
Modelling of Complex Real-World Systems Epilogue

Ton Coolen Department of Biophysics, Radboud University module NWI-NM127, May 2021

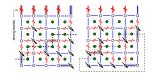
Application of the replica method

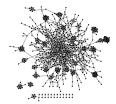
2 Further development of the replica method

Generating functional analysis

Applications of the replica method

spin glasses

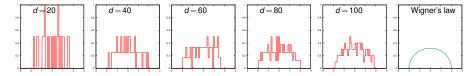

(i) non-binary variables, $S_i \in {\rm I\!R}$ or $ec{S}_i \in {\rm I\!R}^3$


(ii) higher order interactions,

 $H = -\sum_{ijk} J_{ijk} \sigma_i \sigma_j \sigma_k$, etc first order transitions, RS problematic ...

(iii) quantum spins (spin- $\frac{1}{2}$)

- (iv) sparse interactions and vector spins (Guzai expansion)
- *spin systems on random topologies* more realistic random graphs,
 - (i) constrained degrees and degree correlations
 - (ii) graphs with many short loops ... (replica theories with $n \in \mathbb{C}$)



 eigenvalue distribution of random matrices common starting point: Edwards-Jones formula

$$\begin{array}{l} J_{ii}=0,\,J_{ij}=J_{ji}=z_{ij}/\sqrt{d} \text{ for } i\neq j,\\ z_{ij}:\text{ independent Gaussian, } \langle z_{ij}\rangle=0 \text{ and } \langle z_{ij}^2\rangle=1\\ d\rightarrow\infty: \text{ Wigner's semi-circular law} \end{array}$$

$$|\mu| > 2: \ \varrho(\mu) = 0, \qquad |\mu| \le 2: \ \varrho(\mu) = \frac{1}{2\pi} \sqrt{4 - \mu^2}$$

Gaussian symmetric matrices: Wigner's law covariance matrices: Marchenko-Pastur law

adjacency matrices of Erdos-Renyi graphs: Rodgers-Bray adjacency matrices of regular graphs: MacKay law more general degree-constrained graphs: Dorogovtsev finitely connected loopy random graphs

recurrent neural networks

(i) information storage capacities (Gardner), under various constraints (e.g. degree of symmetry)
(ii) phase diagrams of hybrid recurrent-layered systems
(iii) coupled oscillator attractor networks

adaptive immune system

signalling between $\sim 10^8$ T-cell and B-cell clones, finitely connected, with heterogeneity in chemical signalling

folding of heteropolymers

heterogeneity: composition of monomers in the chain

satisfiability problems

SAT-UNSAT questions: given a set of Boolean expressions, do variable assignments exist that satisfy them all? (heterogeneity: logical operators in Boolean expressions)

• mobile communication

CDMA protocols, signal sharing, optimal coding and decoding, computation of what is possible, compressed sensing

machine learning

teacher machine generates question-answer examples (\mathbf{x}, \mathbf{y}) , to be learned by a student machine

(i) how many examples needed for given complexity?

(ii) effects of architecture mismatch?

(iii) committees of machines

(iv) sloppy teachers and/or sloppy students

parameter inference in statistics

model high-dimensional inference (e.g. survival analysis in medicine), overfitting decontamination methods

• Agent-based models of financial markets

El Farol problem and minority games: understand instabilities of financial markets, resulting from (partly irrational) decision-making of interacting agents

quantum computing

analysis of quantum annealing (quantum spin system)

What Is A Quantum Computer

Application of the replica method

Generating functional analysis

Further development of the replica method

• replica symmetry breaking

$$P(q) = \lim_{n \to 0} \frac{1}{n(n-1)} \sum_{\alpha \neq \beta} \delta[q - q_{\alpha\beta}]$$

RS: $P(q) = \delta[q - q_{\text{EA}}]$

Imagine: ergodicity is broken, phase space divided into ergodic sectors $\ell=1\ldots L,$

each containing a fraction w_ℓ of all system states σ

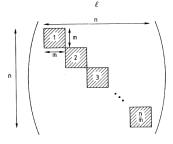
$$P(q) = \left\langle \left\langle \delta[q - \frac{1}{N} \sum_{i} \sigma_{i} \sigma_{i}'] \right\rangle \right\rangle$$

$$= \sum_{\ell \ell'} w_{\ell} w_{\ell'} \left\langle \left\langle \delta[q - \frac{1}{N} \sum_{i} \sigma_{i} \sigma_{i}'] \right\rangle_{\ell} \right\rangle_{\ell'}$$

$$= \sum_{\ell} w_{\ell}^{2} \left\langle \left\langle \delta[q - \frac{1}{N} \sum_{i} \sigma_{i} \sigma_{i}'] \right\rangle_{\ell} \right\rangle_{\ell} + \sum_{\ell \neq \ell'} w_{\ell} w_{\ell'} \left\langle \left\langle \delta[q - \frac{1}{N} \sum_{i} \sigma_{i} \sigma_{i}'] \right\rangle_{\ell} \right\rangle_{\ell'}$$

• if sectors and their mutual similarities equivalent:

$$P(q) = W\delta[q-q_0] + (1-W)\delta[q-q_1], \quad W = \sum w_{\ell}^2$$


Hence:

two off-diagonal values for the $\{q_{lphaeta}\}$

(i) SK model: Parisi's RSB scheme

1-step, 2-step, $\dots \infty$ -step RSB nontrivial function P(q)

- (ii) derivation of Paris scheme from hierarchy of equilibrating subsystems
- (iii) RSB in finite connected systems?
- (iv) link between RSB and violation of FDT in dynamics
- (v) experimental evidence for RSB in lattice spin systems? (critical dimension?)

replicas to do dynamics

dynamical replica method, as alternative to GFA (controlled approximation, simpler to use, especially in finitely connected systems)

 finite n replica method for systems with adiabatically separated timescales

(i) spin glasses with slowly moving impurities
(ii) self-programming neural networks
(iii) protein folding – genetic selection versus operation

alternative derivations in support of the replica method

(i) stochastic stability, Guerra's interpolation method
(ii) link with the cavity method (in tree-like systems)
(iii) link with message passing algorithms from computer science (in tree-like systems)

Generating functional analysis

Generating functional analysis

Iink between GFA and replicas

(i) SK model: derive RS equations from GFA, using FDT(ii) SK model: derive RSB equations from GFA, via broken FDT(iii) finitely connected systems: not yet achieved ...

o dynamics of 'glassy' systems

(i) spin glass dynamics

(ii) dynamics of actual glasses

(iii) algorithms in computer science

systems without detailed balance

(i) neural systems with nonsymmetric synapses (ii) gene regulation

(iii) heterogeneous predator-prey ecologies

(iv) minority games and other market models

(v) dynamics of learning in machine learning