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Dynamical replica analysis
of quantum annealing

ACC Coolen and T Nikoletopoulos

Abstract Quantum annealing aims to provide a faster method for finding the minima

of complicated functions, compared to classical computing, so there is an increasing

interest in the relaxation dynamics of quantum spin systems. Moreover, it is known

that problems in quantum annealing caused by first order phase transitions can be

reduced via appropriate temporal adjustment of control parameters, aimed at steering

the system away from local minima. To do this optimally, it would be helpful to

predict the evolution of the system at the level of macroscopic observables. Solving

the dynamics of a quantum ensemble is nontrivial, as it requires modelling not just the

quantum spin system itself but also its interaction with the environment, with which

it exchanges energy. An interesting alternative approach to the dynamics of quantum

spin systems was proposed about a decade ago. It involves creating a stochastic proxy

dynamics via the Suzuki-Trotter mapping of the quantum ensemble to a classical one

(the quantum Monte Carlo method), and deriving from this new dynamics closed

macroscopic equations for macroscopic observables, using the dynamical replica

method. In this chapter we give an introduction to this approach, focusing on the

ideas and assumptions behind the derivations, and on its potential and limitations.

1 Quantum ensembles and their dynamics

We imagine an ensemble of  independent quantum systems |kU〉, labelled by

U = 1 . . .  , all with the same Hamiltonian but distinct initial conditions. Making a

measurement of an observable � in this ensemble means picking randomly one of

the  systems, with equal probabilities, and measuring � in the selected system. The

average of the observable � can then be written as 〈�〉 = Tr(d�), where d, the density

matrix, is the Hermitian nonnegative definite operator d =  −1
∑ 
U=1 |kU〉〈kU |,

with Tr(d) = 1. Since d is Hermitian it has a complete basis of eigenstates {|:〉}.
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Its eigenvalues F: , which are nonnegative and normalised according to
∑

: F: = 1,

can be interpreted as probabilities. One can now write 〈�〉 = ∑

= 0=
∑

: F: |〈: |=〉|2 .

Hence the probability to measure eigenvalue 0= of observable � in the ensemble is

%= =
∑

: F: |〈: |=〉|2 , where |〈: |=〉|2 is the probability to observe 0= in eigenstate :

of the density matrix, and F: is the probability to find the ensemble in eigenstate :.

The evolution of the density matrix follows from that of the states |kU〉, each

governed by the Schrödinger equation, giving d
dC
d = (iℏ)−1 [�, d]. The solution is

d = e−i�C/ℏdC=0 ei�C/ℏ. It follows in particular, using the eigenbasis {|�〉} of �, that

〈�〉 =
∑

�

〈� |e−i�C/ℏdC=0 ei�C/ℏ� |�〉 = 〈�〉C=0. (1)

In equilibrium [�, d] = 0, so the density matrix can be diagonalized simultaneously

with �, i.e. d =
∑

� 5 (�) |�〉〈� |. The values of 5 (�) define the type of equilibrium

ensemble at hand. In the canonical ensemble we have 5 (�) = exp(−V�)/Z(V), so

d =
1

Z(V)
∑

�

e−V� |�〉〈� | =
1

Z(V) e−V� . (2)

The quantum partition function Z(V) follows from Tr(d) = 1: Z(V) = Tr(e−V� ).
The free energy and the average internal energy are given by F = −V−1 logZ(V)
and E = − m

mV
logZ(V). Expectation values become 〈�〉 = Z(V)−1Tr(e−V� �).

Note that if the systems of the ensemble evolve strictly according to the Schrödinger

equation, there cannot be generic evolution of d towards the equilibrium form (2).

For any initial density operator with 〈�〉C=0 ≠ E this is ruled out by (1). The state

(2) describes the result of equilibration of the quantum systems in a heat bath, with

which they can exchange energy, so a correct description of the dynamics would

require a Hamiltonian that describes also the degrees of freedom of this heat bath.

This is the first obstacle in the analysis of the dynamics of quantum ensembles: it is

hard even to write down the correct microscopic dynamical laws. A similar situation

occurs also in the classical setting. Without a heat bath we have a micro-canonical

ensemble with conserved energy. Deriving the Gibbs-Boltzmann distribution from

the joint dynamics of system and heat bath, requiring us to connect deterministic

trajectories to invariant measures via ergodic theory and to subsequently derive the

form of these measures, has so far proven possible for only a handful of models.

The approach followed in [1] was to circumvent ensembles altogether, and solve

the Schrödinger equation for small systems in which a decaying longitudinal field acts

as quantum noise (which is indeed what happens in quantum annealing). In classical

systems one often defines the pain away. One constructs an intuitively reasonable

stochastic process that evolves towards the Gibbs-Boltzmann state, usually of the

Markov Chain Monte Carlo (MCMC) form. This process is studied as a proxy for

the dynamics of the original system. The price paid is that one cannot be sure to what

extent the stochastic dynamics is close to that of the original system. The MCMC

equations are not even unique; many choices evolve to the Gibbs-Boltzmann state.
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The same dynamics strategy can be applied to quantum systems if the latter can be

mapped to classical ones. This is achieved by the Suzuki-Trotter formalism [4].

2 Quantum Monte Carlo dynamics

In applying quantum annealing to optimization problems formulated in terms of

binary variables, one needs spin- 1
2

particles [1]. These are labelled by 8 = 1 . . . # ,

with Pauli matrices {fG8 , f
H

8
, fI
8
}. In the standard representation of fI-eigenstates:

fG =
(

0 1

1 0

)

, fH =
(

0 −i

i 0

)

, fI =
(

1 0

0 −1

)

.

In quantum annealing one chooses Hamiltonians of the form � = �0 +�1, in which

�0 is obtained by replacing the classical spins f8 = ±1 in an Ising Hamiltonian by

the matrices fI
8
, and with a second part �1 that acts as a form of quantum noise1:

�0 = −
∑

8< 9

�8 9f
I
8 f

I
9 − ℎ

∑

8

fI8 , �1 = −Γ
∑

8

fG8 . (3)

�0 represents the quantity to be minimized in our optimization problem. The classical

state achieving this minimum follows from the quantum ground state of the system

upon sending the parameters Γ and V−1 adiabatically slowly to zero, and is hence

obtained from the partition function Z(V) = Tr(e−V�0−V�1). For excellent reviews

of the physics and the applications of the above types of quantum spin systems with

transverse fields we refer to [2, 3].

The Suzuki-Trotter procedure [4] allows us to convert the above quantum problem

into a classical one, using the operator identity

e�+� = lim
"→∞

(

e�/" e�/"
)"

. (4)

From now on we assume that � and � are Hermitian operators, and we write the

basis of eigenstates of � as {|=〉}. We then obtain after some simple manipulations:

Tr(e�+�) = lim
"→∞

∑

=1 ...="

e
∑"

:=1 0=: /"
∏

:, mod(" )
〈=: |e�/" |=:+1〉. (5)

Application to � = −V�0 and � = −V�1, where the relevant basis is that of the

joint eigenstates of all {fI
8
}, i.e. |B1, . . . , B# 〉 = |B1〉 ⊗ . . . ⊗ |B# 〉, with B8 = ±1 and

fI
8
|B1, . . . , B# 〉 = B8 |B1, . . . , B# 〉, gives Z(V) = lim"→∞Z" (V), where

1 For simplicity we here choose �0 to be quadratic in the spins, and the external field to be uniform,

but this is not essential.
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Z" (V) =
∑

{B8:=±1}
e(V/" ) ∑"

:=1 [
∑

8< 9 �8 9B8:B 9:+ℎ
∑

8 B8: ]
∏

:, mod(" )

#
∏

8=1

〈B8: |e(VΓ/" )fG
8 |B8,:+1〉

= e
1
2
#" log[ 1

2
sinh(2VΓ/" ) ]

×
∑

{B8:=±1}
e(V/" ) ∑"

:=1 [
∑

8< 9 �8 9B8: B 9:+ℎ
∑

8 B8: ]+�
∑

:,mod(" )
∑

8 B8:B8,:+1 . (6)

in which � = − 1
2

log tanh(VΓ/"). Thus the partition function of the #-spin quantum

system is mapped (apart from a constant) onto the limit " → ∞ of that of a classical

Ising model with #" spins s = {B8: }, with Hamiltonian � (s) and asymptotic free

energy density 5 = lim#→∞ lim"→∞ 5# ," :

� (s) = − 1

"

"
∑

:=1

∑

8< 9

�8 9 B8: B 9 : −
ℎ

"

"
∑

:=1

∑

8

B8: −
�

V

∑

:,mod(" )

∑

8

B8: B8,:+1, (7)

5# ," = −"
2V

log[1

2
sinh(2VΓ/")]

− 1

V#
log

∑

{B8:=±1}
e

V

"

∑"
:=1 [

∑

8< 9 �8 9B8:B 9:+ℎ
∑

8 B8: ]+�
∑

:,mod(" )
∑

8 B8: B8,:+1 . (8)

The new system (7), for"→∞ equivalent to the original quantum one, lends itself

for constructing a stochastic dynamics. We first write the Suzuki-Trotter Hamiltonian

in the standard form of #" interacting Ising spins in an external field:

� (s) = −1

2

∑

8:, 9ℓ

B8:�8:, 9ℓ B 9ℓ − \
∑

8:

B8: , (9)

�8:, 9ℓ =
1

"
X:ℓ�8 9 (1−X8 9) +

�

V
X8 9 (X:,ℓ+1+Xℓ,:+1), \ = ℎ/". (10)

The conventional Glauber dynamics for this classical system to evolve towards the

equilibrium state with the above Hamiltonian is, after switching to continuous time

[5] and denoting with ?C (s) the probability to find the system at time C in state s:

g
d

dC
?C (s) =

#
∑

8=1

"
∑

:=1

{

?C (�8: s)F8: (�8: s) − ?C (s)F8: (s)
}

, (11)

F8: (s) =
1

2
[1 − B8: tanh(Vℎ8: (s))], ℎ8: (s) =

∑

9ℓ

�8:, 9ℓ B 9ℓ + \. (12)

It describes a process where at each step a site 8 ∈ {1, . . . , #} and a Trotter slice

: ∈ {1, . . . , "} are picked at random, followed by an attempt to flip spin B8: . The

F8: (s) denote transition rates for B8: → −B8: . �8: is an operator that flips spin B8:
and leaves all others invariant. The parameter g defines time units such that the

average duration of a single spin update is g/# . Working out the local fields ℎ8: (s)
gives
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ℎ8: (s) =
1

"

∑

9≠8

�8 9 B 9 : +
�

V
(B8,:+1 + B8,:−1) + ℎ/". (13)

The process (11,12), suitable for numerical simulation, defines the quantum Monte

Carlo dynamics for the ensemble with Hamiltonian (3), provided we take "→∞.

When applied to quantum annealing models, some authors have called it ‘simulated

quantum annealing’. Definition (11,12) is, however, not unique. Many alternative

stochastic processes evolve towards the same Gibbs-Boltzmann state (see e.g. [6]).

3 Dynamical replica analysis

The remaining challenge is to extract from (11,12) formulae describing the evolution

of relevant macroscopic quantities. This was addressed in [7, 8, 9] and [10] using

the so-called dynamical replica method (DRT) [12, 13, 14]. In this paper we will

deviate from the definitions in [7, 8, 9, 10] and stay closer to the original DRT ideas.

The dynamics (11,12) implies for expectation values 〈� (s)〉 = ∑

s ?C (s)� (s):

g
d

dC
〈� (s)〉 =

#
∑

8=1

"
∑

:=1

∑

s

?C (s)F8: (s)
[

� (�8: s) − � (s)
]

. (14)

To study the joint dynamics of a set of ! observables 
(s) = (Ω1(s), . . . ,Ω! (s))
we substitute � (s) = X [
 −
(s)]. Now 〈� (s)〉 = %C (
), and

g
d

dC
%C (
) =

#
∑

8=1

"
∑

:=1

∑

s

?C (s)F8: (s)
[

X [
 −
(�8: s)] − X [
 −
(s)]
]

. (15)

If the observables Ω` (s) are O(1) and macroscopic in nature, their susceptibility

to single spin flips Δ 9 :` (s) = Ω` (�8: s) − Ω` (s) will be small. We can then define

� 9 : = (Δ 9 :1 (s), . . . ,Δ 9 :! (s)) ∈ IR! , and expand (15) in a distributional sense, i.e.

g
d

dC

∫

d
 %C (
)� (
) =
∫

d
 � (
)
∑

ℓ≥1

(−1)ℓ
ℓ!

mℓ

mΩ`1
. . . mΩ`ℓ

×
{

!
∑

`1=1

. . .

!
∑

`ℓ=1

#
∑

8=1

"
∑

:=1

〈

F8: (s)X [
−
(s)]Δ8:`1
(s) . . . Δ8:`ℓ (s)

〉

}

.(16)

We thereby arrive at the following Kramers-Moyal expansion

g
d

dC
%C (
) =

∑

ℓ≥1

(−1)ℓ
ℓ!

!
∑

`1=1

. . .

!
∑

`ℓ=1

mℓ

mΩ`1
. . . mΩ`ℓ

{

%C (
)� (ℓ)
`1...`ℓ [
; C]

}

, (17)

with
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�
(ℓ)
`1 ...`ℓ [
; C] =

〈

#
∑

8=1

"
∑

:=1

F8: (s)Δ8:`1
(s) . . . Δ8:`ℓ (s)

〉


;C

, (18)

〈 5 (s)〉
;C
=

∑

s ?C (s)X [
 −
(s)] 5 (s)
∑

s ?C (s)X [
 −
(s)] . (19)

Asymptotically, i.e. for #, " → ∞, only the first term of (17) survives if

lim
# ,"→∞

∑

ℓ≥2

1

ℓ!

!
∑

`1=1

. . .

!
∑

`ℓ=1

#
∑

8=1

"
∑

:=1

〈

|Δ8:`1
(s) . . . Δ8:`ℓ (s) |

〉


;C
= 0. (20)

If all Δ8:` (s) scale similarly, i.e. ∃Δ̃# ," such that Δ8:` (s) = O(Δ̃# ," ) for #, "→
∞, then (17) retains only its first term if lim# ,"→∞ !Δ̃# ,"

√
#" = 0. In that case

it reduces to a Liouville equation, describing deterministic evolution of 
:

g
d

dC
Ω` =

〈
#
∑

8=1

"
∑

:=1

F8: (s)Δ8:` (s)
〉


;C
. (21)

If lim# ,"→∞ !Δ̃# ,"
√
#" > 0, we can no longer ignore the fluctuations in our

observables 
(s), placing limitations on our choice of observables.

Equation (21) is closed if
∑#
8=1

∑"
:=1 F8: (s)Δ8:` (s) is a function of 
(s) only

(which would simply drop out). If this is not the case, we close (21) using a maximum

entropy argument: we approximate ?C (s) in (21) by a form that assumes that all

micro-states with the same value for 
(s) are equally likely. Now (21) becomes

g
d

dC
Ω` =

∑

s X [
 −
(s)] ∑#
8=1

∑"
:=1 F8: (s1)Δ8:` (s)

∑

s X [
 −
(s)] . (22)

Within the replica formalism [16, 17], this closed equation can also be written as

g
d

dC
Ω` = lim

=→0

∑

s1...s=

(

=
∏

U=1

X [
−
(sU)
)

#
∑

8=1

"
∑

:=1

F8: (s1)Δ8:` (s1). (23)

The accuracy of (22) will depend on our choice for the observables Ω` (s). They

should be O(1), obeying lim# ,"→∞ !Δ̃# ,"
√
#" = 0, and such that the probabil-

ity equipartitioning assumption is as harmless as possible. Including � (s)/# and

#−1 log ?0(s) ensures that equipartitioning holds for C → 0 and C → ∞. If we have

disorder in the couplings {�8 9 }, and for #→∞ our observables are self-averaging

with respect to its realization, we can average over the disorder2. This gives

g
d

dC
Ω` = lim

=→0

∑

s1...s=

(

=
∏

U=1

X [
−
(sU)
)

#
∑

8=1

"
∑

:=1

F8: (s1)Δ8:` (s1). (24)

2 Without disorder one does not need the replica formalism yet, and can work directly with (22).
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For the system (7) and the typical initial conditions in quantum annealing, there

are two natural and simple routes for choosing the observables in the DRT method3,

all involving the normalised distinct energy contributions in (7):

• Trotter slice dependent observables

Here we choose, for : = 1 . . . " (mod "),

�: (s) = − 1

#

∑

8< 9

�8 9 B8: B 9 : , <: (s) =
1

#

∑

8

B8: , E: (s) =
1

#

∑

8

B8: B8,:+1 . (25)

Now ! = 3" , and the susceptibilities of the observables to single spin flips are,

using
∑

9 �8 9 B 9 : = O(1) for all : (required for an extensive Hamiltonian):

Δ8:�@ (s) = 2#−1X@:B8:

∑

9≠8

�8 9 B 9 : = O(#−1), (26)

Δ8:<@ (s) = −2#−1X@:B8: = O(#−1), (27)

Δ8:E@ (s) = −2#−1B8: (X@:B8,:+1 + X:,@+1B8,:−1) = O(#−1). (28)

Hence Δ̃# ," = #−1, so deterministic evolution requires that " ≪ #
1
3 as

", # → ∞. Hence, on choosing (25) we can no longer take " → ∞ before

#→∞, which would have been the correct order, and must rely on these limits

commuting4.

• Trotter slice independent observables

These are simply averages over all Trotter slices of the previous set (25), i.e.

� (s) = 1

"

"
∑

:=1

�: (s), <(s) = 1

"

"
∑

:=1

<: (s), E(s) = 1

"

"
∑

:=1

E: (s). (29)

Hence ! = 3, and the spin-flip susceptibilities come out as

Δ8:� (s) = 2(#")−1B8:

∑

9≠8

�8 9 B 9 : = O((#")−1), (30)

Δ8:<(s) = −2(#")−1B8: = O((#")−1), (31)

Δ8:E(s) = −2(#")−1B8: (B8,:+1+B8,:−1) = O((#")−1). (32)

Now Δ̃# ," = 1/#" . Deterministic evolution requires lim# ,"→∞ (#")− 1
2 = 0,

which is always true. Here we can therefore take our two limits in any desired

order without having to worry about fluctuations in our macroscopic observables.

3 One can always add further observables, or split the present ones into distinct contributions. This

generally improves the accuracy of the theory, provided lim#,"→∞ !Δ̃#,"

√
#" = 0 still holds.

4 The assumption that the order of the limits #→∞ and "→∞ can be changed is also made in

equilibrium studies such as [15], where steepest descent integration is used as #→∞ for fixed " .



8 ACC Coolen and T Nikoletopoulos

4 Simple examples

We illustrate the previous approach via application to simple models. We investigate

the commutation of the limits # → ∞ and " → ∞, and the link between stationary

states of the dynamical equations and the equilibrium theory. We start with the sim-

plest case of non-interacting spins in a uniform G field, followed by non-interacting

spins in uniform G and I fields and ferromagnetically interacting quantum systems.

4.1 Non-interacting quantum spins in a uniform x field

This is the simplest case of (7), where ℎ = �8 9 = 0 for all (8, 9). Although this specific

model is physically trivial, it is still instructive since it already reveals many general

features of the more general dynamical theory. The statics analysis gives

Z" (V) =
{

e
1
2" log[ 1

2 sinh(2VΓ/" ) ]Tr(Q" )
}#

, (33)

with the 2 × 2 transfer matrix of the one-dimensional Ising chain:

Q =

(

e� e−�

e−� e�

)

, eigenvalues : _+ = 2 cosh(�), _− = 2 sinh(�). (34)

After some rewriting and insertion of the definition of � we obtain:

Z" (V) =
{

e
1
2
" log[ 1

2
sinh(2VΓ/" ) ]2" [cosh" (�) + sinh" (�)]

}#

= [2 cosh(VΓ)]# . (35)

This gives the correct free energy density 5# ," = − 1
V

log[2 cosh(VΓ)].
Next we turn to the macroscopic dynamical equations (21). Since �8 9 = 0, the

order parameters �: (s) and � (s) are always zero. The two dynamical routes give:

• Trotter slice dependent observables

The observables are {<: (s), E: (s)}, and we are forced to take # →∞ before

"→∞. Using identities such as tanh[�(B+B′)] = 1
2
(B+B′) tanh(2�) we obtain:

g
d

dC
<: = −<: +

1

2
(<:+1+<:−1) tanh(2�), (36)

g
d

dC
E: = tanh(2�) [1+ 1

2
(�:+�:+1)] − 2E: , (37)

in which, using the equivalence of the # sites 8, we have the 2-slice correlators:
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�: =

∑

s

[

∏

@ X [<@−<@ (s)]X [E@−E@(s)]
]

B1,:−1B1,:+1

∑

s

[

∏

@ X [<@−<@ (s)]X [E@−E@(s)]
] . (38)

One can compute these for # → ∞ with fixed " via steepest descent integration:

�: =

∑

B1...B" e
∑

@ (G@B@+H@B@B@+1) B:−1B:+1
∑

B1...B" e
∑

@ (G@B@+H@B@B@+1)
, (39)

in which x = (G1, . . . , G" ) and y = (H1, . . . , H" ) are to be solved from

<: =
m log /

mG:
, E: =

m log /

mH:
, / (x, y) =

∑

B1...B"

e
∑

@ (G@B@+H@B@B@+1). (40)

• Trotter slice independent observables

Here we only have <(s) and E(s), and working out (21) gives

g
d

dC
< = −<[1−tanh(2�)], g

d

dC
E = (1+�) tanh(2�) − 2E, (41)

with

� =

∑

s X [<−<(s)]X [E−E(s)]B1,1B1,3
∑

s X [<−<(s)]X [E−E(s)] . (42)

Calculating the 2-slice correlator � using steepest descent results in

� =

∑

B1...B" e
1
"

∑

@ (GB@+HB@B@+1) B1B3
∑

B1...B" e
1
"

∑

@ (GB@+HB@B@+1)
, (43)

< =
m log /

mG
, E =

m log /

mH
, / (G, H) =

∑

B1...B"

e
1
"

∑

@ (GB@+HB@B@+1) . (44)

If at time zero the<: and E: in (36,37) are independent of :, this will remain true at

all times5 and the dynamics (36,37) simplifies to (41). Computing� involves solving

a one-dimensional Ising model with a constant external field, whereas computing

the�: requires solving heterogeneous spin chain models in equilibrium for arbitrary

coupling constants and fields. This is the second reason, in addition to the issue with

limits, why working with Trotter slice independent observables is preferred.

For non-interacting spins with ℎ ≠ 0 the analysis is similar. Here 5 =

lim"→∞ 5# ," = −V−1 log[2 cosh(V
√
Γ2+ℎ2)], with equilibrium magnetisation

< = −m 5 /mℎ = tanh(V
√

ℎ2+Γ2) ℎ
√
ℎ2+Γ2

, (45)

and the Trotter slice independent observables are predicted to obey

5 In [7, 8, 10] this is called the static approximation.
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g
d

dC
< =

1

2
(1−�) tanh(Vℎ/") + 1

2
&+(1+�) − <(1−&−), (46)

g
d

dC
E = (1+�)&−+ 2&+< − 2E, (47)

with &± =
1
2
[tanh(Vℎ/" +2�) ± tanh(Vℎ/" −2�)]. Since limℎ→0&+ = 0 and

limℎ→0&− = tanh(2�), equations (46,47) indeed revert back to (41) for ℎ → 0. We

will inspect the fixed-points of (46,47) after having also added spin interactions in

the next section. Clearly, since lim"→∞&+ = lim"→∞ (1−&−) = 0 the relaxation

time of the system will diverge for " → ∞, with closer inspection revealing that

d</dC = O("−2). This makes physical sense: for large" , hence large �, the Trotter

slices increasingly prefer identical states, so state changes (in a single slice) become

rare as they require the mounting energetic costs of breaking the Trotter symmetry.

4.2 Ferromagnetic z-interactions and uniform x and z fields

Here we choose ℎ ≠ 0, Γ ≠ 0, and �8 9 = �0/# for all 8 ≠ 9 , so the the quantum

Hamiltonian is � = −(�0/#)
∑

8< 9 f
I
8
fI
9
− ∑

8 (ℎfI8 + ΓfG
8
). This is known as the

Husimi-Temperley-Curie-Weiss model in a transverse field [11]. In the statics we

find, after some simple manipulations and with the short-hand DI = (2c)− 1
2 e−

1
2
I2

dI:

Z" (V) = e
1
2 #" log[ 1

2 sinh(2VΓ/" ) ]− 1
2 V�0

∫

[

"
∏

:=1

DI:

]{

Tr

"
∏

:=1

Q
(

I:

√

"

V�0#

)

}#

, (48)

with the non-symmetric transfer matrix

Q (G) =
(

e�+Vℎ/"+V�0 G/" e−�+V�0G/"

e−�−V�0G/" e�−Vℎ/"−V�0G/"

)

= eG (V�0/" )fI

Q(0). (49)

We first turn to the statics of the model. It is not immediately clear whether or

not the limits #, "→∞ in (48) commute. Upon taking the limit # → ∞ first, one

obtains via steepest descent integration:

lim
#→∞

5# ," = −"
2V

log
[ 1

2
sinh

(2VΓ

"

)]

− 1

V
extrx

{

log Tr

"
∏

:=1

Q(G: ) −
V�0

2"
x2

}

.

(50)

We find the derivatives of the quantity Ψ(x) to be extremized, with X01 = 1−X01:
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mΨ

mG@
=
V�0

"

{

Tr
∏"
:=1 (X:@1I+X:@fI)Q (G: )

Tr
∏"
:=1 Q (G: )

− G@

}

, (51)

m2Ψ

mG@mGA
=

( V�0

"

)2
{

Tr
∏"
:=1(X:@1I+X:@fI) (X:A1I+X:AfI)Q (G:)

Tr
∏"
:=1 Q (G: )

−
Tr

∏"
:=1(X:@1I+X:@fI)Q (G: )

Tr
∏"
:=1 Q (G: )

Tr
∏"
:=1(X:A1I+X:AfI )Q (G:)

Tr
∏"
:=1 Q (G: )

}

− V�0

"
X@A . (52)

In Trotter-symmetric solutions G: = < for all :, these derivatives simplify to

mΨ

mG@
=
V�0

"

{

Tr[fIQ"(<)]
Tr[Q"(<)]

− <
}

, (53)

m2Ψ

mG@mGA
=

( V�0

"

)2
{

Tr[fIQ |@−A |(<)fIQ"−|@−A |(<)]
Tr[Q"(<)]

−
(

Tr[fIQ"(<)]
Tr[Q"(<)]

)2}

−(V�0/")X@A . (54)

and < is the solution of

< =
Tr[fIQ"(<)]

Tr[Q"(<)]
. (55)

Trotter symmetry-breaking bifurcations occur when Det[(V�0/")G−1I] = 0, where

�@A =
Tr[fIQ |@−A |(<)fIQ"−|@−A |(<)]

Tr[Q"(<)]
− <2. (56)

We introduce the symmetric matrix W(<) = e−
1
2
<(V�0/" )fI

Q (<)e 1
2
<(V�0/" )fI

,

with eigenvalues _± (G) and orthogonal eigenbasis |±〉. Now for any ℓ ∈ IN we have

Qℓ (<) = e
1
2
<(V�0/" )fI

(

_ℓ+ (<) |+〉〈+|+_ℓ− (<) |−〉〈−|
)

e−
1
2
<(V�0/" )fI

, (57)

and hence, with the short-hands fI
01

= 〈0 |fI |1〉 and q = _− (<)/_+ (<) ∈ (−1, 1):

Tr[fIQ"(<)]
Tr[Q"(<)]

=
fI+++fI−−q"

1 + q" , (58)

�@A =
fI2+++

[

q |@−A |+q"−|@−A |] |fI+− |2+q"fI2−−
1 + q" − <2. (59)

Since G has a Toeplitz form, we know its eigenvalues:

: = 1 . . . " : 0: =
|fI+− |2
1+q"

(1−q" ) (1−q2)
1+q2−2q cos(2c(:−1)/")

. (60)

Finally we need to diagonalize W(<) for large " . This gives:
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W(<) =
(

e�+V (ℎ+�0<)/" e−�

e−� e�−V (ℎ+�0<)/"

)

(61)

_± (<) = e�±
V

"

√
(ℎ+�0<)2+Γ2+O("−2) , (62)

lim
"→∞

|±〉 = 1

�± (<)

(

Γ,−(ℎ+�0<) ±
√

(ℎ+�0<)2+Γ2
)

, (63)

�±(<) =
√

2
[

(ℎ+�0<)2+Γ2 ∓ (ℎ+�0<)
√

(ℎ+�0<)2+Γ2
]

1
2

. (64)

It follows that

q = e−
2V
"

√
(ℎ+�0<)2+Γ2+O("−2) . (65)

Hence lim"→∞ q = 1, lim"→∞ q" = exp[−2V
√

(ℎ+�0<)2+Γ2], lim"→∞ f
I
++ =

− lim"→∞ fI−−= (ℎ+�0<)/
√

(ℎ+�0<)2+Γ2, and lim"→∞ f
I
+−=Γ/

√

(ℎ+�0<)2+Γ2.

The equation for the magnetization < and the eigenvalues of G thereby become

< =
(ℎ+�0<) tanh[V

√

(ℎ+�0<)2+Γ2]
√

(ℎ+�0<)2+Γ2
, (66)

0: =
Γ2 tanh[V

√

(ℎ+�0<)2+Γ2]
(ℎ+�0<)2+Γ2

[

1+2 lim
"→∞

1−cos(2c(:−1)/")
1−q2

]−1

. (67)

All 0: are bounded for large" , so the condition V�00:/" = 1 for bifurcations away

from the Trotter-symmetric state are never met, indicating that the state described

by (66) is the physical one. The free energy density 5 = lim"→∞ lim#→∞ 5# ," is

5 =
1

2
�0<

2 − lim
"→∞

{

"

2V
log

[ 1

2
sinh

(2VΓ

"

)]

+ 1

V
log

(

_"+ (<)+_"− (<)
)

}

=
1

2
�0<

2 − 1

V
log

[

2 cosh
(

V
√

(ℎ+�0<)2+Γ2
)]

. (68)

Extremizing expression (68) over < reproduces (66).

We return to (48), and now seek to take the Trotter limit " → ∞ first. The

complexities are all in the evaluation for large " of the quantity

/" =

∫

[

"
∏

:=1

DI:

]{

Tr

[

"
∏

:=1

e
I:

√

V�0
"#

fI

(

e�+Vℎ/" e−�

e−� e�−Vℎ/"

)

]}#

. (69)

This could be analysed using random field Ising chain techniques [18]. Alternatively

we can use the fact that in summations of the form
∑

: I: , each I: effectively scales

as O("− 1
2 ), enabling us to use e−� =

√

tanh(VΓ/") and a modified version of the

Trotter identity, viz.
∏

:≤"
(

eD:/"eE/"
)

= e"
−1

∑

:≤" D:+E , to derive
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/" = e#"�
∫

[

"
∏

:=1

DI:

]{

Tr

[

"
∏

:=1

e
I:

√

V�0
"#

fI
(

1I+ V

"
(ℎfI+ΓfG)+O( 1

"2
)
)

]}#

=
√

V�0#e#"�
∫

d<
√

2c
e−

1
2
V�0#<

2
{

Tr eV (ℎ+�0<)fI+VΓfG+O("−1)
}#

. (70)

The free energy density 5 = lim#→∞ lim"→∞ 5# ," then becomes

5 = − 1

V
extr<

{

log
(

eV`+ (<) + eV`− (<) ) − 1

2
V�0<

2
}

, (71)

in which `± (<) are the eigenvalues of the matrix R(<) = (ℎ+�0<)fI+ΓfG:

R(<) =
(

ℎ+�0< Γ

Γ −(ℎ+�0<)

)

, `±(<) = ±
√

(ℎ+�0<)2+Γ2. (72)

We now recover (66,68), so the limits # → ∞ and " → ∞ can be interchanged:

5 = extr<

{

1

2
�0<

2 − 1

V
log

[

2 cosh
(

V
√

(ℎ+�0<)2+Γ2
)]

}

. (73)

We next turn to the DRT dynamics. The energy and the usual initial conditions

can once more be expressed in terms of {<: , E:} (slice-dependent observables) or

(<, E) (slice-independent ones). We define the short-hands&± (<)= 1
2

tanh(V(�0<+
ℎ)/"+2�)±1

2
tanh(V(�0<+ℎ)/"−2�) ∈ (−1, 1). Upon inserting (27,28) and (31,32)

into (21), with the fields ℎ8: (s) = "−1 [ℎ+�0<: (s)]+(�/V) (B8,:+1+B8,:−1)+O(#−1),
and using expressions such as tanh[0 + 1(B+B′)] = 1

4
(1+B) (1+B′) tanh(0+21) + 1

4
(1−

B) (1−B′) tanh(0−21) + 1
2
(1−BB′) tanh(0), one finds the following descriptions:

• Trotter slice dependent observables

Our observables are <@ (s) = #−1
∑

8 B8,@ and E@ (s) = #−1
∑

8 B8,@B8,@+1, for

@ = 1 . . . " , and we must take the limit # → ∞ before " → ∞. We note that

tanh(Vℎ8: (s)) =
1

2
(1+B8,:+1B8,:−1)&+(<: (s)) +

1

2
(B8,:+1+B8,:−1)&−(<: (s))

+1

2
(1−B8,:+1B8,:−1) tanh(V(ℎ+�0<: (s))/"), (74)

so with the correlators �: in (39) the dynamical laws take the form
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g
d

dC
<@ =

1

2
(1+�@)&+(<@) +

1

2
(<@+1+<@−1)&− (<@) − <@

+1

2
(1−�@) tanh( V

"
(ℎ+�0<@)), (75)

g
d

dC
E@ =

1

2
(<@+1+<@−1)&+(<@) +

1

2
(1+�@)&− (<@)

+1

2
(<@+<@+2)&+(<@+1) +

1

2
(1+�@+1)&− (<@+1)

+1

2
(<@+1−<@−1) tanh( V

"
(ℎ+�0<@))

+1

2
(<@−<@+2) tanh( V

"
(ℎ+�0<@+1)) − 2E@. (76)

For slice-independent initial conditions, where<: = < and E: = E, this becomes

g
d

dC
< =

1

2
(1+�)&+(<)+<&−(<)−<+ 1

2
(1−�) tanh( V

"
(ℎ+�0<)), (77)

g
d

dC
E = 2<&+(<) + (1+�)&−(<) − 2E, (78)

with the correlator � in (43).

• Trotter slice independent observables

For the choice (<, E) there is no constraint on the order of limits, but now the

quantities <: (s) appearing inside tanh(Vℎ8: (s)) can no longer be replaced by

deterministic macroscopic observables, but must now be calculated. Using Trotter

slice permutation symmetry wherever possible, one finds

g
d

dC
< =

1

2"

"
∑

:=1

〈

[1+�: (s)]&+(<: (s)) + [<:+1 (s)+<:−1(s)]&−(<: (s))

+[1−�: (s)] tanh(V(ℎ+�0<: (s))/")
〉

<,E
− <, (79)

g
d

dC
E =

1

"

"
∑

:=1

〈

[<:+1 (s)+<:−1(s)]&+(<: (s))
〉

<,E

+ 1

"

"
∑

:=1

〈

[1+�: (s)]&−(<: (s))
〉

<,E
− 2E, (80)

with �: (s) = #−1
∑

8 B8,:+1B8,:−1. For large " and # , and in view of the inter-

changeability of the limits " → ∞ and # → ∞ in the equilibrium calculation,

we may anticipate (and can indeed show) that we can neglect the fluctuations
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in the values of the {<: (s)} and simply replace <: (s) → <(B) + o(1) in the

right-hand sides of above equations, upon which these simplify to (77,78).

5 Link between statics and dynamics

Here we show that for " → ∞ the stationary state of the (77,78) reproduces the

equilibrium result (66), as it should. The fixed-point equations of (77,78) are

< =
1

2
(1+�)&+(<) + <&−(<) +

1

2
(1−�) tanh( V

"
(ℎ+�0<)), (81)

E = <&+ (<) +
1

2
(1+�)&−(<), (82)

with the correlator � = � (<, E) ∈ (−1, 1) to be solved from

� =

∑

B1...B" e
∑"

:=1 (GB:+HB: B:+1) B1B3
∑

B1...B" e
∑"

:=1 (GB:+HB: B:+1)
, (83)

< =
1

"

m log /

mG
, E =

1

"

m log /

mH
, / (G, H) =

∑

B1...B"

e
∑"

:=1 (GB:+HB: B:+1) . (84)

We compute / (G, H) via the transfer matrixQ(G, H) with elements BB′ = e
1
2
G (B+B′)+HBB′ .

This gives / (G, H) = _"+ (G, H)+_"− (G, H), where _± (.) are the eigenvalues of Q (.),

_± (G, H) = eH
(

cosh(G) ±
√

sinh2(G)+e−4H
)

. (85)

For the equilbrium values of (<, E), equations (84) are solved by

G= V(ℎ+�0<)/", H=�=−1

2
log tanh( VΓ

"
), so e−4H

= tanh2 ( VΓ
"

). (86)

This claim is confirmed by substituting these as ansätze into the expressions given

in the appendix. The key ingredient q = _−/_+ of our formulae then becomes

log q = −2V

"

√

(ℎ+�0<)2+Γ2 + O("−3). (87)

Hence for " → ∞ the formulae for < and E in (84) become

< =
(ℎ+�0<) tanh[V

√

(ℎ+�0<)2+Γ2]
√

(ℎ+�0<)2+Γ2
, E = 1. (88)

in which we recognize (66). For large " one finds &+ (<) =O("−3) and &−(<) =
1−2(VΓ/")2+O("−3), so expansion of the fixed-point equations gives
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< = " (1−�) ℎ+�0<

4VΓ2
+ O("−1), (89)

E =
1

2
(1+�) [1 − 2(VΓ/")2] + O("−3). (90)

The first equation implies that � = 1−�̃/" for " → ∞, with �̃ = O(1). In turn,

this gives E = 1− �̃
2"

+O("−2). What is left in our proof is to show that < obeys

< =
ℎ+�0<

4VΓ2
lim
"→∞

" (1−�). (91)

We hence compute the correlator� to order"−1, using the identities in the appendix:

� = 〈+|fI |+〉2 +
cosh[( 1

2
"−2) log q]

cosh[ 1
2
" log q]

(

1 − 〈+|fI |+〉2
)

=
(ℎ+�0<)2

(ℎ+�0<)2+Γ2
+ cosh[V(1−4/")

√

(ℎ+�0<)2+Γ2]
cosh[V

√

(ℎ+�0<)2+Γ2]
Γ2

(ℎ+�0<)2+Γ2
+O( 1

"2
)

= 1− 1

"
tanh

[

V
√

(ℎ+�0<)2+Γ2
] 4VΓ2

√

(ℎ+�0<)2+Γ2
+O( 1

"2
). (92)

We can now read off the value of �̃, and the condition (91) is found to reduce to (66),

so that it is indeed satisfied. This completes the demonstration that for large " the

macroscopic equations (77,78) indeed have the equilibrium state as their fixed-point.

6 Evolution on adiabatically separated timescales

We return to the dynamical laws (77,78). As noted earlier, these exhibit for large "

a divergent relaxation time for the magnetization, suggesting that the dynamics will

have distinct phases. The first phase is studied by choosing g = O(1). Using

&+(<) =
4V3Γ2(�0<+ℎ)

"3
+ O("−4), &− (<) = 1− 2V2Γ2

"2
+ O("−4), (93)

we here find that

< = <0 + O("−1), g
d

dC
E = 1+� (<0, E) − 2E + O("−1). (94)

So on these timescales the magnetization will not change, whereas the Trotter energy

will evolve to the solution of the fixed-point equation E =
1
2
+ 1

2
� (<0, E), in which

� (<0, E) is according to the appendix to be solved from the following equations:
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< = −
sinh(G) tanh[ 1

2
" log q]

√

sinh2 (G)+e−4H

, (95)

E =
sinh2 (G)

sinh2(G)+e−4H
+

cosh[( 1
2
"−1) log q]

cosh[ 1
2
" log q]

e−4H

sinh2(G)+e−4H
, (96)

� =
sinh2 (G)

sinh2(G)+e−4H
+

cosh[( 1
2
"−2) log q]

cosh[ 1
2
" log q]

e−4H

sinh2(G)+e−4H
, (97)

with q = [cosh(G)−
√

sinh2(G)+e−4H]/[cosh(G) +
√

sinh2 (G)+e−4H]. Inspection of

these equations reveals that the correct scaling with " requires (G, e−2H)= (D, E)/" ,

with D, E=O(1). Now 1
2
" log q=−

√
D2+E2+O("−2), E = 1−Ẽ/"+O("−2), and

� = 1−2Ẽ/"+O("−2), in which (D, E) are solved from

<0 =
D tanh(

√
D2+E2)

√
D2+E2

, Ẽ =
2E2 tanh(

√
D2+E2)

√
D2+E2

. (98)

To order O("−1) the fixed-point equation for E is now solved, but to compute

Ẽ one needs higher orders in "−1. Once E = 1−Ẽ/" +O(#−2) and � (<, E) =

1−2Ẽ/"+O("−2), we find d</dC = O("−2) and dE/dC = O("−2), so nothing

evolves further macroscopically on these finite timescales.

To probe the macroscopic evolution of the system on larger timescales we need

g = O("−2), so on unit timescales O("3#) spin flips in the Trotter system are

attempted6. With the choice g = "−2, and upon defining " (1− E) = Ẽ and

" (1−�) = �̃, the macroscopic laws (77,78) become

d

dC
< =

1

2
�̃V(ℎ+�0<) − 2<V2

Γ
2 + O( 1

"
), (99)

d

dC
Ẽ = 4"V2

Γ
2 − "2(2Ẽ−�̃) − 8V3

Γ
2<(�0<+ℎ) − 2V2

Γ
2�̃ + O( 1

"
). (100)

The quantity �̃ = �̃ (<, Ẽ) is to be solved together with (G, H) from (95,96,97). The

relevant scaling is still (G, e−2H) = (D, E)/" , with D, E = O(1), but according to

(100) we now need more than just the leading order in "−1. Using

log q = −2
√
D2+E2

"
+ O("−3), (101)

the equations for E and � take the form E = Ξ1 (D, E) and � = Ξ2 (D, E), where

Ξℓ (D, E) =
[

sinh2( D
"

)+ E2

"2

]−1 [

sinh2 ( D
"

)+ E2

"2

�ℓ (D, E)
�0 (D, E)

]

, (102)

�ℓ (D, E) = cosh[( 1

2
"−ℓ) log q] . (103)

6 This reflects the high energy cost of breaking Trotter symmetry to induce magnetization changes.
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Now, after tedious but straightforward expansion in "−1 one finds that

�ℓ (D, E)
�0(D, E)

= 1 − 2ℓ
√
D2+E2

"
tanh(

√

D2+E2) + 2ℓ2(D2+E2)
"2

+ O("−3). (104)

Hence

Ξℓ (D, E) = 1 − 2ℓE2

"

tanh(
√
D2+E2)

√
D2+E2

+ 2ℓ2E2

"2
+ O("−3). (105)

It follows that the equations for Ẽ = " (1−E) and �̃ = " (1−�) take the form

Ẽ = 2E2 tanh(
√
D2+E2)

√
D2+E2

− 2E2

"
+O("−2), �̃ = 2Ẽ− 4E2

"
+O("−2). (106)

The dynamical equations then become

d

dC
< = ẼV(ℎ+�0<) − 2<V2

Γ
2 + O( 1

"
), (107)

d

dC
Ẽ = 4" (V2

Γ
2−E2) − 8V3

Γ
2<(�0<+ℎ) − 4V2

Γ
2Ẽ + O( 1

"
). (108)

What remains is to express E in terms of (<, Ẽ), in leading two orders, by solving

equation (106) for Ẽ alongside our equation for <. The latter is

< =
D tanh(

√
D2+E2)

√
D2+E2

+ O("−2). (109)

Equation (106) shows that E = 0 corresponds to Ẽ = 0, and that Ẽ increases with E2.

On intermediate timescales g = "−1 we have

d

dC
< = O( 1

"
), d

dC
Ẽ = 4(V2

Γ
2−E2) + O( 1

"
). (110)

Here < remains constant, and Ẽ evolves towards the value for which E = VΓ +
O("−1) (which is also the equilibrium value for E). Thus, in the dynamical equations

(107,108) describing the process on timescales with g = "−2 we must substitute

E2
= V2

Γ
2 + O("−1). So during the slow process where < evolves we have always

Ẽ = 2V2
Γ

2</D. (111)

Upon insertion into (107) this results in a closed dynamical equation for < only:

d

dC
< = 2V2

Γ
2
( V(ℎ+�0<) tanh(

√

D2+V2Γ2)
√

D2+V2Γ2
− <

)

, (112)
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Fig. 1 Theory versus computer simulations of the microscopic process (11,12) for the Trotter

representation of the system with Hamiltonian � = −(�0/# ) ∑8< 9 f
I
8
fI

9
− ∑

8 (ℎfI
8
+ ΓfG

8
) ,

with # =10000 and " ∈ {3, 12, 48, 192}. In all cases �0 =1, ) =Γ=0.5, and g =1/" 2 (so time

units correspond to #" 3 attempted moves per spin). Left figure: magnetization versus time for

ℎ=0.1; right figure: the same for ℎ=0.5. The simulation data are shown as connected markers. The

black curve is the theoretical prediction, i.e. the solution of (112,113). The light blue curve is the

approximated theory of [7], obtained by solving (112) with the equilibrium value D=V (�0< + ℎ) .

without requiring approximations, and with D to be solved from7

< =
D tanh(

√

D2+V2Γ2)
√

D2+V2Γ2
. (113)

In equilibrium we recover from (112,113) the correct equilibrium state (88), with

D = V(�0<+ℎ). Comparison with Equation (10) in [7] reveals, apart from a harmless

difference in time units, that the approximation of [7] (used also in [8, 9, 10]) implies

replacing D at any time by V(�0<+ℎ). While this indeed holds in equilibrium, the

approximation may be dangerous far from equilibrium.

In Figure 1 we test the predictions of (112,113) against numerical simulations of

the process (11,12). The approximate co-location of the simulation curves for widely

varying values of " confirms that g = O(1/"2) (inferred from the the dynamical

theory) indeed captures the characteristic timescale of the macroscopic process.

Second, while not showing perfect agreement with the simulation data, which is not

expected in view of the probability equipartitioning assumption used to close the

macroscopic dynamical equations, away from stationarity the full theory (112,113)

is reasonably accurate, and improves upon the approximation proposed in [7].

7 For certain values of < and VΓ equation (113) may have more than one solution D. In such cases

the physical solution is the one with the largest absolute value.
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7 Discussion

In this chapter we aimed to explain the basic ideas and assumptions behind the

DRT strategy for deriving and closing macroscopic dynamical equations, and its

application to the types of spin systems used in quantum annealing with transverse

fields. We have focused on technicalities relating to commutation of the limits

# → ∞ and " → ∞, the possible choices of macroscopic observables, the distinct

"-dependent timescales in the evolution of the Trotter system, and on how an

additional approximation made in earlier studies can be avoided, leading to a more

precise dynamical theory. We have tested the theoretical predictions of the theory

against numerical MCMC simulations of a ferromagnetic quantum system [11] with

transverse external fields in Trotter representation, and found good agreement.

In the examples used in this text there was no disorder, so we could work with the

dynamical laws (22). If, in contrast, there is disorder in the problem, the macroscopic

laws are to be averaged over its realization, and the main tool will be (24). For models

with random interactions, doing this disorder average is however relatively painless,

and will not make the dynamical theory significantly more complicated.

We hope that this introduction to the method may aid the development of further

analytical studies of the macroscopic dynamics of quantum annealing, including

more realistic quantum systems with disordered spin interactions or with interactions

on finitely connectedgraphs, and more precise descriptions in which the macroscopic

dynamical observables are functions [14, 19, 20] instead of scalars.

Acknowledgements The authors are very grateful for stimulating discussions with Professors

Hidetoshi Nishimori and Kazuyuki Tanaka, and with Mr Shunta Arai.

References

1. Kadowaki, T. and Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev.

E 58 (1998) 5355-5363.

2. Inoue, J.I.: Infinite-range transverse field Ising models and quantum computation. Eur. Phys.

J. Special Topics 224 (2015) 149-161.

3. Suzuki, S., Inoue, J.I. and Chakrabarti, B.K.: Quantum Ising Phases and transitions in Trans-

verse Ising Models. Springer Lecture Notes in Physics 862, 2nd Ed. (2013).

4. Suzuki, M.: Relationship between 3-dimensional quantal spin systems and (3+1)-dimensional

Ising systems. Prog. Theor. Phys. 56 (1976) 1454-1469.

5. Bedeaux, D., Lakatos-Lindenberg, K. and Shuler, K.E.: On the relation between Master equa-

tions and random walks and their solutions. J. Math. Phys. 12 (1971) 2116-2123.

6. Ohzeki, M.: Quantum Monte Carlo simulation of a particular class of non-stoquastic Hamil-

tonians in quantum annealing. Sci. Rep. 7 (2017) 41186.

7. Inoue, J.I.: Deterministic flows of order parameters in the stochastic processes of quantum

Monte Carlo method. J. Phys. Conf. Ser. 233 (2010) 012020.

8. Inoue, J.I.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J.

Phys. Conf. Ser. 297 (2011) 012012.

9. Bapst, V. and Semerjian, G.: Thermal, quantum and simulated quantum annealing: analytical

comparisons for simple models. J. Phys. Conf. Ser. 473 (2013) 012011.



Dynamical replica analysis of quantum annealing 21

10. Arai, S., Ohzeki, M. and Tanaka, K.: Dynamics of order parameters in nonstoquastic Hamil-

tonians in the adaptive quantum Monte Carlo method. Phys. Rev. E 99 (2019) 032120.

11. Chayes, L., Crawford, N., Ioffe, D. and Levit, A.: The phase diagram of the quantum Curie-

Weiss model. J. Stat. Phys. 133 (2008) 131-149.

12. Coolen, A.C.C. and Sherrington, D: Dynamics of fully connected attractor neural networks

near saturation. Phys. Rev. Lett. 71 (1993) 3886-3889.

13. Coolen, A.C.C. and Sherrington, D.: Order parameter flow in the SK spin-glass I: replica

symmetry. J. Phys. A 27 (1994) 7687-7707.

14. Laughton, S.N., Coolen, A.C.C. and Sherrington, D.: Order-parameter flow in the SK spin-glass

II: inclusion of microscopic memory effects. J. Phys. A 29 (1996) 763-786.

15. Nishimori, H. and Nonomura, Y.: Quantum effects in neural networks. J. Phys. Soc. Jpn. 65

(1996) 3780-3796.

16. Mézard, M., Parisi, G. and Virasoro, M.A.: Spin glass theory and beyond. Singapore: World

Scientific (1987).

17. Nishimori, H.: Statistical physics of spin glasses and information processing. Oxford University

Press (2001).

18. Bruinsma, R. and Aeppli, G.: One-dimensional Ising model in a random field. Phys. Rev. Lett.

50 (1983) 1494-1497.

19. Mozeika, A. and Coolen, A.C.C.: Dynamical replica analysis of processes on finitely connected

random graphs: I. Vertex covering. J. Phys. A 41 (2008) 115003.

20. Mozeika, A. and Coolen, A.C.C.: Dynamical replica analysis of processes on finitely connected

random graphs: II. Dynamics in the Griffiths phase of the diluted Ising ferromagnet. J. Phys.

A 42 (2009) 195006.

8 Mathematical identities

Here we list some basic properties of relevant transfer matrices and expectation

values in the single-site Trotter system. The transfer matrix and its eigenvalues are

Q =

(

eH+G e−H

e−H eH−G

)

, _± = eH
[

cosh(G) ±
√

sinh2 (G) + e−4H
]

. (114)

The corresponding normalized eigenvectors are

|+〉 = 1

!

(

e−2H ,

√

sinh2 (G) + e−4H − sinh(G)
)

, (115)

|−〉 = 1

!

(

√

sinh2(G) + e−4H − sinh(G),−e−2H
)

, (116)

!2
= e−4H +

(

√

sinh2 (G) + e−4H − sinh(G)
)2

. (117)

From these expressions one can find 〈±|fI |±〉 = ± sinh(G)/
√

sinh2(G)+e−4H, and

compute the following observables (with q = _−/_+):
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∑

B1...B" B1
∏"
:=1 B: B:+1

∑

B1...B"

∏"
:=1 B: B:+1

= −
sinh(G) tanh[ 1

2
" log q]

√

sinh2(G)+e−4H

, (118)

∑

B1...B"
B1B2

∏"
:=1 B: B:+1

∑

B1...B"

∏"
:=1 B: B:+1

=
sinh2(G)

sinh2(G)+e−4H
+

cosh[( 1
2
"−1) log q]

cosh[ 1
2
" log q]

e−4H

sinh2 (G)+e−4H

(119)
∑

B1...B"
B1B3

∏"
:=1 B: B:+1

∑

B1...B"

∏"
:=1 B: B:+1

=
sinh2(G)

sinh2(G)+e−4H
+

cosh[( 1
2
"−2) log q]

cosh[ 1
2
" log q]

e−4H

sinh2 (G)+e−4H

(120)
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