcij ,1 +

(
1− 〈k〉

N
W (~ki , ~kj )

p(~ki )p(~kj )

)
δcij ,0

]

S = 1+log(
N
〈k〉 )︸ ︷︷ ︸

directed ER entropy

−
{ 1
〈k〉

∑
~k

p(~k) log[
p(~k)

π(k in)π(kout)
]

︸ ︷︷ ︸
degree complexity

+
∑
~k,~k′

W (~k , ~k ′) log
[ W (~k , ~k ′)

W (~k)W (~k ′)

]
︸ ︷︷ ︸

wiring complexity

}

+ εN

limN→∞ εN = 0

π(`) = e−〈k〉〈k〉`/`!
π(k in)π(kout): degree distr of directed Erdös-Renyi graphs

degree complexity: proportional to Kullback-Leibler distance (so ≥ 0)
wiring complexity: proportional to mutual information (so ≥ 0)
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Generating tailored random graphs numerically
'

&

$

%

G = {0, 1}
1
2 N(N−1)'

&

$

%

〈k〉 = ...'
&

$
%

p(k) = . . .�
�
�
�

W (k, k′) = . . .

next:

generate
tailored random graphs
from these families
numerically ...

typical questions

G: all nondirected N-node graphs
G[k]⊂G: all nondirected N-node graphs with degrees k

how to generate

random c ∈ G, with specified probability p(c)

random c ∈ G[k], with uniform probability

random c ∈ G[k], with specified probability p(c)

similar for directed graphs ...
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why is the generation of graphs a nontrivial issue?

many users underestimate/misjudge what the real problem is:

sampling the space of all graphs with given features: usually easy ...
sampling them with required probabilities: nontrivial!

many ad-hoc graph generation algorithms that appear sensible,
but without proper analysis of which measure they converge to

in cellular biology graphs are often used as ‘null models’,
against which to test hypotheses on observed features in
signalling networks

if these null models are biased,
the hypothesis test is fundamentally flawed ...
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trivial case: no constraints
standard Glauber/MCMC dynamics
(Metropolis et al 1953)

objective: generate random nondirected c ∈ {0, 1}
1
2 N(N−1)

with specified probabilities p(c)

strategy: start from any graph c
propose random moves cij → 1−cij (giving c→ Fijc),

define acceptance probabilities A(Fijc|c)
via detailed balance condition

A(Fijc|c)p(c) = A(c|Fijc)p(Fijc) → A(c′|c) =
[
1 + p(c)/p(c′)

]−1

stochastic process is ergodic,
and converges to the distribution p(c)

practicalities:
equilibration can take a very long time,
so monitor Hamming distances (trivially generalised

to directed graphs)
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Matching algorithm
(Bender and Canfield, 1978)

objective: generate random nondirected graph c ∈ {0, 1}
1
2 N(N−1)

with specified degree sequence k = (k1, . . . , kN)

strategy: stochastic growth dynamics,
starting from graph with no links

initialisation: cij = 0 for all (i , j)

repeat:

pick at random two nodes (i , j)

if
∑
` ci` < ki and

∑
` cj` < kj :

connect i and j
cij = 0 → cij = 1

terminate if
∑

j cij = ki for all i •
•

•

•

•

•
•

•

•

•

•

•

�
�
A
A

AA��

HH
��

JJ
��
HH JJ

HH

��A
A

��



?

(trivially generalised
to directed graphs)

ACC Coolen, King’s College London 31 / 61



Matching algorithm
limitations and problems ...

major limitation:

cannot control graph probabilities, just aims
to generate c∈G[k] with equal probs

•
•

•

•

•

•
•

•

•

•

•

•

�
�
A
A

AA��

HH
��

JJ
��
HH JJ

HH

��A
A

��



?

inconvenience: convergence not guaranteed

process can ‘hang’ before
∑

j cij = ki for all i
if one remaining ‘stub’ requires self-loops
(happens more often when there are ‘hubs’,
i.e. nodes with large degree)
– monitor the evolving degrees, to test for this
– if process ‘hangs’: reject and start over again from empty graph

sampling bias:

if process ‘hangs’, users often don’t reject the graph
but do ‘backtracking’ (for CPU reasons),
this creates correlations between graph realisations

even if we reject rather than backtrack:
no proof published yet that sampling measure p(c) is flat ...
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Edge switching algorithm
(Seidel, 1976)

objective: generate random nondirected graph c ∈ {0, 1}
1
2 N(N−1)

with specified degree sequence k = (k1, . . . , kN)

strategy: degree-preserving randomisation (‘shuffling’) process,
starting from any graph k = (k1, . . . , kN)

initialisation: cij = c0
ij for all (i , j),

where c0 is some graph
with the correct degrees

repeat:

pick at random four nodes (i , j , k , `)
that are pairwise connected

carry out an ‘edge swap’
(or ‘Seidel switch), see diagram
(preserves all degrees!)

terminate if stochastic process has equilibrated

• •

• •
−→

• •

• •

i

j

k

`

i

j

k

`
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Edge switching algorithm
limitations and problems ...

major limitation:

cannot control graph probabilities, aims
to generate c∈G[k] with equal probs

• •

• •
−→

• •

• •

i

j

k

`

i

j

k

`

inconvenience: need for a ‘seed graph’
with the correct degrees k = (k1, . . . , kN)

sampling bias:

edge swaps are ergodic on G[k] (Taylor, 1981),
but sampling is not uniform!

many possible moves only one move ...

nr of possible moves
depends on state c!

result:
stationary state of Markov chain
favours high-mobility graphs

dangerous for scale-free graphs ...
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target:
uniform measure p(c)
on G[k]

n(c) = (N−2)(N−3)

1 graph
n(c) = 2(N−3)

(N−2)(N−3) graphs

0.01

0.02

0.03

0 100000 200000 300000 400000 500000

←simulation

←theory
n(c)/N2

executed moves

for flat measure:

〈n(c)〉 =
(N−2)(N−3) + (N−2)(N−3).2(N−3)

1 + (N−2)(N−3)

=
(N−2)(N−3)[1 + 2(N−3)]

1 + (N−2)(N−3)

N = 100:
〈n(c)〉/N2 ≈ 0.0195

‘accept all’
edge swapping:
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need to study graph dynamics more systematically ...
Monte Carlo processes for constrained graphs

constraints:
G[?] ⊆ G: all c∈G that satisfy constraints ?

stochastic graph dynamics as a Markov chain,
transition probabilities W (c|c′) for the move c′ → c
n ∈ IN: algorithmic time

∀c ∈ G[?] : pn+1(c) =
∑

c′∈G[?]

W (c|c′)pn(c′)

allowed moves (exclude identity):

Φ: set of allowed moves F : GF [?]→ G[?]
GF [?]: those c ∈ G[?] on which F can act

all moves are auto-invertible: (∀F ∈ Φ) : F 2 = 1I
Φ is ergodic on G[?]
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MCMC objective
construct transition probs W (c|c′), based on moves F ∈ Φ,
such that process converges to p(c) = Z−1e−H(c) on G[?]

W (c|c′) =
∑
F∈Φ

q(F |c′)
[
δc,Fc′A(Fc′|c′) + δc,c′ [1− A(Fc′|c′)]

]
q(F |c) : move proposal probability

A(c|c′) : move acceptance probability

graph mobility n(c):

n(c) =
∑
F∈Φ

IF (c), IF (c) =

{
1 if c ∈ GF [?]
0 if c /∈ GF [?]

detailed balance condition:

(∀F ∈Φ)(∀c∈G[?]) : q(F |c)A(Fc|c)e−H(c) = q(F |Fc)A(c|Fc)e−H(Fc)

if allowed F equally probable:
q(F |c) = IF (c)/n(c)

(∀F ∈Φ)(∀c∈GF [?]) :
1

n(c)
A(Fc|c)e−H(c) =

1
n(Fc)

A(c|Fc)e−H(Fc)
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canonical Markov chain

ergodic auto-invertible moves F ∈ Φ,
convergence to p(c) = Z−1e−H(c) on G[?]
for acceptance probabilities

A(c|c′) =
n(c′)e−

1
2 [H(c)−H(c′)]

n(c′)e−
1
2 [H(c)−H(c′)] + n(c)e

1
2 [H(c)−H(c′)]

conventional edge-swapping?
(∀c, c′) : A(c|c′) = 1

(∀F , c) :
A(Fc|c)e−H(c)

n(c)
=

A(c|Fc)e−H(Fc)

n(Fc)
→ (∀F , c) :

e−H(c)

n(c)
=

e−H(Fc)

n(Fc)

corresponds to
H(c)=− log n(c),
so would give sampling bias : p(c) =

n(c)∑
c′∈G[?] n(c′)
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Constrained dynamics of nondirected graphs

bookkeeping of elementary moves
constraints: imposed degrees, so graph set is G[k]

ergodic set Φ of admissible moves:
edge swaps F : GF [k]→ G[k]

{(i , j , k , `) ∈ {1, . . . ,N}4| i< j<k<`}, ordered node quadruplets

possible edge swaps
to act on (i , j , k , `):

I

s ss si j

k`

II

s ss s
i j

k`
�
�
@
@

III

s ss s
i j

k`

@
@
@
@
@
@�
�
�
�
�
�

IV

s ss si j

k`

V

s ss si j

k`
�
�
@
@
�
�
@
@
�
�
@
@

VI

s ss si j

k`

@
@�
�

group into pairs (I,IV), (II,V), and (III,VI)
auto-invertible swaps: Fijk`;α, with i < j < k < ` and α ∈ {1, 2, 3}
Iijk`;α(c) = 1: Fijk`;α(c)qr = 1−cqr for (q, r) ∈ Sijk`;α

Fijk`;α(c)qr = cqr for (q, r) /∈ Sijk`;α

Sijk`;1 ={(i , j), (k , `), (i , `), (j , k)}, Sijk`;2 ={(i , j), (k , `), (i , k), (j , `)}
Sijk`;3 ={(i , k), (j , `), (i , `), (j , k)}
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to implement the Markov chain,
need analytical formula for the graph mobility

n(c) =
∑N

i<j<k<`

∑3
α=1 Iijk`;α(c)

Iijk`;1(c) = cijck`(1−ci`)(1−cjk ) + (1−cij )(1−ck`)ci`cjk

Iijk`;2(c) = cijck`(1−cik )(1−cj`) + (1−cij )(1−ck`)cik cj`

Iijk`;3(c) = cik cj`(1−ci`)(1−cjk ) + (1−cik )(1−cj`)ci`cjk

combinatorial problem:
(δij = 1−δij )

n(c) =
∑

i<j<k<`

invariant under all permutations of (i,j,k,`)︷ ︸︸ ︷(
Iijk`;1(c) + Iijk`;2(c) + Iijk`;3(c)

)
=

1
4!

∑
ijk`

δijδikδi`δjkδj`δk`

3∑
α=1

Iijk`;α(c) (permutation invariance)

=
1
4

∑
ijk`

δijδikδi`δjkδj`δk`cijck`(1−ci`)(1−cjk ) (permutation, inversion)

=
1
4

∑
ijk`

δikδi`δjkδj`cijck`(1−ci`)(1−cjk ) (no diagonal entries)
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work out remaining terms explicitly ...

n(c) =
1
4

N2〈k〉2 +
1
4

N〈k〉 − 1
2

N〈k2〉︸ ︷︷ ︸
invariant

+
1
4
Tr(c4) +

1
2
Tr(c3)− 1

2

∑
ij

kicijkj︸ ︷︷ ︸
state dependent

Examples:

Fully connected graphs:
ki = N−1 for all i , Tr(c4) = (N−1)[(N−1)3 +1], Tr(c3) = N(N−1)(N−2)
formula: n(c) = 0 (ok by inspection)

Periodic chains cij = δi,j−1 + δi,j+1 (mod N), N ≥ 4:
ki = 2 for all i , Tr(c4) = 6N, Tr(c3) = 0
formula: n(c) = N(N−4) (ok by inspection)

Two isolated links c12 = c21 = c34 = c43 = 1, all other cij = 0:
k1 =k2 =k3 =k4 =1, ki>4 = 0, Tr(c4) = 4, Tr(c3) = 0
formula: n(c) = 2 (ok by inspection)

Regular random graphs with p(k) = δk,2:
use eigenvalue distribution of c (Dorogovtsev 2003),
formula: n(c) = N(N−4) + o(N)
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n(c) =
1
4

N2〈k〉2 +
1
4

N〈k〉 − 1
2

N〈k2〉︸ ︷︷ ︸
invariant

+
1
4
Tr(c4) +

1
2
Tr(c3)− 1

2

∑
ij

kicijkj︸ ︷︷ ︸
state dependent

practicalities

how to avoid calculating n(c) at each iteration step,

use simple bounds:
N
4

(
N〈k〉2 +〈k〉−〈k2〉

)
− N

2
〈k2〉kmax ≤ n(c) ≤ N

4

(
N〈k〉2 +〈k〉−〈k2〉

)
state-dependent part can be ignored if 〈k2〉kmax/〈k〉2 � N

(i) calculate n(c) only at time n = 0
(ii) update n(c) dynamically, by calculating at each step

change ∆ijk`;αn(c) for executed move Fijk`;α

e.g.

∆ijk`;αTr(c3) = 6
∑

(a,b)∈Sijk`;α, a<b

(1−2cab)
∑

v /∈{i,j,k,`}

cbv cva

∆ijk`;αTr(c4) = more complicated but explicit formula ...
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Example:
target =
uniform measure on G[k]

many possible moves only one move ...

0.01

0.02

0.03

0 100000 200000 300000 400000 500000

A(c|c′) = 1

A(c|c′) = [1+ n(c)
n(c′)

]−1
n(c)/N2

executed moves

N = 100

naive versus correct
acceptance probabilities

predictions:

p(c) = constant :
n(c)/N2≈ 0.0195

p(c) = n(c)/Z :
n(c)/N2≈ 0.0242
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Example

graph type A: n(c) = K (K − 1)
graph type B: n(c) = 2(K − 1)

measure distribution Q(f ) of
(rescaled) frequencies at which
graphs are visited

‘accept all’ correct dynamics
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Example
human protein interaction network
N = 9463, 〈k〉 ≈ 7.4

13.2

13.3

13.4

0 200000 400000 600000 800000 1000000

n(c)/N2

executed moves

2

3

4

5

6

0 200000 400000 600000 800000 1000000

Tr(c3)/N

executed moves

•: ‘accept all’ edge swap dynamics
o: correct edge swap dynamics

(so no serious harm done yet ...)
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Example
target =
degree-correlated
measure on G[k]
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N = 4000,
k = 5

Π(k , k ′) =
(k − k ′)2

[β1 − β2k + β3k2][β1 − β2k ′ + β3k ′2]
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Constrained dynamics of directed graphs

bookkeeping of elementary moves
constraints: imposed in-out degrees, so graph set is G[kin, kout]

set Φ of admissible moves:
directed edge swaps F : GF [kin, kout]→ G[kin, kout]

u u
u uix jx

jyiy

-

-
⇔ u u

u uix jx

jyiy
�
���@
@@R

auto-invertible edge-swaps:
Let Λ = {(i , j) ∈ N2| cji = 1}

I(ix ,jx ),(iy ,jy );� =

{
1 if (ix , jx ), (iy , jy ) ∈ Λ and (ix , jy ), (iy , jx ) /∈ Λ
0 otherwise

If I(ix ,jx ),(iy ,jy );� = 1:

F(ix ,jx ),(iy ,jy );�(c)ij = 1− cij if i ∈ {ix , iy} and j ∈ {jx , jy}
F(ix ,jx ),(iy ,jy );�(c)ij = cij otherwise
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for nondirected graphs:
edge swaps are ergodic set of moves
(Taylor, 1981 – proof based on Lyapunov function)

for directed graphs:
are edge swaps ergodic set of moves? u u

u u-
-

⇔ u u
u u
�
���

@
@@R

Rao, 1996:

unless self-interactions are allowed,
edge swaps not ergodic for directed graphs

proof:
by counterexample

these two N = 3 graphs
are both in G[kin, kout],
with kin = kout = (1, 1, 1)

but no edge swap maps one to the other
v v
v
-@
@
@I

? v v
v
6

�

@
@
@R
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further move type required
to restore ergodicity:
3-loop reversal u u

u
ix jx = iy

jy

-@
@@I
?

⇔ u u
u

ix jx = iy

jy
6

�

@
@@R

I(ix ,jx ),(iy ,jy );4 =


1 if (ix , jx ), (iy , jy ), (jy , ix ) ∈ Λ and xj = yi

and (jx , ix ), (jy , iy ), (ix , jy ) /∈ Λ

0 otherwise

F(ix ,jx ),(iy ,jy );4(c)ij = 1− cij for (i , j) ∈ Six ,jx ,jy

F(ix ,jx ),(iy ,jy );4(c)ij = cij for (i , j) /∈ Six ,jx ,jy

Sabc = {(a, b), (b, c), (c, a), (b, a), (c, b), (a, c)}

ACC Coolen, King’s College London 54 / 61



1 Background
Networks and graphs
Tailored random graph ensembles

2 Counting tailored graphs
Entropy and complexity
Entropy of tailored ensembles of nondirected graphs
Entropy of tailored ensembles of directed graphs

3 Generating tailored random graphs numerically
The most common algorithms and their problems
Monte-Carlo processes for constrained graphs

4 Degree-constrained MCMC dynamics of nondirected graphs
Bookkeeping of elementary moves
The mobility of graphs
Application examples

5 Degree-constrained dynamics of directed graphs
Bookkeeping of elementary moves
The mobility of graphs
Application examples

ACC Coolen, King’s College London 55 / 61



to implement the Markov chain,
need to calculate graph mobility analytically:

n(c) = n�(c) + n4(c)

=
∑

(ix ,jx ),(iy ,jy )∈Λ

I(ix ,jx ),(iy ,jy );� +
∑

(ix ,jx ),(iy ,jy )∈Λ

I(ix ,jx ),(iy ,jy );4

I(ix ,jx ),(iy ,jy );� = cix ,jx ciy ,jy (1−cix ,jy )(1−ciy ,jx )

I(ix ,jx ),(iy ,jy );4 = δxj ,yi cix ,jx ciy ,jy cjy ,ix (1−cjx ,ix )(1−cjy ,iy )(1−cix ,jy )

combinatorial problem again easily solved:

n�(c) =
1
2

N2〈k〉2 −
∑

j

k in
j kout

j︸ ︷︷ ︸
invariant

+
1
2
Tr(c2) +

1
2
Tr(c†cc†c) + Tr(c2c†)−

∑
ij

k in
i cijkout

j︸ ︷︷ ︸
state dependent

n4(c) =
1
3
Tr(c3)− Tr(ĉc2) + Tr(ĉ2c)− 1

3
Tr(ĉ3)︸ ︷︷ ︸

state dependent
with: (c†)ij = cji , ĉij = cijcji
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n�(c) =
1
2

N2〈k〉2 −
∑

j

k in
j kout

j +
1
2
Tr(c2) +

1
2
Tr(c†cc†c) + Tr(c2c†)−

∑
ij

k in
i cijkout

j

n4(c) =
1
3
Tr(c3)− Tr(ĉc2) + Tr(ĉ2c)− 1

3
Tr(ĉ3)

practicalities

how to avoid calculating n�(c) and n4(c) at each iteration step,

use simple bounds on n�(c) and n4(c),
state-dependent part can be ignored if

1
〈k〉 +

2
〈k〉2

(
k in

max〈kout 2〉+ kout
max〈k in 2〉

)
� N

(i) calculate n�(c) and n4(c) only at time n = 0
(ii) update n�(c) and n4(c) dynamically, by calculating at each step

change ∆ijk`;αn�(c) and ∆ijk`;αn4(c) for executed move Fijk`;α
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Example

(k in
1 , k

out
1 ) = (0,N−2)

i = 2 . . .N−1:
(k in

i , k
out
i ) = (1, 1)

(k in
N , k

out
N ) = (N−2, 0)

(N−2)(N−3) moves 2N − 7 moves

predicted values versus
equilibrated dynamics for n(c)/N2:

prediction for dynamics with dynamics with
p(c) = const A(c|c′) = 1 A(c|c′) = [1+ n(c)

n(c′)
]−1

N = 17: 27.87 33.59 27.87
N = 27: 47.92 58.32 47.95
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Example

fully connected ‘core’ of N−2 nodes,
plus two extra nodes

N = 20 , target: flat measure

‘accept all’ edge swapping:
n(c)〉 ≈ 41.09
predicted: 41.03

edge swapping with
correct acceptance
probabilities:
n(c) ≈ 33.92
predicted: 33.89

30

35

40

45

0 100000 200000 300000 400000 500000

iterations

n(c)
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