Statistical physics of tailored random graphs: entropies, processes, and generation

II. Tailored sparse random graphs

ACC Coolen, King's College London

- Networks and graphs
- Tailored random graph ensembles
(2) Counting tailored graphs
- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

4 Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(1) Background
- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3. Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs
(4) Degree-constrained MCMC dynamics of nondirected graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

5 Degree-constrained dynamics of directed graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

Background - tailored random graphs

networks/graphs:

number of nodes: N nodes (vertices): $\quad i, j \in\{1, \ldots, N\}$
links (edges):

$$
\begin{aligned}
& c_{i j} \in\{0,1\} \\
& c_{i i}=0 \text { for all } i
\end{aligned}
$$

no self-links:
graph:

$$
\mathbf{c}=\left\{c_{i j}\right\}
$$

nondirected graph: $\quad \forall(i, j): c_{i j}=c_{j i}$ directed graph: $\quad \exists(i, j): c_{i j} \neq c_{j i}$
if we model real-world systems by graphs we want these graphs to be realistic ...

Networks in cell biology

- protein interaction networks:
nodes: proteins $i, j=1 \ldots N$
links: $c_{i j}=c_{j i}=1$ if i can bind to j

$$
c_{i j}=c_{j i}=0 \quad \text { otherwise }
$$

nondirected graphs,
$N \sim 10^{4}$, links/node ~ 7

- gene regulation networks:
nodes: genes $i, j=1 \ldots N$
links: $c_{i j}=1$ if j is transcription factor of i

$$
c_{i j}=0 \text { otherwise }
$$

directed graphs,
$N \sim 10^{4}$, links/node ~ 5

Quantify topology of nondirected graphs

- degrees, degree sequence:

$$
k_{i}(\mathbf{c})=\sum_{j} c_{i j}, \quad \mathbf{k}(\mathbf{c})=\left(k_{1}(\mathbf{c}), \ldots, k_{N}(\mathbf{c})\right)
$$

- degree distribution:

$$
p(k \mid \mathbf{c})=\frac{1}{N} \sum_{i=1}^{N} \delta_{k, k_{i}(\mathbf{c})}
$$

- joint degree statistics
 of connected nodes

$$
W\left(k, k^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{k, k_{i}(\mathbf{c})} \delta_{k^{\prime}, k_{j}(\mathbf{c})}
$$

$$
k_{i}=k ? \quad k_{j}=k^{\prime} ?
$$

normalisation:

$$
\sum_{k, k^{\prime} \geq 0} W\left(k, k^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j}=\frac{1}{N\langle k\rangle} \sum_{i} k_{i}(\mathbf{c})=1
$$

- relation between p and W :

$$
\begin{aligned}
W(k \mid \mathbf{c}) & =\sum_{k^{\prime}} W\left(k, k^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{k, k_{i}(\mathbf{c})} \\
& =\frac{1}{N\langle k\rangle} \sum_{i} k_{i}(\mathbf{c}) \delta_{k, k_{i}(\mathbf{c})}=\frac{k}{N\langle k\rangle} \sum_{i} \delta_{k, k_{i}(\mathbf{c})}=p(k \mid \mathbf{c}) k /\langle k\rangle
\end{aligned}
$$

- hence maginals of W carry no info beyond degree statistics so focus on:

$$
\Pi\left(k, k^{\prime} \mid \mathbf{c}\right)=\frac{W\left(k, k^{\prime} \mid \mathbf{c}\right)}{W(k \mid \mathbf{c}) W\left(k^{\prime} \mid \mathbf{c}\right)}
$$

if $\exists\left(k, k^{\prime}\right)$ with $\Pi\left(k, k^{\prime} \mid \mathbf{c}\right) \neq 1$:
structural information in degree correlations

H sapiens PIN $N=9306$
$\langle k\rangle=7.53$

Quantify topology of directed graphs

links now become arrows

- degrees, degree sequences:

$$
\begin{array}{ll}
k_{i}^{\text {in }}(\mathbf{c})=\sum_{j} c_{i j}, & \mathbf{k}^{\text {in }}(\mathbf{c})=\left(k_{1}^{\text {in }}(\mathbf{c}), \ldots, k_{N}^{\text {in }}(\mathbf{c})\right) \\
k_{i}^{\text {out }}(\mathbf{c})=\sum_{j} c_{j i}, & \mathbf{k}^{\text {out }}(\mathbf{c})=\left(k_{1}^{\text {out }}(\mathbf{c}), \ldots, k_{N}^{\text {out }}(\mathbf{c})\right)
\end{array}
$$

- degree distribution:

$$
k_{i} \rightarrow \vec{k}_{i}=\left(k_{i}^{\text {in }}, k_{i}^{\text {out }}\right) \quad p(\vec{k} \mid \mathbf{c})=\frac{1}{N} \sum_{i} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})}
$$

- joint in-out degree statistics
of connected nodes

$$
W\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})}
$$

note:

$$
W\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)-W\left(\vec{k}^{\prime}, \vec{k} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j}\left(c_{i j}-c_{j i}\right) \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})} \neq 0
$$

- relation between p and W :

$$
\begin{aligned}
W_{1}(\vec{k} \mid \mathbf{c}) & =\sum_{\vec{k}^{\prime}} \frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})}=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})} \\
& =\frac{1}{N\langle k\rangle} \sum_{i} k_{i}^{\text {in }}(\mathbf{c}) \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})}=\frac{k^{\text {in }}}{N\langle k\rangle} \sum_{i} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})}=p(\vec{k} \mid \mathbf{c}) k^{\text {in }} /\langle k\rangle \\
W_{2}\left(\vec{k}^{\prime} \mid \mathbf{c}\right) & =\sum_{\vec{k}} \frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})}=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})} \\
= & \frac{1}{N\langle k\rangle} \sum_{j} k_{j}^{\text {out }}(\mathbf{c}) \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})}=\frac{k^{\text {out } \prime}(\mathbf{c})}{N\langle k\rangle} \sum_{j} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})}=p\left(\vec{k}^{\prime} \mid \mathbf{c}\right) k^{\text {out }} /\langle k\rangle
\end{aligned}
$$

so focus on:

$$
\Pi\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)=\frac{W\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)}{W_{1}(\vec{k} \mid \mathbf{c}) W_{2}\left(\vec{k}^{\prime} \mid \mathbf{c}\right)}
$$

if $\exists\left(\vec{k}, \vec{k}^{\prime}\right)$ with $\Pi\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right) \neq 1$:
structural information in degree correlations

Information in degree correlations?

plot $\Pi\left(k, k^{\prime}\right)=W\left(k, k^{\prime}\right) / W(k) W\left(k^{\prime}\right)$ for protein interaction networks:

Graph classification via increasingly detailed feature prescription

Tailored
 random graph ensembles

e.g. nondirected graphs:

maximum entropy random graph ensembles, $p(\mathbf{c})$ with prescribed values for $\langle k\rangle, p(k), W\left(k, k^{\prime}\right), \ldots$

- proxies for real networks in stat mech models
- complexity: how many networks exist with same features as c?
- hypothesis testing: graphs with controlled features as null models generating

$$
\begin{array}{r}
N=1000: \quad 2^{\frac{1}{2} N(N-1)} \approx 10^{150,364} \text { graphs } \\
\text { (universe has } \sim 10^{82} \text { atoms } \ldots \text {) }
\end{array}
$$

(1) Background

- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3. Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs
(4) Degree-constrained MCMC dynamics of nondirected graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

random graph ensembles

(i) set G of allowed graphs,
(ii) probability measure $p(\mathbf{c})$ on G

- Tailoring via hard constraints
(i) impose values for specific observables: $\Omega_{\mu}(\mathbf{c})=\Omega_{\mu}$ for $\mu=1 \ldots p$
(ii) $p(\mathbf{c})$: all graphs that meet constraints are equally likely

$$
\begin{aligned}
& p(\mathbf{c} \mid \boldsymbol{\Omega})=\frac{\delta_{\boldsymbol{\Omega}(\mathrm{c}), \boldsymbol{\Omega}}}{\mathcal{N}(\boldsymbol{\Omega})}, \quad \mathcal{N}(\boldsymbol{\Omega})=\sum_{\mathrm{c}} \delta_{\boldsymbol{\Omega}(\mathrm{c}), \boldsymbol{\Omega}} \quad \text { (nr of graphs in ensemble) } \\
& \text { with } \Omega=\left(\Omega_{1}, \ldots, \Omega_{p}\right)
\end{aligned}
$$

note 1:
$p(\mathbf{c})$ maximises Shannon entropy S
on $G[\Omega]=\{\mathbf{c} \mid \Omega(\mathbf{c})=\Omega\}$

$$
S=-\frac{1}{N\langle k\rangle} \sum_{\mathbf{c}} p(\mathbf{c}) \log p(\mathbf{c})
$$

note 2:

$$
\mathrm{e}^{\mathcal{N}\langle k\rangle s[\boldsymbol{\Omega}]}=\mathrm{e}^{-\sum_{\mathrm{c}} p(\mathbf{c}) \log p(\mathbf{c})}=\mathrm{e}^{-\sum_{\mathrm{c}} \frac{\delta^{\delta} \boldsymbol{\Omega}(\mathrm{c}) \boldsymbol{\Omega}}{\mathcal{N}(\boldsymbol{\Omega})}\left(\log \delta \boldsymbol{\Omega}_{(\mathrm{c})}, \boldsymbol{\Omega}^{-\log \mathcal{N}(\boldsymbol{\Omega})}\right)}=\mathcal{N}(\boldsymbol{\Omega})
$$

- Tailoring via soft constraints
(i) impose averages for specific observables: $\Omega_{\mu}(\mathbf{c})=\Omega_{\mu}$ for $\mu=1 \ldots p$
(ii) p (c): maximum entropy, subject to constraints

$$
p(\mathbf{c} \mid \boldsymbol{\Omega})=Z^{-1}(\boldsymbol{\Omega}) \mathrm{e}^{\sum_{\mu} \omega_{\mu}(\boldsymbol{\Omega}) \Omega_{\mu}(\mathbf{c})}, \quad Z(\boldsymbol{\Omega})=\sum_{\mathbf{c}} \mathrm{e}^{\sum_{\mu} \omega_{\mu}(\boldsymbol{\Omega}) \Omega_{\mu}(\mathbf{c})}
$$

parameters $\omega_{\mu}(\boldsymbol{\Omega})$:
to be solved from

$$
\forall \mu: \quad \sum_{\mathbf{c}} p(\mathbf{c} \mid \Omega) \Omega_{\mu}(\mathbf{c})=\Omega_{\mu}
$$

note 1:
all graphs \mathbf{c} can in principle emerge; those with $\Omega(\mathbf{c}) \approx \Omega$ are the most likely
note 2:
effective number of graphs $\mathcal{N}(\Omega)$ defined via entropy:

$$
\mathcal{N}(\Omega)=\mathrm{e}^{N\langle k\rangle s[\Omega]}, \quad S[\Omega]=-\frac{1}{N\langle k\rangle} \sum_{\mathbf{c} \in G} p(\mathbf{c} \mid \Omega) \log p(\mathbf{c} \mid \Omega)
$$

note 3 :
for observables $\Omega(\mathbf{c})$ that are macroscopic in nature and $\mathcal{O}\left(N^{0}\right)$,
one will generally find deviations from $\Omega(\mathbf{c})=\Omega$ to tend to zero as $N \rightarrow \infty$

Example 1a

nondirected graphs, $c_{i i}=0$ for all i, impose average connectivity via hard constraint, $\Omega(\mathbf{c})=\sum_{i j} c_{i j}$

- demand $\sum_{i j} c_{i j}=N\langle k\rangle$

$$
p(\mathbf{c} \mid\langle k\rangle)=\frac{\delta_{\sum_{i j} c_{i j}, N\langle k\rangle}}{\mathcal{N}(\langle k\rangle)}, \quad \mathcal{N}(\langle k\rangle)=\sum_{\mathbf{c}} \delta_{\sum_{i j} c_{i j}, N\langle k\rangle}
$$

- calculate $\mathcal{N}(\langle k\rangle)$:

$$
\text { use } \delta_{n m}=(2 \pi)^{-1} \int_{-\pi}^{\pi} \mathrm{d} \omega \mathrm{e}^{\mathrm{i}(n-m) \omega}
$$

$$
\begin{aligned}
\mathcal{N}(\langle k\rangle) & =\int_{-\pi}^{\pi} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{\mathrm{i} \omega N(k\rangle} \sum_{c} \mathrm{e}^{-\mathrm{i} \omega \sum_{i j} c_{i j}}=\int_{-\pi}^{\pi} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{\mathrm{i} \omega N\langle k\rangle} \prod_{i<j}\left[\sum_{c_{i j}} \mathrm{e}^{-2 \mathrm{i} \omega c_{i j}}\right] \\
& =\int_{-\pi}^{\pi} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{\mathrm{i} \omega N(k\rangle}\left(1+\mathrm{e}^{-2 i \omega}\right)^{\frac{1}{2} N(N-1)} \\
& =\sum_{\ell=0}^{\frac{1}{2} N(N-1)}\binom{\frac{1}{2} N(N-1)}{\ell} \int_{-\pi}^{\pi} \frac{\mathrm{d} \omega}{2 \pi} \mathrm{e}^{\mathrm{i} \omega N\langle k\rangle-2 i \ell \omega}=\binom{\frac{1}{2} N(N-1)}{\frac{1}{2} N\langle k\rangle} \\
& =\mathrm{e}^{\frac{1}{2} N(k\rangle[\log (N /\langle k\rangle)+1]+\mathcal{O}(\log N)} \quad \text { Stirling: } n!=\mathrm{e}^{n \log n-n+\mathcal{O}(\log n)} n \rightarrow \infty
\end{aligned}
$$

Example 1b

nondirected graphs, $c_{i i}=0$ for all i, impose average connectivity via soft constraint, $\Omega(\mathbf{c})=\sum_{i j} c_{i j}$

- demand $\left\langle\sum_{i j} c_{i j}\right\rangle=N\langle k\rangle$

$$
p(\mathbf{c} \mid\langle k\rangle)=\frac{1}{Z(\omega)} \mathrm{e}^{\omega \sum_{i j} c_{i j}}, \quad Z(\omega)=\sum_{\mathbf{c}} \mathrm{e}^{\omega \sum_{i j} c_{i j}}
$$

ω solved from: $\quad\langle k\rangle=\frac{1}{Z(\omega)} \sum_{\mathbf{c}}\left(\frac{1}{N} \sum_{k \ell} c_{k \ell}\right) \mathrm{e}^{\omega \sum_{i j} c_{i j}}=\frac{\mathrm{d}}{\mathrm{d} \omega} \frac{1}{N} \log Z(\omega)$

- calculate $Z(\omega)$ and ω :

$$
\langle k\rangle=\frac{\mathrm{d}}{\mathrm{~d} \omega} \frac{1}{N} \log \left(\mathrm{e}^{2 \omega}+1\right)^{\frac{1}{2} N(N-1)}=(N-1) \frac{\mathrm{e}^{2 \omega}}{\mathrm{e}^{2 \omega}+1}
$$

- Equivalently:

$$
\begin{aligned}
p(\mathbf{c} \mid\langle k\rangle) & =\frac{1}{Z(\omega)} \prod_{i<j} \mathrm{e}^{2 \omega c_{i j}}=\frac{1}{Z(\omega)} \prod_{i<j}\left[\mathrm{e}^{2 \omega} \delta_{c_{i j}, 1}+\delta_{c_{i j}, 0}\right] \\
& =\prod_{i<j} \frac{\mathrm{e}^{2 \omega} \delta_{c_{i j}, 1}+\delta_{c_{i j}, 0}}{\mathrm{e}^{2 \omega}+1}=\prod_{i<j}\left[\frac{\mathrm{e}^{2 \omega}}{\mathrm{e}^{2 \omega}+1} \delta_{c_{i j}, 1}+\frac{1}{\mathrm{e}^{2 \omega}+1} \delta_{c_{i j}, 0}\right]
\end{aligned}
$$

Example 2a

nondirected graphs, $c_{i i}=0$ for all i, impose degree sequence via hard constraint, $\Omega_{i}(\mathbf{c})=\sum_{j} c_{i j}, \quad i=1 \ldots N$

- demand: $\sum_{j} c_{i j}=k_{i}$ for all i

$$
\begin{aligned}
& p(\mathbf{c} \mid \mathbf{k})=\frac{\prod_{i} \delta_{\sum_{j} c_{i j}, k_{i}}}{\mathcal{N}(\mathbf{k})}, \\
& \mathcal{N}(\mathbf{k})=\sum_{\mathbf{c}} \prod_{i} \delta_{\sum_{j} c_{i j}, k_{i}}
\end{aligned}
$$

- calculate $\mathcal{N}(\mathbf{k})$:

$$
\begin{aligned}
& \text { use } \delta_{n m}=(2 \pi)^{-1} \int_{-\pi}^{\pi} \mathrm{d} \omega \mathrm{e}^{\mathrm{i}(n-m) \omega} \\
& \begin{aligned}
& \mathcal{N}(\mathbf{k})=\int_{-\pi}^{\pi} \prod_{i}\left(\frac{\mathrm{~d} \omega_{j}}{2 \pi} \mathrm{e}^{\mathrm{i} \omega_{i} k_{i}}\right) \sum_{\mathrm{c}} \mathrm{e}^{-\mathrm{i} \sum_{i} \omega_{i} \sum_{j} c_{i j}}=\int_{-\pi}^{\pi} \frac{\mathrm{d} \boldsymbol{\omega} \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{k}}}{(2 \pi)^{N}} \prod_{i<j}\left[\sum_{c_{i j}} \mathrm{e}^{-\mathrm{i}\left(\omega_{i}+\omega_{j}\right) c_{i j}}\right] \\
&=\int_{-\pi}^{\pi} \frac{\mathrm{d} \boldsymbol{\omega} \mathrm{e}^{\mathrm{i} \omega \cdot \mathrm{k}}}{(2 \pi)^{N}} \prod_{i<j}\left(1+\mathrm{e}^{-\mathrm{i}\left(\omega_{i}+\omega_{j}\right)}\right)=? \\
& \quad \begin{array}{l}
\text { possible (leading orders in } N), \\
\text { but no longer obvious ... }
\end{array}
\end{aligned}
\end{aligned}
$$

Example 2b

nondirected graphs, $c_{i i}=0$ for all i, impose degree sequence via soft constraint, $\Omega_{i}(\mathbf{c})=\sum_{j} c_{i j}, \quad i=1 \ldots N$

- demand: $\left\langle\sum_{j} c_{i j}\right\rangle=k_{i}$ for all i
$p(\mathbf{c} \mid \mathbf{k})=\frac{1}{Z(\boldsymbol{\omega})} \mathrm{e}^{\sum_{i} \omega_{i} \sum_{j} c_{i j}}, \quad Z(\boldsymbol{\omega})=\sum_{\mathbf{c}} \mathrm{e}^{\sum_{i} \omega_{i} \sum_{j} c_{i j}}$
$\boldsymbol{\omega}$ solved from: $\quad \forall m: k_{m}=\frac{1}{Z(\boldsymbol{\omega})} \sum_{c}\left(\sum_{n} c_{m n}\right) \mathrm{e}^{\sum_{i} \omega_{i} \sum_{j} c_{i j}}=\frac{\partial}{\partial \omega_{m}} \log Z(\boldsymbol{\omega})$
- calculate $Z(\omega)$ and ω :

$$
\begin{aligned}
k_{m} & =\frac{\partial}{\partial \omega_{m}} \log \sum_{c} \mathrm{e}^{\sum_{i<j} c_{i j}\left(\omega_{i}+\omega_{j}\right)}=\frac{\partial}{\partial \omega_{m}} \log \prod_{i<j}\left[\sum_{c_{i j}} \mathrm{e}^{c_{i j}\left(\omega_{i}+\omega_{j}\right)}\right] \\
& =\sum_{i<j} \frac{\partial}{\partial \omega_{m}} \log \left(1+\mathrm{e}^{\omega_{i}+\omega_{j}}\right)=\frac{1}{2} \sum_{i \neq j}\left(\delta_{i m}+\delta_{j m}\right) \frac{\mathrm{e}^{\omega_{i}+\omega_{j}}}{1+\mathrm{e}^{\omega_{i}+\omega_{j}}}=\sum_{i \neq m} \frac{\mathrm{e}^{\omega_{i}+\omega_{m}}}{1+\mathrm{e}^{\omega_{i}+\omega_{m}}}
\end{aligned}
$$

N transcendental eqns to be solved ...

Example 3a

nondirected graphs, $c_{i i}=0$ for all i, impose degree sequence and kernel $W\left(k, k^{\prime}\right)$ via hard constraint,
$\Omega_{i}(\mathbf{c})=\sum_{j} c_{i j}, \quad i, j=1 \ldots N$,
$\Omega_{k k^{\prime}}(\mathbf{c})=\sum_{i j} c_{i j} \delta_{k, \sum_{\ell}} c_{i \ell} \delta_{k^{\prime}, \sum_{\ell}} c_{j \ell}, \quad k, k^{\prime} \in \mathbb{N}$

- demand: $\sum_{j} c_{i j}=k_{i}$ for all i, and

$$
\begin{aligned}
& \sum_{i j} c_{i j} \delta_{k, \sum_{\ell}} c_{i \ell} \delta_{k^{\prime}, \sum_{\ell}} c_{i \ell}=N\langle k\rangle W\left(k, k^{\prime}\right) \text { for all }\left(k, k^{\prime}\right) \\
& \left(\text { with }\langle k\rangle=N^{-1} \sum_{i} k_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
p(\mathbf{c} \mid \mathbf{k}, W) & =\frac{\left[\prod_{i} \delta_{\sum_{j} c_{i j}, k_{i}}\right]\left[\prod_{k, k^{\prime}} \delta_{\sum_{i j}} c_{i j} \delta_{k, k_{i}} \delta_{k^{\prime}, k_{j}}, N\langle k\rangle W\left(k, k^{\prime}\right)\right]}{\mathcal{N}(\mathbf{k}, W)}, \\
\mathcal{N}(\mathbf{k}, W) & =\sum_{c}\left[\prod_{i} \delta_{\sum_{j} c_{i j}, k_{i}}\right]\left[\prod_{k, k^{\prime}} \delta_{\sum_{i j}} c_{i j} \delta_{k, k_{i}} \delta_{k^{\prime}, k_{j}, N(k) W\left(k, k^{\prime}\right)}\right]
\end{aligned}
$$

- calculate $\mathcal{N}(\mathbf{k}, W)$:

$$
\begin{aligned}
& \mathcal{N}(\mathbf{k}, W)=\int_{-\pi}^{\pi} \prod_{i}\left(\frac{\mathrm{~d} \omega_{i}}{2 \pi} \mathrm{e}^{\mathrm{i} \omega_{i} k_{i}}\right)\left(\prod_{k, k^{\prime}} \frac{\mathrm{d} \psi_{k k^{\prime}}}{2 \pi} \mathrm{e}^{\mathrm{i} \psi \psi_{k k^{\prime}} N\langle k\rangle W\left(k, k^{\prime}\right)}\right) \\
& \times \sum_{c} \mathrm{e}^{-\mathrm{i} \sum_{i} \omega_{i} \sum_{j} c_{j j}-\mathrm{i} \sum_{k k^{\prime}} \psi_{k k^{\prime}} \sum_{i j} c_{i j} \delta_{k, k_{i}} \delta_{k^{\prime}, k_{j}}} \text { doable, but increasingly complicated.... }
\end{aligned}
$$

Counting tailored graphs

how many graphs in each family?

- Networks and graphs
- Tailored random graph ensembles
(2) Counting tailored graphs
- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs

3. Generating tailored random graphs numerically

- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs
(4) Degree-constrained MCMC dynamics of nondirected graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

entropy and complexity

properties of Shannon entropy (information theory)

- effective $\mathbf{n r}$ of graphs in ensemble $p(\mathbf{c} \mid \star)$:
(\star : imposed observables)
$\mathcal{N}(\star)=e^{N\langle k\rangle S(\star)}, \quad S(\star)=-\frac{1}{N\langle k\rangle} \sum_{c} p(\mathbf{c} \mid \star) \log p(\mathbf{c} \mid \star) \quad$ (entropy per link)
- $S(\star)$: proportional to the average nr of bits one needs to specify to identify a member graph \mathbf{c} in the ensemble
- complexity of graphs in ensemble $p\left(\left.\mathbf{c}\right|_{\star}\right)$:

$$
\mathcal{C}(\star)=S(\emptyset)-S(\star)
$$

ø: no constraints nondirected, $c_{i i}=0 \forall i$:

$$
p(\mathbf{c} \mid \emptyset)=2^{-\frac{1}{2} N(N-1)}, \quad S(\emptyset)=-\frac{1}{N\langle k\rangle} \log 2^{-\frac{1}{2} N(N-1)}=\frac{N-1}{2\langle k\rangle} \log 2
$$

\exists many graphs with feature $*$: \exists few graphs with feature $*$: graphs with \star have low complexity graphs with \star have high complexity

- Networks and graphs
- Tailored random graph ensembles
(2) Counting tailored graphs
- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

4 Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5. Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

Shannon entropy per bond

final result for nondirected graphs

$$
\begin{align*}
& P(\mathbf{c})=\sum_{\mathbf{k}}\left[\prod_{i} \mathrm{~d} k_{i} p\left(k_{i}\right)\right] \frac{\prod_{i} \delta_{k_{i}, k_{i}(\mathbf{c})}^{Z(\mathbf{k}, W)} \prod_{i<j}\left[\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)} \delta_{c_{i j}, 1}+\left(1-\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)}\right) \delta_{c_{i j}, 0}\right]}{S}=\underbrace{\frac{1}{2}\left[1+\log \left(\frac{N}{\langle k\rangle}\right)\right.}_{\text {Erdos-Renyi entropy }}]-\underbrace{\frac{1}{\langle k\rangle} \sum_{k} p(k) \log \left[\frac{p(k)}{\pi(k)}\right]}_{\text {degree complexity }}+\underbrace{\left.\frac{1}{2} \sum_{k, k^{\prime}} W\left(k, k^{\prime}\right) \log \left[\frac{W\left(k, k^{\prime}\right)}{W(k) W\left(k^{\prime}\right)}\right]\right\}}_{\text {wiring complexity }}+\epsilon_{N} \\
& \lim _{N \rightarrow \infty} \epsilon_{N}=0 \tag{N}
\end{align*}
$$

$\pi(\ell)=\mathrm{e}^{-\langle k\rangle}\langle k\rangle^{\ell} / \ell!$
degree distr of Erdös-Renyi graphs
degree complexity: proportional to Kullback-Leibler distance (so ≥ 0) wiring complexity: proportional to mutual information (so ≥ 0)

- Networks and graphs
- Tailored random graph ensembles
(2) Counting tailored graphs
- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs
(4) Degree-constrained MCMC dynamics of nondirected graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

Shannon entropy per bond

final result for directed graphs:
$\vec{k}_{i}=\left(k_{i}^{\text {in }}, k_{i}^{\text {out }}\right)$
$p(\mathbf{c})=\sum_{\overrightarrow{\mathbf{k}}} \prod_{i}\left[\mathrm{~d} \vec{k}_{i} p\left(\vec{k}_{i}\right)\right] \frac{\prod_{i} \delta_{\vec{k}_{i}, \vec{k}_{k}(\mathbf{c})}}{Z(\overrightarrow{\mathbf{k}}, W)} \prod_{i<j}\left[\frac{\langle k\rangle}{N} \frac{W\left(\vec{k}_{i}, \vec{k}_{j}\right)}{p\left(\vec{k}_{i}\right) p\left(\vec{k}_{j}\right)} \delta_{c_{i j}, 1}+\left(1-\frac{\langle k\rangle}{N} \frac{W\left(\vec{k}_{i}, \vec{k}_{j}\right)}{p\left(\vec{k}_{i}\right) p\left(\vec{k}_{j}\right)}\right) \delta_{c_{i j}, 0}\right]$
$S=\underbrace{1+\log \left(\frac{N}{\langle k\rangle}\right)}_{\text {directed } E R \text { entropy }}-\{\underbrace{\frac{1}{\langle k\rangle} \sum_{\vec{k}} p(\vec{k}) \log \left[\frac{p(\vec{k})}{\pi\left(k^{\text {in }}\right) \pi\left(k^{\text {out }}\right)}\right]}_{\text {degree complexity }}+\underbrace{\sum_{\vec{k}, \vec{k}^{\prime}} W\left(\vec{k}, \vec{k}^{\prime}\right) \log \left[\frac{W\left(\vec{k}, \vec{k}^{\prime}\right)}{W(\vec{k}) W\left(\overrightarrow{k^{\prime}}\right)}\right]}_{\text {wiring complexity }}\}$
$\lim _{N \rightarrow \infty} \epsilon_{N}=0$
$\pi(\ell)=\mathrm{e}^{-\langle k\rangle}\langle k\rangle^{\ell} / \ell!$
$\pi\left(k^{\text {in }}\right) \pi\left(k^{\text {out }}\right)$: degree distr of directed Erdös-Renyi graphs
degree complexity: proportional to Kullback-Leibler distance (so ≥ 0) wiring complexity: proportional to mutual information (so ≥ 0)

Generating tailored random graphs numerically

next:

generate tailored random graphs

from these families numerically ...

typical questions

G : \quad all nondirected N-node graphs
$G[\mathbf{k}] \subset G$: all nondirected N-node graphs with degrees \mathbf{k}
how to generate

- random $\mathbf{c} \in G$, with specified probability $p(\mathbf{c})$
- random $\mathbf{c} \in G[\mathbf{k}]$, with uniform probability
- random $\mathbf{c} \in G[\mathbf{k}]$, with specified probability $p(\mathbf{c})$
similar for directed graphs ...

why is the generation of graphs a nontrivial issue?

- many users underestimate/misjudge what the real problem is: sampling the space of all graphs with given features: usually easy ... sampling them with required probabilities: nontrivial!
- many ad-hoc graph generation algorithms that appear sensible, but without proper analysis of which measure they converge to
- in cellular biology graphs are often used as 'null models', against which to test hypotheses on observed features in signalling networks
if these null models are biased, the hypothesis test is fundamentally flawed ...
- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs
(4) Degree-constrained MCMC dynamics of nondirected graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5. Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

trivial case: no constraints standard Glauber/MCMC dynamics

(Metropolis et al 1953)
objective: generate random nondirected $\mathbf{c} \in\{0,1\}^{\frac{1}{2} N(N-1)}$ with specified probabilities $p(\mathbf{c})$
strategy: start from any graph c propose random moves $c_{i j} \rightarrow 1-c_{i j} \quad$ (giving $\mathbf{c} \rightarrow F_{i j} \mathbf{c}$),
define acceptance probabilities $A\left(F_{i j} \mathbf{c} \mid \mathbf{c}\right)$ via detailed balance condition

$$
A\left(F_{i j} \mathbf{c} \mid \mathbf{c}\right) p(\mathbf{c})=A\left(\mathbf{c} \mid F_{i j} \mathbf{c}\right) p\left(F_{i j} \mathbf{c}\right) \quad \rightarrow \quad A\left(\mathbf{c}^{\prime} \mid \mathbf{c}\right)=\left[1+p(\mathbf{c}) / p\left(\mathbf{c}^{\prime}\right)\right]^{-1}
$$

stochastic process is ergodic, and converges to the distribution $p(\mathbf{c})$
practicalities:
equilibration can take a very long time, so monitor Hamming distances

Matching algorithm

(Bender and Canfield, 1978)
objective: generate random nondirected graph $\mathbf{c} \in\{0,1\}^{\frac{1}{2} N(N-1)}$ with specified degree sequence $\mathbf{k}=\left(k_{1}, \ldots, k_{N}\right)$
strategy: stochastic growth dynamics, starting from graph with no links

- initialisation: $c_{i j}=0$ for all (i, j) repeat:
- pick at random two nodes (i, j)
- if $\sum_{\ell} c_{i \ell}<k_{i}$ and $\sum_{\ell} c_{j \ell}<k_{j}$:
connect i and j
$c_{i j}=0 \rightarrow c_{i j}=1$
terminate if $\sum_{j} c_{i j}=k_{i}$ for all i

(trivially generalised to directed graphs)

Matching algorithm

 limitations and problems ...- major limitation:
cannot control graph probabilities, just aims to generate $\mathbf{c} \in G[\mathbf{k}]$ with equal probs
- inconvenience: convergence not guaranteed
process can 'hang' before $\sum_{j} c_{i j}=k_{i}$ for all i

if one remaining 'stub' requires self-loops (happens more often when there are 'hubs', i.e. nodes with large degree)
- monitor the evolving degrees, to test for this
- if process 'hangs': reject and start over again from empty graph
- sampling bias:
if process 'hangs', users often don't reject the graph
but do 'backtracking' (for CPU reasons),
this creates correlations between graph realisations
even if we reject rather than backtrack:
no proof published yet that sampling measure $p(\mathbf{c})$ is flat ...

Edge switching algorithm

(Seidel, 1976)
objective: generate random nondirected graph $\mathbf{c} \in\{0,1\}^{\frac{1}{2} N(N-1)}$ with specified degree sequence $\mathbf{k}=\left(k_{1}, \ldots, k_{N}\right)$
strategy: degree-preserving randomisation ('shuffling') process, starting from any graph $\mathbf{k}=\left(k_{1}, \ldots, k_{N}\right)$

- initialisation: $c_{i j}=c_{i j}^{0}$ for all (i, j), where \mathbf{c}^{0} is some graph with the correct degrees
repeat:
- pick at random four nodes (i, j, k, ℓ) that are pairwise connected
- carry out an 'edge swap' (or 'Seidel switch), see diagram
 (preserves all degrees!)
terminate if stochastic process has equilibrated

Edge switching algorithm

limitations and problems ...

- major limitation:
cannot control graph probabilities, aims to generate $\mathbf{c} \in G[\mathbf{k}]$ with equal probs
- inconvenience: need for a 'seed graph' with the correct degrees $\mathbf{k}=\left(k_{1}, \ldots, k_{N}\right)$
- sampling bias:
edge swaps are ergodic on $G[\mathbf{k}]$ (Taylor, 1981), but sampling is not uniform!
many possible moves
only one move ...
nr of possible moves depends on state c!
result:
stationary state of Markov chain favours high-mobility graphs

dangerous for scale-free graphs ...
target:
uniform measure $p(\mathbf{c})$ on $G[\mathbf{k}]$

$(N-2)(N-3)$ graphs $n(\mathbf{c})=2(N-3)$

for flat measure:

$$
\langle n(\mathbf{c})\rangle=\frac{(N-2)(N-3)+(N-2)(N-3) \cdot 2(N-3)}{1+(N-2)(N-3)}
$$

$$
=\frac{(N-2)(N-3)[1+2(N-3)]}{1+(N-2)(N-3)}
$$

$$
N=100:
$$

$$
\langle n(\mathbf{c})\rangle / N^{2} \approx 0.0195
$$

- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs
(4) Degree-constrained MCMC dynamics of nondirected graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
need to study graph dynamics more systematically ...

Monte Carlo processes for constrained graphs

- constraints:
$G[\star] \subseteq G: \quad$ all $\mathbf{c} \in G$ that satisfy constraints *
- stochastic graph dynamics as a Markov chain, transition probabilities $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$ for the move $\mathbf{c}^{\prime} \rightarrow \mathbf{c}$ $n \in \mathbb{N}$: algorithmic time

$$
\forall \mathbf{c} \in G[\star]: \quad p_{n+1}(\mathbf{c})=\sum_{\mathbf{c}^{\prime} \in G[\nmid x]} W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right) p_{n}\left(\mathbf{c}^{\prime}\right)
$$

- allowed moves (exclude identity):
©: \quad set of allowed moves $F: G_{F}[\star] \rightarrow G[\star]$
$G_{F}[\star]$: those $\mathbf{c} \in G[\star]$ on which F can act
all moves are auto-invertible: $(\forall F \in \Phi): F^{2}=\mathbf{I}$
Φ is ergodic on $G[\star]$

MCMC objective

construct transition probs $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$, based on moves $F \in \Phi$, such that process converges to $p(\mathbf{c})=Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$

$$
\begin{aligned}
W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\sum_{F \in \Phi} q\left(F \mid \mathbf{c}^{\prime}\right)[& \left.\delta_{\mathbf{c}, F \mathrm{c}^{\prime}} A\left(F \mathbf{c}^{\prime} \mid \mathbf{c}^{\prime}\right)+\delta_{\mathbf{c}, \mathbf{c}^{\prime}}\left[1-A\left(F \mathbf{c}^{\prime} \mid \mathbf{c}^{\prime}\right)\right]\right] \\
q(F \mid \mathbf{c}): & \text { move proposal probability } \\
A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right): & \text { move acceptance probability }
\end{aligned}
$$

- graph mobility $n(\mathbf{c})$:

$$
n(\mathbf{c})=\sum_{F \in \Phi} I_{F}(\mathbf{c}), \quad I_{F}(\mathbf{c})= \begin{cases}1 & \text { if } \mathbf{c} \in G_{F}[\star] \\ 0 & \text { if } \mathbf{c} \notin G_{F}[\star]\end{cases}
$$

- detailed balance condition:

$$
(\forall F \in \Phi)(\forall \mathbf{c} \in G[\star]): \quad q(F \mid \mathbf{c}) A(F \mathbf{c} \mid \mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}=q(F \mid F \mathbf{c}) A(\mathbf{c} \mid F \mathbf{c}) \mathrm{e}^{-H(F \mathbf{c})}
$$

if allowed F equally probable:
$q(F \mid \mathbf{c})=I_{F}(\mathbf{c}) / n(\mathbf{c})$

$$
(\forall F \in \Phi)\left(\forall \mathbf{c} \in G_{F}[\star]\right): \quad \frac{1}{n(\mathbf{c})} A(F \mathbf{c} \mid \mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}=\frac{1}{n(F \mathbf{c})} A(\mathbf{c} \mid F \mathbf{c}) \mathrm{e}^{-H(F \mathbf{c})}
$$

canonical Markov chain

ergodic auto-invertible moves $F \in \Phi$, convergence to $p(\mathbf{c})=Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$ for acceptance probabilities

$$
A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\frac{n\left(\mathbf{c}^{\prime}\right) \mathrm{e}^{-\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}}{n\left(\mathbf{c}^{\prime}\right) \mathrm{e}^{-\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}+n(\mathbf{c}) \mathrm{e}^{\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}}
$$

conventional edge-swapping?

$\left(\forall \mathbf{c}, \mathbf{c}^{\prime}\right): \quad A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=1$

$$
(\forall F, \mathbf{c}): \frac{A(F \mathbf{c} \mid \mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}}{n(\mathbf{c})}=\frac{A(\mathbf{c} \mid F \mathbf{c}) \mathrm{e}^{-H(F \mathbf{c})}}{n(F \mathbf{c})} \rightarrow \quad(\forall F, \mathbf{c}): \frac{\mathrm{e}^{-H(\mathbf{c})}}{n(\mathbf{c})}=\frac{\mathrm{e}^{-H(F \mathbf{c})}}{n(F \mathbf{c})}
$$

corresponds to
$H(\mathbf{c})=-\log n(\mathbf{c})$, so would give

$$
\text { sampling bias : } \quad p(\mathbf{c})=\frac{n(\mathbf{c})}{\sum_{\mathbf{c}^{\prime} \in G[\star]} n\left(\mathbf{c}^{\prime}\right)}
$$

- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

4 Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

Constrained dynamics of nondirected graphs

bookkeeping of elementary moves

- constraints: imposed degrees, so graph set is $G[\mathbf{k}]$
ergodic set Φ of admissible moves:
edge swaps $F: G_{F}[\mathbf{k}] \rightarrow G[\mathbf{k}]$
$\left\{(i, j, k, \ell) \in\{1, \ldots, N\}^{4} \mid i<j<k<\ell\right\}$, ordered node quadruplets
possible edge swaps to act on (i,j,k, ℓ):

- group into pairs (I,IV), (II,V), and (III,VI) auto-invertible swaps: $F_{i j k \ell ; \alpha}$, with $i<j<k<\ell$ and $\alpha \in\{1,2,3\}$

$$
l_{i j k \ell ; \alpha}(\mathbf{c})=1:
$$

$$
F_{i j k \ell ; \alpha}(\mathbf{c})_{q r}=1-c_{q r} \quad \text { for }(q, r) \in \mathcal{S}_{i j k \ell ; \alpha}
$$

$$
F_{i j k \ell ; \alpha}(\mathbf{c})_{a r}=c_{q r} \quad \text { for }(q, r) \notin \mathcal{S}_{i j k \ell ; \alpha}
$$

$$
\mathcal{S}_{i j k \notin ;}=\{(i, j),(k, \ell),(i, \ell),(j, k)\}, \quad \mathcal{S}_{i j k \ell ; 2}=\{(i, j),(k, \ell),(i, k),(j, \ell)\}
$$

$$
\mathcal{S}_{i j k \ell ; 3}=\{(i, k),(j, \ell),(i, \ell),(j, k)\}
$$

- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

4 Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
to implement the Markov chain, need analytical formula for the graph mobility
$n(\mathbf{c})=\sum_{i<j<k<\ell}^{N} \sum_{\alpha=1}^{3} l_{i j k \ell ; \alpha}(\mathbf{c})$

$$
\begin{aligned}
& l_{i j k \ell_{1}(\mathbf{c})}=c_{i j} c_{k \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i \ell} c_{j k} \\
& I_{i j k ;}(\mathbf{c})=c_{i j} c_{k \ell}\left(1-c_{i k}\right)\left(1-c_{j \ell}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i k} c_{j \ell} \\
& I_{i j k \ell ; 3}(\mathbf{c})=c_{i k} c_{j \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i k}\right)\left(1-c_{j \ell}\right) c_{i \ell} c_{j k}
\end{aligned}
$$

combinatorial problem:
$\left(\bar{\delta}_{i j}=1-\delta_{i j}\right)$

$$
\begin{array}{rlr}
n(\mathbf{c}) & =\sum_{i<j<k<\ell} \overbrace{\left(l_{i j k \ell i}(\mathbf{c})\right.}+l_{i j k \ell ; 2(\mathbf{c})}+l_{i j k: 3(\mathbf{c})}) \\
& =\frac{1}{4!} \sum_{i j k \ell} \bar{\delta}_{i j} \bar{\delta}_{i k} \bar{\delta}_{i \ell} \bar{\delta}_{j k} \bar{\delta}_{j \ell} \bar{\delta}_{k \ell} \sum_{\alpha=1}^{3} l_{i j k i ; \alpha(\mathbf{c})} & \\
& =\frac{1}{4} \sum_{i j k \ell} \bar{\delta}_{i j} \bar{\delta}_{i k} \bar{\delta}_{i \ell} \bar{\delta}_{j k} \bar{\delta}_{j \ell} \bar{\delta}_{k \ell} c_{i j} c_{k \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right) & \text { (permutation invariance) } \\
& =\frac{1}{4} \sum_{i j k \ell} \bar{\delta}_{i k} \bar{\delta}_{i \ell} \bar{\delta}_{j k} \bar{\delta}_{j \ell} c_{i j} c_{k \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right) & \text { (no diagonatation, inversion) } \\
& &
\end{array}
$$

work out remaining terms explicitly ...

$$
n(\mathbf{c})=\underbrace{\frac{1}{4} N^{2}\langle k\rangle^{2}+\frac{1}{4} N\langle k\rangle-\frac{1}{2} N\left\langle k^{2}\right\rangle}_{\text {invariant }}+\underbrace{\frac{1}{4} \operatorname{Tr}\left(\mathbf{c}^{4}\right)+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{3}\right)-\frac{1}{2} \sum_{i j} k_{i} c_{i j} k_{j}}_{\text {state dependent }}
$$

Examples:

- Fully connected graphs:
$k_{i}=N-1$ for all $i, \quad \operatorname{Tr}\left(\mathbf{c}^{4}\right)=(N-1)\left[(N-1)^{3}+1\right], \quad \operatorname{Tr}\left(\mathbf{c}^{3}\right)=N(N-1)(N-2)$
formula: $n(\mathbf{c})=0$ (ok by inspection)
- Periodic chains $c_{i j}=\delta_{i, j-1}+\delta_{i, j+1}(\bmod N), N \geq 4$:
$k_{i}=2$ for all $i, \quad \operatorname{Tr}\left(\mathbf{c}^{4}\right)=6 N, \quad \operatorname{Tr}\left(\mathbf{c}^{3}\right)=0$
formula: $n(\mathbf{c})=N(N-4)$ (ok by inspection)
- Two isolated links $c_{12}=c_{21}=c_{34}=c_{43}=1$, all other $c_{i j}=0$:
$k_{1}=k_{2}=k_{3}=k_{4}=1, k_{i>4}=0, \quad \operatorname{Tr}\left(\mathbf{c}^{4}\right)=4, \quad \operatorname{Tr}\left(\mathbf{c}^{3}\right)=0$
formula: $n(\mathbf{c})=2$ (ok by inspection)
- Regular random graphs with $p(k)=\delta_{k, 2}$:
use eigenvalue distribution of \mathbf{c} (Dorogovtsev 2003), formula: $n(\mathbf{c})=N(N-4)+o(N)$

$$
n(\mathbf{c})=\underbrace{\frac{1}{4} N^{2}\langle k\rangle^{2}+\frac{1}{4} N\langle k\rangle-\frac{1}{2} N\left\langle k^{2}\right\rangle}_{\text {invariant }}+\underbrace{\frac{1}{4} \operatorname{Tr}\left(\mathbf{c}^{4}\right)+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{3}\right)-\frac{1}{2} \sum_{i j} k_{i} c_{i j} k_{j}}_{\text {state dependent }}
$$

practicalities

how to avoid calculating $n(\mathbf{c})$ at each iteration step,

- use simple bounds:

$$
\frac{N}{4}\left(N\langle k\rangle^{2}+\langle k\rangle-\left\langle k^{2}\right\rangle\right)-\frac{N}{2}\left\langle k^{2}\right\rangle k_{\max } \leq n(\mathbf{c}) \leq \frac{N}{4}\left(N\langle k\rangle^{2}+\langle k\rangle-\left\langle k^{2}\right\rangle\right)
$$

state-dependent part can be ignored if $\left\langle k^{2}\right\rangle k_{\max } /\langle k\rangle^{2} \ll N$

- (i) calculate $n(\mathbf{c})$ only at time $n=0$
(ii) update $n(\mathbf{c})$ dynamically, by calculating at each step change $\Delta_{i j k \ell ; \alpha} n(\mathbf{c})$ for executed move $F_{i j k \ell ; \alpha}$
e.g.

$$
\Delta_{i j k \ell ; \alpha} \operatorname{Tr}\left(\mathbf{c}^{3}\right)=6 \sum_{(a, b) \in S_{j i k \ell ; \alpha}, a<b}\left(1-2 c_{a b}\right) \sum_{v \notin\{i, j, k, \ell\}} c_{b v} c_{v a}
$$

$\Delta_{i j k \ell ; \alpha} \operatorname{Tr}\left(\mathbf{c}^{4}\right)=$ more complicated but explicit formula \ldots

- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

4 Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

Example:

target = uniform measure on $G[\mathbf{k}]$
$N=100$
naive versus correct
acceptance probabilities
predictions:
$p(\mathbf{c})=$ constant $:$
$\overline{n(\mathbf{c})} / N^{2} \approx 0.0195$
$p(\mathbf{c})=n(\mathbf{c}) / Z$:
$\overline{n(\mathbf{c})} / N^{2} \approx 0.0242$
many possible moves
only one move ...

Example

graph type A: $n(\mathbf{c})=K(K-1)$ graph type $B: n(\mathbf{c})=2(K-1)$
measure distribution $Q(f)$ of (rescaled) frequencies at which graphs are visited

Type A

Type B

Example

human protein interaction network
$N=9463,\langle k\rangle \approx 7.4$

- : 'accept all' edge swap dynamics
o : correct edge swap dynamics
(so no serious harm done yet ...)

Example

target =
degree-correlated measure on $G[\mathbf{k}]$
$N=4000$, $\bar{k}=5$

$$
\Pi\left(k, k^{\prime}\right)=\frac{\left(k-k^{\prime}\right)^{2}}{\left[\beta_{1}-\beta_{2} k+\beta_{3} k^{2}\right]\left[\beta_{1}-\beta_{2} k^{\prime}+\beta_{3} k^{\prime 2}\right]}
$$

- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3.) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

Constrained dynamics of directed graphs

bookkeeping of elementary moves

- constraints: imposed in-out degrees, so graph set is $G\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right]$
set Φ of admissible moves:
directed edge swaps $F: G_{F}\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right] \rightarrow G\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right]$
- auto-invertible edge-swaps:

$$
\text { Let } \Lambda=\left\{(i, j) \in \mathcal{N}^{2} \mid c_{j i}=1\right\}
$$

$$
I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}= \begin{cases}1 & \text { if }\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda \text { and }\left(i_{x}, j_{y}\right),\left(i_{y}, j_{x}\right) \notin \Lambda \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { If } l_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}=1:
$$

$$
\begin{array}{ll}
F_{\left(i_{x}, j_{i}\right),\left(i_{y}, j_{y}\right) ; \square}(\mathbf{c})_{i j}=1-c_{i j} & \\
F_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}(\mathbf{c})_{i j}=c_{i j} & \\
\text { otherwise }
\end{array}
$$

for nondirected graphs:
edge swaps are ergodic set of moves
(Taylor, 1981 - proof based on Lyapunov function)
for directed graphs:
are edge swaps ergodic set of moves?

Rao, 1996:
unless self-interactions are allowed, edge swaps not ergodic for directed graphs
proof:
by counterexample
these two $N=3$ graphs are both in $G\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right]$, with $\mathbf{k}^{\text {in }}=\mathbf{k}^{\text {out }}=(1,1,1)$

but no edge swap maps one to the other
further move type required to restore ergodicity:
3-loop reversal

$$
I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}= \begin{cases}1 & \text { if }\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right),\left(j_{y}, i_{x}\right) \in \Lambda \text { and } x_{j}=y_{i} \\ & \text { and }\left(j_{x}, i_{x}\right),\left(j_{y}, i_{y}\right),\left(i_{x}, j_{y}\right) \notin \Lambda \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{array}{cl}
F_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}(\mathbf{c})_{i j}=1-c_{i j} & \text { for }(i, j) \in \mathcal{S}_{i_{x}, j_{x}, j_{y}} \\
F_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}(\mathbf{c})_{i j}=c_{i j} & \text { for }(i, j) \notin \mathcal{S}_{i_{x}, j_{x}, j_{y}} \\
\mathcal{S}_{a b c}=\{(a, b),(b, c),(c, a),(b, a),(c, b),(a, c)\}
\end{array}
$$

- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
to implement the Markov chain, need to calculate graph mobility analytically:

$$
\begin{aligned}
& n(\mathbf{c})=n_{\square}(\mathbf{c})+n_{\triangle}(\mathbf{c}) \\
& \quad=\sum_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda} I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}+\sum_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda} I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta} \\
& I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}=c_{i_{x}, j_{x}} c_{i_{y}, j_{y}}\left(1-c_{i_{x}, j_{y}}\right)\left(1-c_{\left.i_{y}, j_{x}\right)}\right) \\
& I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}=\delta_{x_{j}, y_{i}} c_{i_{x}, j_{x}} c_{i_{y}, j_{y}} c_{j_{y}, i_{x}}\left(1-c_{\left.j_{x}, i_{x}\right)}\right)\left(1-c_{\left.j_{y}, i_{y}\right)\left(1-c_{i_{x}, j_{y}}\right)}\right)
\end{aligned}
$$

combinatorial problem again easily solved:

$$
\begin{aligned}
& n_{\square}(\mathbf{c})=\underbrace{\frac{1}{2} N^{2}\langle k\rangle^{2}-\sum_{j} k_{j}^{\text {in }} k_{j}^{\text {out }}}_{\text {invariant }}+\underbrace{\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{2}\right)+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{\dagger} \mathbf{c}^{\dagger} \mathbf{c}\right)+\operatorname{Tr}\left(\mathbf{c}^{2} \mathbf{c}^{\dagger}\right)-\sum_{i j} k_{i}^{\text {in }} c_{i j} k_{j}^{\text {out }}}_{\text {state dependent }} \\
& n_{\triangle}(\mathbf{c})=\underbrace{\frac{1}{3} \operatorname{Tr}\left(\mathbf{c}^{3}\right)-\operatorname{Tr}\left(\hat{\mathbf{c}} \mathbf{c}^{2}\right)+\operatorname{Tr}\left(\hat{\mathbf{c}}^{2} \mathbf{c}\right)-\frac{1}{3} \operatorname{Tr}\left(\hat{\mathbf{c}}^{3}\right)}_{\text {state dependent }} \\
& \text { with: }\left(\mathbf{c}^{\dagger}\right)_{i j}=c_{j i}, \hat{\mathbf{c}}_{i j}=c_{i j} c_{j i}
\end{aligned}
$$

$n_{\square}(\mathbf{c})=\frac{1}{2} N^{2}\langle k\rangle^{2}-\sum_{j} k_{j}^{\text {in }} k_{j}^{\text {out }}+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{2}\right)+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{\dagger} \mathbf{c} \mathbf{c}^{\dagger} \mathbf{c}\right)+\operatorname{Tr}\left(\mathbf{c}^{2} \mathbf{c}^{\dagger}\right)-\sum_{\text {ij }} k_{i}^{\text {in }} c_{i j} k_{j}^{\text {out }}$
$n_{\Delta}(\mathbf{c})=\frac{1}{3} \operatorname{Tr}\left(\mathbf{c}^{3}\right)-\operatorname{Tr}\left(\hat{\mathbf{c}} \mathbf{c}^{2}\right)+\operatorname{Tr}\left(\hat{\mathbf{c}}^{2} \mathbf{c}\right)-\frac{1}{3} \operatorname{Tr}\left(\hat{\mathbf{c}}^{3}\right)$

practicalities

how to avoid calculating $n_{\square}(\mathbf{c})$ and $n_{\triangle}(\mathbf{c})$ at each iteration step,

- use simple bounds on n_{\square} (c) and $n_{\Delta}(\mathbf{c})$, state-dependent part can be ignored if

$$
\frac{1}{\langle k\rangle}+\frac{2}{\langle k\rangle^{2}}\left(k_{\max }^{\text {in }}\left\langle k^{\text {out } 2}\right\rangle+k_{\max }^{\text {out }}\left\langle k^{\text {in } 2}\right\rangle\right) \ll N
$$

- (i) calculate n_{\square} (c) and n_{\triangle} (c) only at time $n=0$
(ii) update n_{\square} (c) and n_{Δ} (c) dynamically, by calculating at each step change $\Delta_{i j k ; \alpha} n_{\square}(\mathbf{c})$ and $\Delta_{i j k \ell_{i \alpha}} n_{\Delta}(\mathbf{c})$ for executed move $F_{i j k<; \alpha}$
- Networks and graphs
- Tailored random graph ensembles

Counting tailored graphs

- Entropy and complexity
- Entropy of tailored ensembles of nondirected graphs
- Entropy of tailored ensembles of directed graphs
(3) Generating tailored random graphs numerically
- The most common algorithms and their problems
- Monte-Carlo processes for constrained graphs

Degree-constrained MCMC dynamics of nondirected graphs

- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples
(5) Degree-constrained dynamics of directed graphs
- Bookkeeping of elementary moves
- The mobility of graphs
- Application examples

Example

$$
\begin{aligned}
& \left(k_{1}^{\text {in }}, k_{1}^{\text {out }}\right)=(0, N-2) \\
& i=2 \ldots N-1: \\
& \quad\left(k_{i}^{\text {in }}, k_{i}^{\text {out }}\right)=(1,1) \\
& \left(k_{N}^{\text {in }}, k_{N}^{\text {out }}\right)=(N-2,0)
\end{aligned}
$$

$$
(N-2)(N-3) \text { moves }
$$

$2 N-7$ moves

predicted values versus
equilibrated dynamics for $\overline{n(\mathbf{c})} / N^{2}$:

	prediction for $p(\mathbf{c})=$ const	dynamics with $A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=1$	dynamics with $A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\left[1+\frac{n(\mathbf{c})}{n\left(\mathbf{c}^{\prime}\right)}\right]^{-1}$
$N=17:$	27.87	33.59	27.87
$N=27:$	47.92	58.32	47.95

Example

fully connected 'core' of $N-2$ nodes, plus two extra nodes
$N=20$, target: flat measure
'accept all' edge swapping:
$\overline{n(\mathbf{c})}\rangle \approx 41.09$
predicted: 41.03
edge swapping with correct acceptance probabilities:
$\overline{n(\mathbf{c})} \approx 33.92$ predicted: 33.89

some references

network reviews
R Albert and AL Barabasi, Rev Mod Phys 74, 2002
SN Dorogovtsev, AV Goltsev, and JFF Mendes, Rev Mod Phys 80, 2008
ACC Coolen, F Fraternali, A Annibale, L Fernandes and J Kleinjung, in Handbook of
Statistical Systems Biology, Wiley, 2011
entropies of tailored graph ensembles
G Bianconi, ACC Coolen, CJ Perez Vicente, Phys Rev E 78, 2008
A Annibale, ACC Coolen, L P Fernandes, F Fraternali, J Kleinjung, J Phys A 42, 2009
ES Roberts, T Schlitt and ACC Coolen, J Phys A 44, 2011
ES Roberts and ACC Coolen, J Phys A 47, 2014
graph dynamics and generation
R Taylor, in Combinatorial Mathematics VIII, Springer Lect Notes Math 884, 1981
AR Rao, R Jana, and S Bandyopadhya, Indian J of Statistics 58, 1996
ACC Coolen, A De Martino and A Annibale, J Stat Phys 136, 2009
K Roberts and ACC Coolen, Phys Rev E 85, 2012
website
www.mth.kcl.ac.uk/~tcoolen

