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‘Claim: a statistical mechanical analysis of protein networks is feasible and timely’

Statistical mechanics

objective and philosophy
relation with systems biology
‘large is beautiful’: universality and phase transitions

Modern statistical mechanics — dynamics and disorder

inhomogeneous/disordered systems
interdisciplinary applications
complex networks

Signalling networks in biology

neural versus proteomic networks
macroscopic descriptions
modulation and control of global processes

Statistical mechanics of proteomic networks

potential and limitations
the language of the theory



Theory of many-particle systems:
‘statistical mechanics’

(Boltzmann, Gibbs, Maxwell, Einstein)

Objective (Baxter):

‘predict the relations between the observable macroscopic
properties of the system, given only a knowledge of the
microscopic forces between the components’

e equilibrium (£1870)

_ E(state) /kT _
Probl[state] = Zestates e—E/kT g :. ::gEZrature
e.g.
molecules — pressure/temp/volume, gas-liquid-solid transitions
atomic electrons — magnetism

cells in suspensions — blood rheology, visco-elastic properties

e non-equilibrium (+1905)



Systems biology:

‘the study of the emergence of functional properties
that are present in a biological system
but not in its individual components’

Statistical mechanics:

‘predict the relations between the observable macroscopic
properties of the system, given only a knowledge of the
microscopic forces between the components’

e objectives of systems biology and of statistical mechanics are very similar

e it is irrelevant to the mathematical methods of statistical mechanics what the
microscopic components represent, as long as there are many ...

e.g. Inorganic molecules (or atomic magnets), organic molecules (amino-acids),
living cells (blood cells, immune cells, neurons), computer hardware (processors),
people (market models) ...

e statistical mechanics: more than a century’s worth of experience and specific
mathematical methods and tricks



‘large is beautiful’ — universality and phase transitions

emerging deterministic macroscopic laws in large systems

independent of most microscopic details

N=1000

N=3000

I
10000 20000

Theory

0
my

N=400 N=800
1 TTT | TTT | TTT | TTT TTT] 1 TTT | TTT | TTT | TTT | TTT]
8 = =
6 = 3
aE 3 3
2 % ] -
oL .
0 2 4 6 8 1 1
N=1600 N=3200
1 TTT | TTT | TTT | TTT | TTT] 1 TTT | TTT | TTT | TTT | TTT]
8 - 8F —
6 — 6 Ef\ -
4 — 4 ]
2 — .Z_E —
0 | | | | 1 1/ | | | | 0 | | | | | | | | | |
0 2 4 6 8 1 0 =2 4 6 8 1
m m



Some jargon ...

Dynamical equations plus noise: stochastic process

Phase transition: drastic change in the system’s macroscopic behaviour
at a specific value of a global control parameter
(collective phenomenon: can happen only in large systems !)

How large is large 7

stat mech: finds the macroscopic laws for infinitely large systems
real systems: always of finite size ...
why can we get away with it 7

effects of finite size N on observed macroscopic quantities:

e fluctuations around ‘infinite system’ values: Az/z ~1/v/N

e ‘escape’ time from ‘infinite system’ trajectories: tes. ~ €T

(T: typical microscopic time scale)

example: T~ 1071° sec, N =1000 — Az/r =~ 0.03, tee ~ 1010 sec
(age of universe ~ 4.10'7 sec)



Modern statistical mechanics — dynamics and disorder

Complex dynamics due to disorder or diversity

Simple example:
two-state neurons

O: neuron active

excitation only (__)
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Right diagram:
there is no state in which all

‘frustrated’ neuron pairs: X

®: neuron inactive

inhibition only (__ )

both types

‘instructions’ are satisfied



Interdisciplinary applications of statistical mechanics
to disordered many-particle systems

e many structurally similar interacting microscopic elements
e noisy dynamics

e diversity, or (pseudo-) randomness in mutual forces
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102 10* — 108 10* — 106 10?2 — 105 10* — 10* 10% — 10'2
magnets neurons Processors traders amino-acids lymphocytes

homogeneous many-particle systems: theory since £ 1870
disordered many-particle systems: theory since £ 1970



Modern statistical mechanics — large complex networks

N nodes, with links

e simple (Poissonnian) networks

for each pair (i, j): form a link with probability ¢/N

N =100:

e ‘small-world’ networks’
(epidemics, etc)
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degree k of a node: nr of links to that node
degree distribution P(k): statistics of the N degrees

k=1 k=2 k=3 k=4 k=5
In P(k) In P(k)
P(k) ~ % P(k) ~ ke
simple networks:
In k In &
In P(k) In P(k)

P(k) ~ k=7 multi-fractal
‘scale-free’ networks: \

In k In k



Social networks

in science
author networks:

citation networks:

E-mail networks:
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Internet

WWW in-links:

log, P(k)
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Protein interaction

networks

yeast two-hybrid
method

Number of proteins

¢ Allinteractions
e High-confidence interactions
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Signalling networks in biology

e protein interaction networks:
N ~ 104
links: (k) ~2—7
scale-free, complex (‘hub’ proteins, etc)
chemical conservation laws

interactions static

e neural networks:
N ~ 10* — 10® gf im
links: (k) ~ 102 — 10* ’
random (hippocampus) to regular (cerebellum) R
no conservation laws s

interactions time-dependent NN

both examples: nontrivial emergent collective processes
statistical mechanical theory:

+ 1975: disordered systems with large connectivity
+ 1990: statics of disordered systems with low connectivity
+ 2002: dynamics of disordered systems with low connectivity



Statistical mechanical modelling of neural networks ol
‘ﬁ

Examples of microscopic laws: e Al

e N binary neuron state variables o; = +1
reacting to incoming signals V;
‘1’: firing, -1’: rest
1 if Vz(t) > 0; + m(t)
. — (t) = ot

n;(t) denotes noise

e N neuron voltages V;

SVi(t) = Xy tanhlyVi(0)] — Vile) + 6+ (o)

e N coupled neural oscillators, with phases ¢;

%qﬁi(t) = w; + XJ: Jijsin[@;(t) — di(t)] + mi(?)



Attractors

Information processing based on suitable interactions between the nodes

Desired attractors:
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Deliverables of statistical mechanics:
phase diagrams

1.5

example: memory with p = aN stored random patterns
control parameters: T neuronal noise level, « loading level
phases: P random dynamics, F/M recall, SG complex frozen state (overload)



Deliverables of statistical mechanics:
understanding the phenomenology of memory quantitatively

principles
e ‘learning’ by synapse adaptation, categorization

e associative recall

‘graceful degradation’
e robustness against cutting links randomly

e robustness against link degradation
e.g. Jij — sgnlJij]

e robustness against unreliable components

e noise eliminates unwanted system states

pathologies
e reproduction of specific lesion-induced memory disorders

e chemical modulators and related disorders



Deliverables of statistical mechanics:
macroscopic laws
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Modulation and control:
chemical modulators in neural networks

e switching between possible global modes of operation
e control of periods of global oscillations

e theory allows for ‘what if’ approach
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Statistical mechanics of proteomic networks

why stat mech ?

e large numbers of interacting microscopic components

e systems biology: desire to explain macroscopic from microscopic laws,
and to understand control and modulation of macroscopic processes

e proteomic networks appear to be ‘scale-free’

e focus in modern stat mech: disorder (1975-), complex networks(2000-)

deliverables of stat mech

e phase diagrams, transitions between modes of operation
e macroscopic laws for self-averaging quantities

e insight into mechanisms, potential for ‘inverse engineering’

limitations of stat mech

e generally no predictions for individual protein concentrations
e simplified mathematical representations of microscopic elements

e no solutions for spatial problems involving localized elements



The language of disordered systems theory

core problem: carrying out disorder averages in
probabilistic dynamical equations

‘replica theory’

(statics: £1975, dynamics: +1993)

Prob(z Prob disord
< r ( ‘y,disorder)) disorder = < I (37a?/| 1sor er) >
disorder

Y. Prob(z, y|disorder)

n—1
= lim <Prob(x, y|disorder) {Z Prob(z/, y\disorder)} >

disorder

= lim Y  (Prob(zy,yl|disorder)...Prob(z,,y|disorder))

disorder
n—=0 g,

n

result mathematically equivalent to having
n copies (replicas) of the system

e one disordered system = n coupled homogeneous systems

e new forces between pairs and quartets of elements



however: n — 0 !!

At end of the calculation: f = lim extr Flq|
n—

n X n matrix, g.s € R

zero diagonal elements: 0 qi2 - Qina Qin
g1 O q2.n
g=| : - :
Qn—l,l 0 Qn—l,n
dn1 4n2 " dnn1 0

calculus in n(n—1) dimensions (number of non-zero entries)
n(n — 1) is negative as soon as 0<n< 1!

Many peculiarities, e.g.
choose qn3 = q for all a # f3: zn: qiﬁ — n(n—1)¢? < 0
—



‘generating functional analysis’ (£1975)

Interpret dynamics of N-particle system {z1(t),...,zn(t)}
as a ‘path’ of a single particle in an N-dimensional ‘world’

target:

state at time 0

generating functional {£1(0),...,zx5(0)

Z[] = ({eio B T vila)ailo)y

paths > disorder

‘generates’ all relevant macroscopic
multiple-time observables via (functional) differentiation

e.g.
<<xi(t)>paths>disorder = —1 1})11{(1) gi[(,(f;
2 a
<<£Ez (t)xj (t,)>path8>disorder — — lim 0 Z[w} state at time t

$—=0 §h; (t)&(ﬂj () {z1(t),...,zn(t)}



e theory involving ‘path-integrals’

e disordered system =- one non-disordered ‘effective’ component

e new forces: non-trivial noise, retarded self-interaction
(component ‘remembers’ its history)

e closed laws for e.g. covariance and response functions:

C(t7 t,) = % g:l«xz (t)xi(t,)>paths>disorder
G(t, tl) = % g: <<§§Z((;)) >paths>disorder

1

i



