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Abstract

New statistical methods were employed to improve the ability to distinguish benign from malignant
breast tissue ex vivo in a recent study. The ultimate aim was to improve the intraoperative assess-
ment of positive tumour margins in breast-conserving surgery (BCS), potentially reducing patient
re-operation rates. A multivariate Bayesian classifier was applied to the waveform samples produced
by a Terahertz Pulsed Imaging (TPI) handheld probe system in order to discriminate tumour from
benign breast tissue, obtaining a sensitivity of 96% and specificity of 95%.

We compare these results to traditional and to state-of-the-art methods for determining resection
margins. Given the general nature of the classifier, it is expected that this method can be applied to
other tumour types where resection margins are also critical.
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1 Introduction

Breast cancer is the most frequent cancer among women worldwide [1] and the leading cause of cancer
death in females, accounting for 23% of the total cancer cases and 14% of the cancer deaths [2]. Surgery
to remove the primary tumour is one of the main curative treatments in breast cancer which has evolved
over time from radical surgery to more conservative approaches, such as breast conserving surgery [3] [4].

Good surgical outcomes are related to the accuracy in the resection of the tumour margins during
surgery. Currently, a significant number of patients need to undergo additional surgery to obtain clear
margins and/or remove remaining lymph nodes in the axilla, causing a significant physical and psycho-
logical morbidity in patients [5]. To date, histopathology, which occurs after surgery, is the gold standard
to determine tumour margins. Hence, new techniques are being investigated to assess tumour margins
intraoperatively. Terahertz (THz) radiation is one such tool (see figure 1); it does not produce harmful
ionization in biological tissues and therefore has been applied in cancer studies previously [6].

In order to implement this technology to assess tumour margins and sentinel lymph nodes in breast
cancer patients intraoperatively, Teraview Ltd.(Cambridge, UK) developed a handheld THz Probe to be
used in breast conserving surgery, eventually aiming to reduce the number of reoperations.

In [6], a feasibility study was performed to determine the capability of the handheld THz Probe to
distinguish between different breast cancer tissues ex vivo.The THz raw data obtained was complex,
multidimensional and hold lots of noise. There is a lack of standardised procedures for data acquisition,
post processing, image analysis and interpretation of the data generated with this technology. Therefore,
[6] used two different statistical approaches to discriminate between different breast tissue samples based
on Terahertz pulsed imaging (TPI) data produced by the Teraview probe.

In the current paper, we aim to improve the prediction capabilities of the classifier by utilising a novel
Bayesian classifier [7] which improves tissue discrimination by distinguishing between tumour, fibrous and
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Figure 1: Electromagnetic spectrum showing frequency of Terahertz radiation

adipose tissue in comparison with other technologies employ to assess tumour margins and in comparison
with the previous feasibility study.

The large number of covariates in the dataset along with a relatively small number of tissue samples
makes the prediction of the clinical outcome difficult because of overfitting problems and prohibitive
computation demands. Typically Bayesian calculations rely on computational methods such as Markov
Chain Monte Carlo to compute integrals. In our approach, this is overcome by judicious model selection
resulting in the integrals which scale with dimension to be analytically tractable.

The paper is organised as follows. Section 2 describes the data collection and pre-processing methods.
Section 3 outlines the new Bayesian classifier used for determining tissue class. The results are stated
in section 4. We review results for existing and state-of-the-art technologies for this clinical problem in
section 5. Discussion and next steps are in section 6.

2 Data collection

2.1 Technology

The handheld terahertz pulsed imaging (TPI) probe device (Teraview) has 26 pixels 2. Each pixel
transmits terahertz electromagnetic radiation of frequency 0.1-2.0 THz to the biological sample and
records any residual signal transmitted from the tissue. Technical details can be found in [8].

Figure 2: Schematic description of the raw data acquisition. Images are courtesy of the study (REC
12-EE-0493). TPI handheld probe measurement of tissue sample positioned in histology cassette. Residual THz

pulses are received by each pixel from the tissue producing typical TPI waveforms per pixel.
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2.2 Data acquisition

Imaging data was produced from scanning 46 freshly excised breast cancer samples obtained from 30
breast cancer patients treated at Guy’s and St Thomas’ NHS Foundation Trust (GSTT) following a
breast conservation surgery or mastectomy between August 2013 and August 2014. This dataset was
acquired as part of a feasibility study to test the utility of the handheld (TPI) probe to discriminate
between breast tissue types (REC 12-EE-0493).

The ex vivo breast tissue samples contained different proportions of adipose, fibrous and tumour tissue.
Each sample was assessed for detailed histopathology by two experts blinded for the patient details that
labelled the percentage of adipose, fibrous and tumour at pixel level for each of the samples. Following
the histopathology assessment, the samples were scanned with the probe, using air as a reference, to
produce the data for the study. Each pixel transmitted many pulses to the tissue sample and received
the residual data. These were averaged within the device to produce a waveform which was the input for
the statistical analysis. Ideally if the complete amount of the residual information from each pulse was
preserved, a more accurate idea of the signal variability could have been obtained.

An averaged waveform with 674 data points was produced by each pixel. It was determined that
the outermost points were either zero or noise so these were removed [8]. This reduced the number of
data points to 301 per waveform (see figure 3). The detailed histopathology results were appended to the
Terahertz (THz) data for each sample. In the language of statistical inference, this is a supervised learning
problem with the predictor being the waveform and the response variable being the histopathology result.
The size and orientation of the samples were varied. This resulted in varying numbers of pixels per tissue.
The final dataset included a total of 257 pixels resulting in a 257 × 301 matrix of real-valued data.

Figure 3: For each tissue type present in the sample, the TPI waveform presented a different shape: tumour
(blue), fibrous (red) and adipose cells (black).

2.3 Data pre-processing

Our aim is to discriminate each impulse function (waveform) per pixel per sample into tumour, fibrous
or benign breast tissue. However it is difficult to do so visually (see figure 3). Statistical analysis is
therefore required.
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Feature selection. Given the high dimensionality of the data, some methods use feature selection to choose
the most informative features. In [8], the Support Vector Machine methodology used heuristic methods
to determine which features had the greatest effect on classification results. For the Naive Bayesian
classifier, also used in [8], overfitting is not as large a concern. Gaussian deconvolution, common in
image processing, was used before sending the data to the classifier. In this present paper, we found that
classification based on the raw waveform data produced the best results.

Throughout this paper, we distinguish between a tissue sample which is a physical sample from a
patient and a data sample understood in the statisical sense. In this study there were 46 tissues samples
collected which produced 257 data samples.

3 Classification methods

3.1 General method

A multivariate Bayesian classification algorithm [7] was applied to the TPI waveform data to discriminate
benign from malignant breast tissue. The classifier used supervised learning techniques with the class
labels derived from the histopathologically defined tissue content. The trained classifier was used to
predict the classes of new observations.

In statistical learning, a classifier is a function which maps a data point to a class prediction. There
are four stages to a classification problem. The first is model selection. We use the framework outlined in
[7]. The second stage is to train our chosen model on the training data. In our case, this involves learning
a set of parameters for each class: tumour, fibrous and adipose. In the third stage, the classifier uses
a probabilistic approach assuming that the observations in each class were generated by a multivariate
Gaussian distribution specific to that class. Predictive probabilities of a new data sample belonging
to a certain class are calculated. Lastly, decision theory is applied to translate those probabilities into
class predictions. This is done by simply choosing the class with the highest probability conditioned on
the data sample. While traditional statistical methods produce probability point estimates, probability
distributions are produced in our Bayesian approach. This allows us to quantify the uncertainty in the
predictions made.

The performance of the classifier was evaluated using leave-one-out cross-validation (LOOCV). Train-
ing of the Bayesian classifier occurred by leaving out a single data sample and learning parameters from
the remaining data samples. The estimated parameters were then used to classify the data sample that
was left out. This process was repeated for all the samples. The results were compiled to estimate
accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) to
distinguish malignant from benign tissue.

Overfitting. Typically, data with more covariates, d, than samples, n, leads to overfitting [9]. This is the
case with our data where n = 257 and d = 301. This is somewhat mitigated by using a fully Bayesian
classification approach [7]. Inference methods such as maximum likelihood work well when n � d but
are prone to overfitting when n ≤ d. The classifier used in this paper avoids taking point estimates of
unknown parameters. Instead it treats them in a Bayesian way by assuming they are random variables
and integrating over them. By carefully choosing the prior probability distributions, a closed-form for
the predictive probabilities is derived. The final estimation of hyperparameters is done analytically. An
added advantage is that computationally expensive cross-validation methods are avoided allowing us to
handle larger data-sets.

3.2 Application to Terahertz Pulsed Imaging

The data could be categorised under three different scenarios depending on the particular research ques-
tion assessed. The class label for each sample will be determined by:
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• Scenario 1: pixels were marked as tumour when containing any amount of cancer cells (if the tumour
percentage was greater than zero, the TPI impulse function was considered as tumour, irrespective
of the content of fibrous or adipose tissue), otherwise the tissue content of the pixel was defined by
the highest percentage of fibrous or adipose tissue;

• Scenario 2: pixels were marked as tumour when containing any amount of cancer cells (if the tumour
percentage was greater than zero, the TPI function was considered as tumour, independently of the
content of fibrous or adipose tissue), otherwise tissue was considered to be benign. In this scenario,
adipose and fibrous tissues were grouped together;

• Scenario 3: pixels were marked based on their tissue content, so the tissue content of each pixel
was defined by the highest percentage.

Given that the main aim of the project was to discriminate malignant tissue from benign breast tissue,
and that benign breast tissue could be subdivided into fibrous and adipose tissue respectively, scenario
1 was the preferred option in the study. This results in class sizes of 115, 100 and 42 (totalling 257 data
samples).

The original THz time domain pulses were assessed in their ability to discriminate tumour from
healthy (fibrous/adipose) breast tissue using our probabilistic Bayesian classification algorithm [7].

Class imbalance problem. Classification methods with imbalanced class sizes tend to favour the majority
class [10]. This is a well known phenomenon in classification literature. The problem frequently occurs
in medical data-sets where the rare or diseased cases have many fewer samples. In our case, the data
collected focussed on tumorous tissue and hence the adipose class has many fewer samples.

Methods to compensate for this effect can be grouped into pre-processing methods or algorithmic
changes. Pre-processing can be achieved by over-sampling the minority class [11] or under-sampling
the majority class [12]. On the other hand, the classification algorithm itself can be changed [10]. An
example is to specify a cost function for misclassification to mitigate the class imbalance effect. We have
not attempted these methods in this paper.

4 Results

Classification accuracy is first displayed for the three class analysis (tumour, fibrous and adipose) is in
Table 1.

Predict 1 Predict 2 Predict 3

True class 1 110 5 0
True class 2 5 95 0
True class 3 2 27 13

Table 1: Confusion matrix. The classification results are split into three classes: class 1 represents tumour, class
2 fibrous and class 3 adipose tissue. Conventions for the confusion matrix are described in appendix 5

The number of corrected predicted samples was 218 out of 257 which gave a classification accuracy of
85%. However the clinically important decision was whether the sample contains tumour or not. Classes
2 and 3 represented benign tissue. By aggregating these benign classes, we obtained the confusion matrix
in Table 2.

For the two class results, the classification accuracy, sensitivity and specificity were 95%, 96% and
95%. In addition the PPV and NPV values were 94% and 96%.

Next we summarise the classification results on the same data-set using our method and those from
previous studies [8] (see table 3).
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Predict 1 Predict 2

True class 1 110 5
True class 2 7 135

Table 2: Aggregated confusion matrix. Classes 2 and 3 representing fibrous and adipose tissue have been
aggregated into one class in line with the clinical objective.

Classifier Bayesian method Support Vector Machine [8] Naive Bayes [8]

Accuracy 95% 75% 69%
Sensitivity 96% 86% 89 %
Specificity 95% 66% 53 %

PPV 94% 67% 60 %
NPV 96% 85% 86 %

Table 3: Comparison of classification results. The Bayesian method column is the result of this paper, Support
Vector Machine and Naive Bayes are the support vector machine classifier and Naive Bayes methods of [8].

Figures in bold are the best for that metric.

5 Comparison to existing methods

Different intraoperative margin assessment (IMA) tools are being investigated to assess tumour resection
margins. Some of these techniques are clinically established, such as frozen section analysis [13][14][15],
specimen radiography, intraoperative ultrasound, touch imprint cytology and optical spectroscopy. How-
ever these IMAs present diverse performance and limitations in terms of accuracy, speed, cost, and relia-
bility. Therefore, new IMA tools are currently under development including Raman spectroscopy [16][17],
microcomputed CT, mass spectroscopy [18], radiofrequency spectroscopy[19] or fluorescence imaging.

Our classification results were materially better than the performance of IMAs currently used, as
reported by a recent meta-analysis [20] (see table 4).

Number of patients/samples Accuracy Sensitivity Specificity

Frozen section analysis (FSA) 46-1327 84-98 % 78-91% 92-98%
Specimen radiography 12-119 33-84% 45-61% 77-89%

Intraoperative ultrasound 81-225 62-80% 36-79% 66-91%
Touch imprint cytology 27-510 78-99% 71-97% 90-98%

Optical spectroscopy 20-179 75-94% 74-91% 65-96%
Support Vector Machine 257 75% 86% 66%
Naive Bayesian method 257 69% 89% 53%
New Bayesian method 257 95% 96% 95%

Table 4: Comparison to existing methods. These results are taken from [20]. The number of
patients/samples and accuracy are the ranges across all studies reviewed. The sensitivity and specificity

are the result of their meta-analysis.

6 Discussion and next steps

Our results are comparable to Frozen Section Analysis, which is considered the gold standard. Therefore
our classifier is learning most of the signal in the data. Comparing to previous methods, our classification
method performs better on all measures than the previous classifiers from [6] on the given data-set. The
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Support Vector Machine method used heuristics to select suitable features. Our method has the advantage
of using all the available data and requiring no heuristic choices. Additionally many classification methods
require ad-hoc choices for the tuning parameters (hyperparameters). In our case, this hyperparameter
optimisation is analytic.

The data-set used has class sizes of 115, 100 and 42. This class imbalance will lead to worse classifica-
tion than a balanced data-set. We plan to use data pre-processing methods to help with class imbalance.
Given this involves multiple runs with different samples removed, it requires much more time than no
pre-processing.

6.1 Next steps

Three tumour types are present in the data (invasive ductal carcinoma, invasive lobular carcinoma and
invasive tubular carcinoma). It is likely that these will have statistically different TPI waveforms. Our
method labels all three tumour types as one class despite being able to handle many more than three
classes. However too few data samples relative to the number of covariates leads to insufficient char-
acterisation of each class. If sufficient numbers of each type were present in the data, it is likely that
classification accuracy would improve.

The composition of human breast tissue can vary with patient age. Having access to additional data
such as patient age is likely to improve classification accuracy.

Our method of leave-one-out cross-validation is a standard statistical learning procedure given small
datasets. It was used to allow comparison to existing literature, specifically [8]. However it is recognised
that including data samples from the same patient is not clinically realistic. This likely flattered our
classification accuracy metrics. This should be compensated by increasing the overall training size.

Our data was obtained from ex vivo tissue samples. Since Terahertz radiation is non-ionising, it
would be interesting to re-run the analysis using data from in vivo clinical trials.

Lastly, our analytical methods are sufficiently general to be applied to other tumour types.
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A Confusion matrix terminology

Predict 1 Predict 2

True class 1 a b
True class 2 c d

Table 5: Aggregated confusion matrix

a =True Positive (TP), b =False Negative (FN), c =False Positive (FP), d =True Negative (TN)

Accuracy = a+d
a+b+c+d , Sensitivity = a

a+b , Specificity = d
c+d , PPV= a

a+c and NPV= d
b+d .
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