Statistical physics of tailored random graphs:
entropies, processes, and generation

Il. Tailored sparse random graphs
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e Background
@ Networks and graphs
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Background - tailored random graphs

networks/graphs:

number of nodes: N
nodes (vertices): i,je€ {1,...,N}

links (edges): cj € {0,1}
no self-links: ci =0 forallij
graph: c = {¢;}
Cj=1 .
/ N /

nondirected graph:  V(i,j) : ¢; = Gji
directed graph: A(i,f): ¢ # i
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if we model real-world systems by graphs

we want these graphs to be realistic ...
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Networks in cell biology

@ protein interaction networks:

nodes: proteins i,j=1...N
links: cj=c;=1 ificanbindto
cj=c;=0 otherwise

nondirected graphs,
N ~ 10*, links/node ~ 7

\ b

) ORI
x%k*&%g\\

@ gene regulation networks:

nodes: genesi,j=1...N
links: ¢;j=1 if j is transcription factor of i
c;j=0 otherwise

directed graphs,
N ~ 10*, links/node ~ 5
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Quantify topology of nondirected graphs

@ degrees,
degree sequence: ki(c) = >, cijs k(c) = (ki(c), ..., kn(c))

@ degree distribution:

@ joint degree statistics k
of connected nodes

1

W(k,K'|c) = Nk Z CijOk,ki(c) Ok’ k(<)
i

ki = k? ki=k?

normalisation: 1

> Wik Kle) = WZ,C” = szzk/(c) =1

k,k' >0 {
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@ relation between p and W:

, 1
Z W(k>k |C) = N<k Zcﬁékvki(c)
k/
1
RIS Zki(c)5k,k/(c) 25k ki) = P(k|e)k/(k)

W(klc)

@ hence maginals of W carry no info beyond degree statistics
so focus on: W(k,K'|c)

Nk K10) = ke wiko)

if 3(k, k') with M(k, k'|c) # 1:
structural information in degree correlations

p(k)
) e ) H sapiens PIN
. N = 9306
A (K) = 7.53
K e K00
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Quantify topology of directed graphs

links now become arrows

@ degrees, ) ) . .
degree sequences: ki"(e) = >, Cijs k'"(c) = (k"(c),...,ky'(c))

kivt(e) =3;cin kM (e) = (k"'(c),... ky"'(c))
@ degree distribution:

N4 in ou K 1
ki — K= (k" k™) p(kle) = 5 D i

@ joint in-out degree statistics
of connected nodes

W(k,K'|c) = Zc,,kk(c)

note:
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@ relation between p and W:

- 1
Wi(kle) = Z N Z CiiO% ki (c)OF" K (e) = N{k) Z Cii%% &(c)
= ﬁk) Z km(c) R‘ E = k n Z K k p(R|C)k1n/<k>

WZ(RI|C) = Z N ZC'/ K.k (c N k ZC’/ K Ki(c)
K

— 1 out _ kout/(c) _ = outs
T N(k) zj:k/ (0)5;?’,!?/(6) ~ TN(k) ;‘SE',E,@) = p(k'|e)k™™"/ (k)

so focus on:

if 3(k, k') with M(k, K'|¢) # 1:
structural information in degree correlations
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Information in degree correlations?

plot N(k, k') = W(k,k')/W(k)W(K')
for protein interaction networks:

H.pylori (Y2H 2001)

C.jejuni (Y2H 2007)

S.cerevisiae li(core)(Y2H 2001) .

S.cerevisiae Xl (Y2H 2008)
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Graph classification e.g. nondirected graphs:
via increasingly detailed G= (01 }%N(N_ﬂ \

feature prescription f
[ (k) = ...
Tailored
random graph k /

ensembles

maximum entropy random graph ensembles,
p(c) with prescribed values for (k), p(k), W(k, k'),...

— proxies for real networks in stat mech models
— complexity: how many networks exist with same features as ¢? counting
— hypothesis testing: graphs with controlled features as null models generating

N=1000: 22NN-1) 1080364 graphs
(universe has ~ 1082 atoms ...)
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e Background

@ Tailored random graph ensembles
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random graph ensembles

(i) set G of allowed graphs,
(i) probability measure p(c) on G

@ Tailoring via hard constraints

(i) impose values for specific observables: Q,(¢) =Q,foru=1...p
(i) p(c): all graphs that meet constraints are equally likely

Q) Q .
p(c|Q) = N(CS)I’) , N(@) =D dqeq (nrof graphs in ensemble)
[+
with Q = (Q1,...,Qp)
note 1:
p(c) maximises Shannon entropy S 1
on G[Q] = {c| Q(c) = Q} S= N > p(c)logp(c)
c
note 2:

5
248 (w0 m0)
NS _ - Sepe)logp(e) _ " T @y \99Qe.Q 9N ED) N(Q)
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@ Tailoring via soft constraints

(i) impose averages for specific observables: Q,(¢c) =Q,forp=1...p
(i) p(c): maximum entropy, subject to constraints

p(c|) = Z7'(@) Tk @U@ Z(@) = 37 Zp (D2
c
parameters w, ():
to be solved from Vi Y p(elQ)Qu(c) = Q.
c
note 1:

all graphs ¢ can in principle emerge; those with Q(c) ~ Q are the most likely

note 2:
effective number of graphs A/(R2) defined via entropy:

N(Q) = MR8 gl = — ﬁ > p(c|)log p(c|)
ceG

note 3:

for observables Q(c) that are macroscopic in nature and O(N°),
one will generally find deviations from ©(¢) = Q to tend to zero as N — oo
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Example 1a

nondirected graphs, c¢; = 0 for all i,
impose average connectivity via hard constraint,

Qc) =>;¢
@ demand }_; ¢; = N(k)
0% o N (k)
p(cl(k)) = Wa N((k)) = zc:(szi/cijaN<k>
@ calculate N ((k)):
use dom = (2m) " [T dw el ("M

N((R) = n %j SiwN ) Ze_mz,,c,», :/ dw wniey 11 [Z _zmcii]
- -

i<j cj
Tdw k) —2iwy LN(N—1)
= P 1 2
/_ g M)

1

_ i %N(N—1) T dw iwN (k) —2ilw %N(N—1)
- Z( ¢ )/_Wﬂe *(;N<k>)

— oiNG) [log(N/ (k))+1] +O(log N) Stirling: ni = "9n-n+Oloan
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Example 1b

nondirected graphs, c¢; = 0 for all i,
impose average connectivity via soft constraint,

Q(c)=>;¢j
@ demand (37, ¢;) = N(k)

pellk) = Z5e ™ 2w) = e

. _ 1 l w G — il
w solved from: (k) = Z(0) zc: (N%:C”)e 19 = 5109 Z()

@ calculate Z(w) and w:

_d1 2w INN-1) _ (n 2
(k) = dleoQ(e +1)2 =(N )eQW+1

@ Equivalently:

1 e 1 »
p(cl(k)) = Z(@) l_Ie2 = Z(@) [62 ;1 + 5c,-,-,o}
i<j i<j
2w
€ 5c,~,1 + 60/»,0 ezw 1
= H e2/Lu+1 : :I—[|:e.2w_~_160’7’1+ 2w+1écll ]
i<j i<j
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Example 2a

nondirected graphs, ¢; = 0 for all /,
impose degree sequence via hard constraint,

Qi(e) =3¢ i=1...N
@ demand: }°, c; = k; for all i

[T 055k
plell) = =g+ Nl= S 1 osek
c i

@ calculate N(k):

use dpm = (2m) " [T _dw el ("= M

_ dw, elwiki -3 wi e " dwe' i(witwj)cy
W0 = [TTL(g o) ot [T T[]
U}
T iw-k X
- % [J(1+e @)y =2 possible (leading orders in N),
—m \ET i<j but no longer obvious ...
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Example 2b

nondirected graphs, ¢; = 0 for all /,
impose degree sequence via soft constraint,

Qi(e) =3¢ i=1...N
@ demand: (3, ¢j) = ki for all /

p(clk) =

1 22 wi 22 Cj — 3o wi 35 Gy
Z(w)e J i, Z(w)fZe J i

. . _ 1 SiwidliCj i
w solved from:  ¥m: kp= 4 Zc: (Zn: cm,,)e " = S log Z(w)

@ calculate Z(w) and w:

kn = &um log ZeZK, Gilorten) = 2 ~ log II [Zec'f ”'“Jf)}

i<j  cj
a witw; e wjtwj w+wm
= ,Z: o log(14+e“™1) = 2(6,m+6,m) 1T oo ) Z T owrrom

i

N transcendental egns to be solved ...
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Example 3a
nondirected graphs, c¢; = 0 for all i,
impose degree sequence and kernel W(k, k') via hard constraint,

Qi(c)=>,¢5, i,j=1...N,
Qkk’(c) = Zij Cijék,zg cm(sk/’zl Go k, k'e N

@ demand: }; ¢; = k; for all i, and

> Cidk s, 0Ok 5, o = N(K)W(k, k') for all (k, k)
(with (k) = N=' 3", k)

[Hi 52,0,;,&] [Hk,k/ O b0 by NiK) W(k,k')]

p(clk, W) =

N(k, W) ’
k W) Z [Hézlcq ] [Hézll C,Iék ki ék’ k SN(k)W(k, k’):|
k,k’

@ calculate MV(k

N(k, W / H dw/ ol k) (H dlg;k’ eiwkk,NmW(k,k/))

- - ’ Sk k. O . . .
X e P20 ‘Zkk'wkk i %%k doable, but increasingly complicated....

c
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Counting tailored graphs

how many graphs
in each family?

Y

G = {0, 133NN \
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9 Counting tailored graphs
@ Entropy and complexity
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entropy and complexity

properties of Shannon entropy (information theory)

@ effective nr of graphs in ensemble p(c|x):
(*: imposed observables)

N() = VRS g = —ﬁ > p(el+)log p(clx) (entropy per link)
[

@ S(x): proportional to the average nr of bits one needs to specify
to identify a member graph ¢ in the ensemble

@ complexity of graphs in ensemble p(c|*):
C(x) = S(0) — S(x)

?: no constraints
nondirected, ¢; = 0 Vi:

_IN(N— 1 _IN(N— N-1
p(cl0) =2 BNV Y, S(Q)Z—ngZ BNIN=1) _ ngz

3 many graphs with feature x:  graphs with x have low complexity
3 few graphs with feature x: graphs with x have high complexity
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9 Counting tailored graphs

@ Entropy of tailored ensembles of nondirected graphs
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Shannon entropy per bond
final result for nondirected graphs

_ T ke 17 1) Wik k) (k) Wik, k)

Pe) =3[ ITk plko)] gy 11 N otretky ™+ (=W pepti) )]
—[1+Iog { Zp g[p é W(k, k') log {#V’VK(Z')] }
—,_/ K.k!

Erdos—Renyi entropy degree complexity wiring complexity

+ en

IimN_m EN = 0

m() = e K (k) /01
degree distr of Erdés-Renyi graphs

degree complexity: proportional to Kullback-Leibler distance (so > 0)
wiring complexity: proportional to mutual information (so > 0)

ACC Coolen, King's College London 24 /61



9 Counting tailored graphs

@ Entropy of tailored ensembles of directed graphs

ACC Coolen, King's College London 25/61



Shannon entropy per bond
final result for directed graphs:

Ei = (kiin7 kiom)

p(e) = I ok ptho] i T (K0, (1= (0 ), )
K i Z(k, W) i<j p(ki)p(k;) p(ki)p(k;)
p(k) e W(k k')
S = 1+log( log[ 7+ W(k,k')log | —=——4—
g { k> Zp g kln)ﬂ—(kouf)] % ) g [W(k)W(k,)} }
directed ER entropy degree complexity wiring complexity

Iim,\Hoo EN = 0

m(l) = e~ R (k)¢ /01
w(k™)m(k°""): degree distr of directed Erdés-Renyi graphs

degree complexity: proportional to Kullback-Leibler distance (so > 0)
wiring complexity: proportional to mutual information (so > 0)

ACC Coolen, King's College London 26 /61



Generating tailored random graphs numerically

next:

G = {0,1}zNV-1

generate
tailored random graphs

from these families
numerically ...

typical questions

G: all nondirected N-node graphs
G[K] C G: all nondirected N-node graphs with degrees k

how to generate

@ random ¢ € G, with specified probability p(c)
@ random ¢ € G[K], with uniform probability
@ random ¢ € GIK], with specified probability p(c)

similar for directed graphs ...
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why is the generation of graphs a nontrivial issue?

@ many users underestimate/misjudge what the real problem is:
sampling the space of all graphs with given features: usually easy ...
sampling them with required probabilities: nontrivial!

@ many ad-hoc graph generation algorithms that appear sensible,
but without proper analysis of which measure they converge to

@ in cellular biology graphs are often used as ‘null models’,
against which to test hypotheses on observed features in
signalling networks

if these null models are biased,
the hypothesis test is fundamentally flawed ...
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e Generating tailored random graphs numerically
@ The most common algorithms and their problems
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trivial case: no constraints
standard Glauber/MCMC dynamics
(Metropolis et al 1953)

objective: generate random nondirected ¢ € {0, 1}2NV-1
with specified probabilities p(c)

strategy: start from any graph ¢
propose random moves c; — 1—c¢; (giving ¢ — Fjc),

define acceptance probabilities A(Fjc|c)
via detailed balance condition

A(Fiele)p(e) = AelFie)p(Fie) —  A(e'le) = [1+ p(e)/p(c)]

stochastic process is ergodic,
and converges to the distribution p(c)

practicalities:

equilibration can take a very long time,

so0 monitor Hamming distances (trivially generalised
to directed graphs)
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Matching algorithm
(Bender and Canfield, 1978)

objective: generate random nondirected graph ¢ € {0, 1}2MV-"
with specified degree sequence k = (ki, ..., ky)

strategy: stochastic growth dynamics,
starting from graph with no links

@ initialisation: ¢; = 0 for all (i, )

M

@ pick at random two nodes (i, f)
@ ify ,ce<kand),ce <Kk % ? §
connect i and j . ~

C/j:0—>C,'j=1 kv
.

terminate if 3, c; = k; for all /

(trivially generalised
to directed graphs)
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Matching algorithm

limitations and problems ... Y 4\ /

@ major limitation:

cannot control graph probabilities, just aims < 7 >

to generate ¢ € G[k] with equal probs

@ inconvenience: convergence not guaranteed k\/

process can ‘hang’ before }°, ¢; = k; for all i
if one remaining ‘stub’ requires self-loops
(happens more often when there are ‘hubs’,
i.e. nodes with large degree)

— monitor the evolving degrees, to test for this
— if process ‘hangs’: reject and start over again from empty graph
@ sampling bias:

if process ‘hangs’, users often don’t reject the graph
but do ‘backtracking’ (for CPU reasons),
this creates correlations between graph realisations

even if we reject rather than backtrack:
no proof published yet that sampling measure p(c) is flat ...
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Edge switching algorithm
(Seidel, 1976)

objective: generate random nondirected graph ¢ € {0, 1}2VN-1

with specified degree sequence k = (ki, ..., ky)

strategy: degree-preserving randomisation (‘shuffling’) process,
starting from any graph k = (kq, ..., kn)

@ initialisation: c; = ¢} for all (i, ),
where ¢° is some graph
with the correct degrees

repeat:
@ pick at random four nodes (i, , k, £) J ¢ ) ¢
that are pairwise connected 1 I
.
@ carry out an ‘edge swap’
k ik

(or ‘Seidel switch), see diagram i
(preserves all degrees!)

terminate if stochastic process has equilibrated
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Edge switching algorithm
limitations and problems ... J ¢ J ¢

@ major limitation:

cannot control graph probabilities, aims
to generate ¢ € G[k] with equal probs

@ inconvenience: need for a ‘seed graph’
with the correct degrees k = (ki, ..., kn)
@ sampling bias:

edge swaps are ergodic on G[k] (Taylor, 1981),
but sampling is not uniform!

many possible moves only one move ...

nr of possible moves
depends on state ¢!

7 7A

NSUANN

e
72

K]
=
4‘ ‘i‘i

«g

/|
%
2N

y
Vss
N\

7
4

result:
stationary state of Markov chain
favours high-mobility graphs

lll‘%\\
%

N

7
N

l

i

/

a7

dangerous for scale-free graphs ...
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1 graph (N—2)(N-3) graphs

target:
n(c) = (N-2)(N-3) n(c) =2(N-3)

uniform measure p(c)
on GlK]

NS,
S
X

for flat measure:
_ (N-2)(N-3)+ (N-2)(N-3).2(N-3)
(n(e)) = 14 (N—2)(N_3)
_ (N=2)(N-3)[1 +2(N-3)]
- 1+ (N-2)(N-3)

N =100:
(n(c))/N? ~ 0.0195 . . .
° ..M*o.u'....:...' ~ '.0'000.- . «simulation
‘accept all’ ”(C)/Nzoozr ) ) 7
edge swapping: ' «theory
ﬂﬂﬂﬂﬂﬂ exe:;:;;;d r;;:;;s R
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e Generating tailored random graphs numerically

@ Monte-Carlo processes for constrained graphs
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need to study graph dynamics more systematically ...
Monte Carlo processes for constrained graphs

@ constraints:
G[x] C G: all ce G that satisfy constraints x

@ stochastic graph dynamics as a Markov chain,
transition probabilities W(c|c’) for the move ¢’ — ¢
n € IN: algorithmic time

Ve e Glxl:  pra(c)= ) W(clc)pa(c’)
¢’ €Gl*]
@ allowed moves (exclude identity):

$: set of allowed moves F : Ge[x] — G[*]
Gr[#]: those ¢ € G[*] on which F can act

all moves are auto-invertible: (VF € ®): F2 =1
® is ergodic on G[*]
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MCMC objective

construct transition probs W(c|c’), based on moves Feo,
such that process converges to p(c) = Z~ e~ on G[]

W(ele') = > a(FIe’) [de.ro AFE€) + doer[1 — A(FE/|)]

Feo
q(F|c) : move proposal probability
A(c|e’) :  move acceptance probability
@ graph mobility n(c):

- [ 1 ifce Ge[¥]
n(c) = ,; Ir(c), Ir(e) = { 0 ifc¢ Ge[#]

@ detailed balance condition:
(VFed)(VeeGl+]):  q(F|e)A(Fele)e ® = g(F|Fe)A(c|Fe)e "FO
if allowed F equally probable:
q(Fle) = Ir(c)/n(c)

(VF e d)(Vee Grl]) : %A(Fqc)e*'ﬂc) _ n(F :

ACC Coolen, King's College London 38/61
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canonical Markov chain
ergodic auto-invertible moves F € ¢,

convergence to p(c) = Z~'e " on G[4]
for acceptance probabilities

n(c’ Yo HHEO—HE ]

/ j—
Alele’) = N\ o— 3 [H(©)—H(c")] 3 [H(e)—H(e")]
n(c’)e 2 + n(c)ez

conventional edge-swapping?
(ve,c’) : Aclc’) =1

~ A(Fele)e H®  A(c|Fe)eH(Fe) e He)  H(Fe)
(VF,c): n(c) = (o) — (VF,c): © = n(Fo)
corresponds to
H(C):r o (e). sampling bias (c) _ne
i i ias : =
so would give piing p Zc’eG[*] n(c)
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e Degree-constrained MCMC dynamics of nondirected graphs
@ Bookkeeping of elementary moves
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Constrained dynamics of nondirected graphs

bookkeeping of elementary moves
@ constraints: imposed degrees, so graph set is G[K]

ergodic set ¢ of admissible moves:
edge swaps F : Ge[k] — GIK]

{(i,j, k,0) € {1,...,N}*| i<j< k<(}, ordered node quadruplets

possible edge swaps i ' i I i ”Ij ,'le i Vj iVIj
to act on (i, ], k, £): X M X M
¢ k ¢ k ¢ Kk ¢ k ¢ k ¢ Kk

@ group into pairs (1,1V), (I1,V), and (Il1,VI)
auto-invertible swaps: Fjis.q, Withi < j < k < ¢and o € {1,2,3}
Iilkl;a(c) =1 Fijké;a (c)q/’ =1-¢q for (q7 f) € S/fkf;a
Fike.a(€)gr = Cor for (q,r) ¢ Sikea

Sijklﬂ :{(iaj)a (ka £)7 (’a E)a U7 k)}7 Sijké;Zz{(iaj)7 (k7€)7 (I, k)7 (jvﬁ)}
Sijké;3:{(i’ k)7 (ja Z)v (Iv 4)7 (j’ k)}
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e Degree-constrained MCMC dynamics of nondirected graphs

@ The mobility of graphs
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to implement the Markov chain,
need analytical formula for the graph mobility

n(e) = 3% ckee Xo likea(C)

like:1(€) = Cicke(1—Cie)(1—Ci) + (1—Cj)(1 —Cke) Cie Gk
like:2(€) = Cjcke(1—Cik)(1—Cje) + (1—Cj)(1 —Cke) Cik Gje
likea(€) = i Ce(1—cie)(1—ci) + (1 —ci)(1—Cje) Cie Cik

combinatorial problem:
(05 =1-0y)

invariant under all permutations of (i.j,k,¢)

n(c)

Z (/ijke;1(c) + like:a(c) + Iiij;S(c))
i<j<k<t

e 3
= E Z 5/]'(5;/((5;@(5//((5/@5” Z Iijkl;a(c) (permutation invariance)
ke a=1

T e = = = = o
= Z 5,’]‘6[k6[[5jk5j[(5k[ijCk[(1 —Cm)(" —C/'k) (permutat/on, InverSIon)

iike
1 - = = = . .
= 7 Z 0ik0ie0jk0je CiiCre(1—Cie)(1—Cjk) (no diagonal entries)
ijke
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work out remaining terms explicitly ...

n(c) = %N2<k)2 +%N(k> _ %N(k2> + %Tr( ¢)+ 5 WG 2ch,/

invariant
state dependent

Examples:

@ Fully connected graphs:
ki=N—1foralli, Tr(c*)=(N-1)[(N-1)3+1], Tr(c®) = N(N-1)(N-2)
formula: n(c) = 0 (ok by inspection)

@ Periodic chains ¢j = §;j_1 + 0;j+1 (mod N), N > 4:

ki =2foralli, Tr(c*)=6N, Tr(c®)=0
formula: n(c) = N(N—4) (ok by inspection)

@ Two isolated links ¢12 = c21 = €31 = 43 = 1, all other ¢; = O:
ki =k2=k3=k4=1, k,‘>4 =0, Tl"(c4) =4, Tr(CS) =0
formula: n(c) = 2 (ok by inspection)

@ Regular random graphs with p(k) = 0k 2:

use eigenvalue distribution of ¢ (Dorogovtsev 2003),
formula: n(c) = N(N—4) + o(N)
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n(c) = %Nz(kf + %N(k} - %

1 1 1
N(K?) + 21Tr(c“) + éTr(c3) -5 Zj:k,-c,-,-lq

invariant
state dependent

practicalities
how to avoid calculating n(c) at each iteration step,

@ use simple bounds:
B (NG 00— (K3 = (R < () < & (NORYZ 00— 02))

state-dependent part can be ignored if (k?)Kmax/ (k)2 < N

@ (i) calculate n(c) only attime n=0
(i) update n(c) dynamically, by calculating at each step
change Ajke.on(c) for executed move Fikq
e.g.
Ao Tr(c®) = 6 > (1-2cs) > CwCa
(a,b)ESjjkp;o» a<b ve{ij,k,t}
Ajke.o Tr(c*) = more complicated but explicit formula ...
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e Degree-constrained MCMC dynamics of nondirected graphs

@ Application examples

ACC Coolen, King's College London 46/ 61



Example: .
many possible moves only one move ...

target =

uniform measure on G[K] AN I

S
vl

VT
]
[N

lll‘u\\\
S

<]
INe,

N =100

naive versus correct NEY

acceptance probabilities

predictions:
p(c) = constant: e e e et Alc]C) = 1
n(c)/N?~ 0.0195 n(c)/N? T : .

p(c) = n(c)/Z: - : | Alele’) = [1+ 29

n(c)/N?~ 0.0242

executed moves
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Example .

graph type A: n(c) = K(K — 1) A
graph type B: n(¢c) = 2(K — 1) 1 4 N
measure distribution Q(f) of N-1 v

(rescaled) frequencies at which

. Type A Type B
graphs are visited e e

2 3 4
S
‘accept all’ correct dynamics

ACC Coolen, King's College London 48/ 61



Example

human protein interaction network
N =9463, (k) ~ 7.4

132 L L L L 2 L L L L

executed moves executed moves

®: ‘accept all’ edge swap dynamics
o: correct edge swap dynamics
(so no serious harm done yet ...)
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Example

target =
degree-correlated
measure on G[K]

P(k) «

k

N(k, k') (target)

K /

(k —K')?

N = 4000, ") =
5 k) [B1 — Bok + Bsk®][B1 — Bk’ + Pak”]

50/ 61
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e Degree-constrained dynamics of directed graphs
@ Bookkeeping of elementary moves
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Constrained dynamics of directed graphs

bookkeeping of elementary moves
@ constraints: imposed in-out degrees, so graph set is G[k™ k°"*]

set ¢ of admissible moves: . .
directed edge swaps F : Ge[k™ k°"] — G[k™ k°""]

fix Jx fx Jx
*—0

= X
*—0
ly Iy Iy Iy

@ auto-invertible edge-swaps:
Let A = {(i,j) € N?| ¢ =1}

Loy _ 1 if (ix, jx), (iy, jy) € Nand (ix, jy), (iy, jx) &€ A
Geie) (o5 =1 0 otherwise
1 K o). Gy jpo = 1t
Fiiciosipipo(€)i =1—c;  if i € {ix, iy} and j € {jx,jy}
Flic Gy ip0(€)i = Cj otherwise

52/61
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for nondirected graphs:
edge swaps are ergodic set of moves
(Taylor, 1981 — proof based on Lyapunov function)

for directed graphs: *—0 ®
are edge swaps ergodic set of moves? =

Rao, 1996:

unless self-interactions are allowed,
edge swaps not ergodic for directed graphs

proof:
by counterexample

these two N = 3 graphs
are both in G[k™, k°*'],
with k™ = k°"* = (1,1,1)

but no edge swap maps one to the other
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further move type required

Jy Jy
to restore ergodicity: ay
3-loop reversal

Ix Ix =1l Ix Jx =1y

and (jxvix)v (j%iy)v(ixvjy) ¢ A

1 if (iX7jX)7 (iyvjy), (j% iX) €A and X =VYi
K i) Gy ipyin =
0 otherwise

Ficiosiiya(@)i = 1—cj for (i,j) € Sy
FiioGpipin(@)i = Cj for (i,]) & Sicjc.iy

Savc = {(a,b), (b, ¢), (c; a), (b, a), (¢, b), (&, ¢)}
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e Degree-constrained dynamics of directed graphs

@ The mobility of graphs
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to implement the Markov chain,
need to calculate graph mobility analytically:

n(c) = no(e)+na(c)
= ST oo+ O KiioGia
(ix ofx) iy oy ) EN (ixfx) (y dy ) EN
liv i Gipm = GGy (1=Ciy, )(1=Ci, )
I(iXan)y(iyvly)JA = 5X Vi C’Xa/x C’y7lyC/ya’x(1 _CijiX)(1 _Cllyv"y)(1 _C"ny)

combinatorial problem again easily solved:

1 ; 1 1
na(e) = ?WMf—E:WWM+§ﬁ()+2ﬁmcc®+ﬁcc }:wqwm
J
invariant state dependent
1

na(c)

. . 1, .
éTr(cS) — Tr(éc?) + Tr(e%c) — §Tr(cS)

state dependent . T A
with: (¢"); = ¢i, € = C;Cji
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in j ou 1 1 in ou
no(c) = §N2<k>2 =Y KUK+ ETr(cz) + 5Tr(cfccfc) +Tr(c®e’) = > Kkick™

i ij
na(c) = 1Tr(c%) — Tr(éc?) + Tr(E%c) — %Tr(éa)

practicalities

how to avoid calculating no(c) and na(c) at each iteration step,

@ use simple bounds on ng(c) and na(c),
state-dependent part can be ignored if

1 2 in out 2 out in 2
W + W (kmax<k > + kmax<k >) < N
@ (i) calculate ng(c) and na(c) only attime n=0

(i) update no(c) and na(c) dynamically, by calculating at each step
change Ajke,no(€) and Ajys.ana(c) for executed move Fiie.q
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e Degree-constrained dynamics of directed graphs

@ Application examples
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Example

(N-2)(N—3) moves

(k1in7 k1out) = (Ov N_2)

i=2...N—-1:

(K k) = (1,1)

(klivn7 kl(\)lut = (N_27 0)

o&o

predicted values versus

equilibrated dynamics for n(c)/N?:

o

2N — 7 moves

prediction for

dynamics with

dynamics with

p(c) = const  A(c|c’) =1 Acle’) = [1+ 42517
N=17: | 27.87 33.59 27.87
N =27: | 47.92 58.32 47.95
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Example

fully connected ‘core’ of N—2 nodes,
plus two extra nodes

N = 20, target: flat measure

45
‘accept all’ edge swapping:
n(c)) ~ 41.09 T e e e
predicted: 41.03 wlt T v L M
n(c)
edge swapping with
correct acceptance 35
probabilities: 0000000%00°006%000 400" "00500%059, 9000050 ,8000%00
n(c) ~ 33.92
predicted: 33.89 30 ‘ ‘ ‘ ‘ ‘
0 100000 200000 300000 400000 500000
iterations
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