# Dynamics on Finitely Connected Random Graphs

ACC Coolen – King's College London



#### I. General background

Finitely connected random graphs Spin models on finitely connected random graphs Equilibrium replica theory

### II. Analysis of spin dynamics on random graphs

Spherical models Generating functional analysis Dynamical replica theory

### III. New directions

with:

JPL Hatchett T Nikoletopoulos I Pérez-Castillo NS Skantzos B Wemmenhove

# I. General background

Finitely connected random graphs Spin models on finitely connected random graphs Equilibrium replica theory



### Finitely connected random graphs

 $\star$  nodes and links: nodes :  $i = 1, \dots, N$ 

links: 
$$c_{ij} \in \{0, 1\}$$
  $c_{ij} = 1$ : link  $j \to i$  present  
 $c_{ij} = 0$ : link  $j \to i$  absent

 $\star$  degree k of a node: total nr of links to that node



degree distribution: P(k) average connectivity:

$$c = \frac{1}{N} \sum_{i=1}^{N} k_i = \sum_{k \ge 0} P(k)k$$

 $\star$  clustering coeff of node i:

$$C_i = \frac{\text{actual nr of links amongst the } k_i \text{ neighbours of } i}{\text{possible nr of links amongst the } k_i \text{ neighbours of } i}$$

\*  $\ell_{ij}$ : length of shortest path connecting nodes (i, j)distance distribution:  $\Pi(\ell)$ mean path-length:  $\overline{\ell} = \sum \Pi(\ell)$ 

$$\overline{\ell} = \sum_{\ell \ge 0} \Pi(\ell) \ell$$

#### Examples

- Poissonnian (Erdös-Rényi) random graphs for each pair (i, j): form a link with probability c/N
  - $k_i$  random for all i

N large :  $P(k) = c^k e^{-c} / k!$   $\overline{\ell} \sim \log(N)$ 

• 'small-world' networks' (epidemics, etc) nearest neigbours on a ring + Poissonnian random graph

'small world effect': due to even very small (c  $\ll$  1) number of random links

- (i) reduction of distances:  $\overline{\ell} \sim \mathcal{O}(N) \rightarrow \overline{\ell} \sim \mathcal{O}(\log N)$ (ii) greater robustness of processes against noise
- (iii) phase transitions
- processes on finitely connected random graphs: spin models, percolation, error correcting codes, K-SAT, graph partitioning, graph colouring, social and economic networks, internet traffic, neural, proteomic and immune networks, ...







# Spin models on random graphs

N spins on random graph,  $c_{ij} \in \{0, 1\}$ 

$$H = -\sum_{i < j} c_{ij} J_{ij} \sigma_i \sigma_j + \sum_i V(\sigma_i)$$

- $P(c_{ij}) = \frac{c}{N} \delta_{c_{ij},1} + (1 \frac{c}{N}) \delta_{c_{ij},0}, \quad c = \mathcal{O}(N^0)$
- indep random bonds  $J_{ij}$
- disorder:  $\mathcal{D} = \{c_{ij}, J_{ij}\}$

(Viana & Bray, 1985)

to calculate: disorder-averaged free energy per spin

$$\overline{f} = -\lim_{N \to \infty} \frac{1}{\beta N} \overline{\log Z(\mathcal{D})} \qquad Z(\mathcal{D}) = \operatorname{Tr}_{\boldsymbol{\sigma}} e^{-\beta H}$$

### replica trick/method

 $x^n = 1 + n\log x + \mathcal{O}(n^2)$ 

$$\overline{\log Z(\mathcal{D})} = \lim_{n \to 0} \frac{1}{n} \log \overline{Z^n(\mathcal{D})}$$

n integer:

$$Z^{n}(\mathcal{D}) = \left[\operatorname{Tr}_{\boldsymbol{\sigma}} e^{-\beta H(\boldsymbol{\sigma})}\right]^{n} = \operatorname{Tr}_{\boldsymbol{\sigma}^{1}} \dots \operatorname{Tr}_{\boldsymbol{\sigma}^{n}} e^{-\beta \sum_{\alpha=1}^{n} H(\boldsymbol{\sigma}^{\alpha})}$$
  
partition function of *n* independent replicas of system



disorder average:

$$\overline{f} = -\lim_{N \to \infty} \lim_{n \to 0} \frac{1}{\beta N n} \log \left[ \operatorname{Tr}_{\boldsymbol{\sigma}^1} \dots \operatorname{Tr}_{\boldsymbol{\sigma}^n} e^{-\beta H_{\text{eff}}(\boldsymbol{\sigma}^1, \dots, \boldsymbol{\sigma}^n)} \right]$$
$$H_{\text{eff}}(\boldsymbol{\sigma}^1, \dots, \boldsymbol{\sigma}^n) = -\beta^{-1} \log \overline{e^{-\beta \sum_{\alpha=1}^n H(\boldsymbol{\sigma}^\alpha)}}$$
$$n \text{ interacting replicas, no disorder}$$



exchange  $N \rightarrow \infty$  and  $n \rightarrow 0$ 

### replica order parameters

|                                                               | spins                  | order param                                                          | RS                   | 1RSB                                                | $\infty RSB$                                |
|---------------------------------------------------------------|------------------------|----------------------------------------------------------------------|----------------------|-----------------------------------------------------|---------------------------------------------|
| $c = \mathcal{O}(N)$ $c = \mathcal{O}(N)$                     | discrete<br>continuous | $ \begin{cases} q_{\alpha\beta} \\ \{ q_{\alpha\beta} \end{cases} $  | $\stackrel{q}{Q}, q$ | $egin{array}{l} q_0, q_1 \ Q, q_0, q_1 \end{array}$ | $\begin{array}{c} P(q) \\ P(q) \end{array}$ |
| $\begin{array}{l} 1 \ll c \ll N \\ 1 \ll c \ll N \end{array}$ | discrete<br>continuous | $ \begin{cases} q_{\alpha\beta} \\ \{q_{\alpha\beta}\} \end{cases} $ | $\stackrel{q}{Q}, q$ | $egin{array}{l} q_0, q_1 \ Q, q_0, q_1 \end{array}$ | $\begin{array}{c} P(q) \\ P(q) \end{array}$ |
| $c = \mathcal{O}(1)$ $c = \mathcal{O}(1)$                     | discrete<br>continuous | $P(\sigma_1,\ldots,\sigma_n) P(\sigma_1,\ldots,\sigma_n)$            | $P(h) \\ W[\{P\}]$   | $W[\{P\}]$                                          |                                             |

$$q_{\alpha\beta} = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \overline{\langle \sigma_{i}^{\alpha} \sigma_{i}^{\beta} \rangle}$$
$$P(\sigma_{1}, \dots, \sigma_{n}) =$$

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i} \overline{\langle \delta_{\sigma_{\alpha},\sigma_{i}^{\alpha}} \dots \delta_{\sigma_{n},\sigma_{i}^{n}} \rangle}$$

1RSB: divide n replicas into subsets of size m

| $\alpha \to (\alpha_1, \alpha_2)$                                                                                                         | $\alpha_1 = 1 \dots n/m$<br>$\alpha_2 = 1 \dots m$ | subset label<br>internal label |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| $\begin{array}{c} \alpha_1 = 1 \\ \bullet \bullet \\ \bullet \end{array} \qquad \left( \bullet \\ \bullet \\ \bullet \end{array} \right)$ | = 2<br>• • • • · · · · · · ·                       | $\alpha_1 = n/m$               |

Finitely connected Ising system on Poissonnian random graph:

$$H = -\frac{1}{c} \sum_{i < j} c_{ij} J_{ij} \sigma_i \sigma_j \qquad \sigma_i = \pm 1$$



Solution, with  $P(\boldsymbol{\sigma}) = P(\sigma_1, \ldots, \sigma_n)$ :

$$\overline{f} = \lim_{n \to 0} \frac{1}{\beta n} \operatorname{extr}_{\{P\}} \left\{ \frac{1}{2} c \sum_{\boldsymbol{\sigma} \boldsymbol{\sigma}'} P(\boldsymbol{\sigma}) P(\boldsymbol{\sigma}') \Big[ \int dJ \ P(J) e^{\frac{\beta J}{c} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}'} - 1 \Big] - \log \sum_{\boldsymbol{\sigma}} e^{c \sum_{\boldsymbol{\sigma}'} P(\boldsymbol{\sigma}') [\int dJ \ P(J) e^{\frac{\beta J}{c} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}'} - 1]} \right\}$$

$$P_{\rm RS}(\sigma_1, \dots, \sigma_n) = \int dh \ W(h) \frac{e^{\beta h \sum_{\alpha} \sigma_{\alpha}}}{[2 \cosh(\beta h]^n]} \qquad W(h): \text{ effective field distr}$$
$$W(h) = \sum_{k \ge 0} \frac{e^{-c} c^k}{k!} \int \prod_{\ell=1}^k \left[ dJ_\ell dh'_\ell P(J_\ell) W(h'_\ell) \right] \delta \left[ h - \frac{1}{\beta} \sum_{\ell \le k} \operatorname{atanh}[\tanh(\beta h'_\ell) \tanh(\frac{\beta}{c} J_\ell)] \right]$$



Finitely connected Ising system on random graph with degree distr p(k)

$$H = -\frac{1}{c} \sum_{i < j} c_{ij} J_{ij} \sigma_i \sigma_j \qquad \sigma_i = \pm 1$$



Solution, with  $P(\boldsymbol{\sigma}) = P(\sigma_1, \ldots, \sigma_n)$ :

$$\overline{f} = \lim_{n \to 0} \frac{1}{\beta n} \operatorname{extr}_{\{P\}} \left\{ \frac{1}{2} c \sum_{\boldsymbol{\sigma} \boldsymbol{\sigma}'} P(\boldsymbol{\sigma}) P(\boldsymbol{\sigma}') \int dJ \ P(J) e^{\frac{\beta J}{c} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}'} - \sum_{k \ge 0} p(k) \log \left[ \sum_{\boldsymbol{\sigma}} \left( \sum_{\boldsymbol{\sigma}'} P(\boldsymbol{\sigma}') \int dJ \ P(J) e^{\frac{\beta J}{c} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}'} \right)^k \right] \right\}$$

$$P_{\rm RS}(\sigma_1, \dots, \sigma_n) = \int dh \ W(h) \frac{e^{\beta h \sum_{\alpha} \sigma_{\alpha}}}{[2 \cosh(\beta h]^n]} \qquad W(h): \text{ effective field distr}$$
$$W(h) = \sum_{k \ge 0} \frac{p(k+1)(k+1)}{c} \int \prod_{\ell=1}^k \left[ dJ_\ell dh'_\ell P(J_\ell) W(h'_\ell) \right] \delta\left[ h - \frac{1}{\beta} \sum_{\ell \le k} \operatorname{atanh}[\tanh(\beta h'_\ell) \tanh(\frac{\beta}{c} J_\ell)] \right]$$



Ising system on 'small world' (ring + Poissonnian random) graph:

$$H = -J_0 \sum_{i} \sigma_i \sigma_{i+1} - \frac{1}{c} \sum_{i < j} J_{ij} c_{ij} \sigma_i \sigma_j \qquad \sigma_i = \pm 1$$



Solution, with  $P(\boldsymbol{\sigma}) = P(\sigma_1, \ldots, \sigma_n)$ :

$$\overline{f} = \lim_{n \to 0} \frac{1}{n\beta} \operatorname{extr}_{\{P\}} \left\{ \frac{c}{2} \sum_{\boldsymbol{\sigma} \boldsymbol{\sigma}'} P(\boldsymbol{\sigma}) P(\boldsymbol{\sigma}') \left[ \int dJ \ P(J) e^{\frac{\beta J}{c} \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}'} - 1 \right] - \log \lambda_n[P] \right\}$$

$$\lambda_n[P]$$
: largest eigenval of  $2^n \times 2^n$   
replicated transfer matrix

 $\boldsymbol{T}_{\boldsymbol{\sigma}\boldsymbol{\sigma}'}[P] = e^{\beta J_0 \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}' + c \sum_{\boldsymbol{s}} P(\boldsymbol{s}) \left[ \int dJ \ P(J) e^{\frac{\beta J}{c} \boldsymbol{\sigma} \cdot \boldsymbol{s}_{-1}} \right]}$ 

$$W(h) = \int \mathrm{d}x \mathrm{d}y \,\Phi(x)\Psi(y)\delta[h-x-y] \qquad \Phi(x) = \mathcal{F}_{\Phi}\left[x;\Phi,W\right] \qquad \Psi(x) = \mathcal{F}_{\Psi}\left[x;\Psi,W\right]$$



Finitely connected XY spins on Poissonnian random graph:

$$H = -J\sum_{i < j} c_{ij} \cos(\phi_i - \phi_j - \omega_{ij}), \quad \phi_i \in [0, 2\pi], \quad \omega_{ij} \text{ random}, \ P(-\omega) = P(\omega)$$



Solution, with  $P(\boldsymbol{\phi}) = P(\phi_1, \dots, \phi_n)$ :

$$\overline{f} = \lim_{n \to 0} \frac{1}{\beta n} \operatorname{extr}_{\{P\}} \left\{ \frac{1}{2} c \int d\phi d\phi' P(\phi) P(\phi') \left[ \int d\omega P(\omega) e^{\beta J \sum_{\alpha} \cos(\phi^{\alpha} - \phi^{\alpha'} - \omega)} - 1 \right] - \log \int d\phi \ e^{c \int d\phi' P(\phi') \left[ \int d\omega \ P(\omega) e^{\beta J \sum_{\alpha} \cos(\phi^{\alpha} - \phi^{\alpha'} - \omega)} - 1 \right]} \right\}$$

$$P_{\mathrm{RS}}(\phi_{1},\ldots,\phi_{n}) = \int \{dP\} W[\{P\}] \prod_{\alpha=1}^{n} P(\phi_{\alpha}) \qquad \text{functional measure } W[\{P\}]$$
$$W[\{P\}] = \sum_{k\geq 0} \frac{e^{-c}c^{k}}{k!} \int \prod_{\ell\leq k} [\{dP_{\ell}\}W[\{P_{\ell}\}]d\omega_{\ell}P(\omega_{\ell})] \prod_{\phi\in[0,2\pi]} \delta \left[ P(\phi) - \frac{\prod_{\ell=1}^{k} \int d\phi' P_{\ell}(\phi')e^{\beta J\cos(\phi''-\phi'-\omega_{\ell})}}{\int d\phi'' \prod_{\ell=1}^{k} \int d\phi' P_{\ell}(\phi')e^{\beta J\cos(\phi''-\phi'-\omega_{\ell})}} \right]$$



# II. Analysis of spin dynamics on random graphs

Spherical models Generating functional analysis Dynamical replica theory



more information than statics phase diagrams for non-equilibrium systems

### Spherical models

(G Semerjian, L Cugliandolo, Europhys. Lett. 61 2003)

finitely connected graph, real-valued spins constrained on the sphere:

$$\frac{d}{dt}\sigma_{i}(t) = \sum_{j} c_{ij}J_{ij}\sigma_{j}(t) + \mu(t)\sigma_{i}(t) + \xi_{i}(t)$$

$$\mu(t): \text{ enforces spherical constraint } \langle \boldsymbol{\sigma}^{2}(t) \rangle = N$$

$$\xi_{i}(t): \text{ Gaussian noise, } \langle \xi_{i}(t) \rangle = 0, \ \langle \xi_{i}(t)\xi_{j}(t') \rangle = 2T\delta_{ij}\delta(t-t')$$

Solution:

• rotate to eigen-basis of  $\{c_{ij}J_{ij}\}$ :

$$\frac{d}{dt}\sigma_{\lambda}(t) = (\lambda + \mu(t))\sigma_{\lambda}(t) + \xi_{\lambda}(t)$$
  
$$\xi_{\lambda}(t): \text{ Gaussian noise, } \langle \xi_{\lambda}(t) \rangle = 0, \ \langle \xi_{\lambda}(t)\xi_{\lambda'}(t') \rangle = 2T\delta_{\lambda\lambda'}\delta(t-t')$$

• solve microscopic eqns:

$$\sigma_{\lambda}(t)\sqrt{\Gamma(t)} = \sigma_{\lambda}(0)e^{\lambda t} + \int_{0}^{t} ds \ e^{\lambda(t-s)}\sqrt{\Gamma(s)} \ \xi_{\lambda}(s) \qquad \Gamma(t) = e^{-2\int_{0}^{t} dt' \mu(t')}$$

• find  $\Gamma(t)$  via  $\langle \boldsymbol{\sigma}^2(t) \rangle = N$ :

$$\frac{1}{N}\sum_{\lambda}\sigma_{\lambda}^{2}(0)e^{2\lambda t} + 2T\int d\lambda \ \varrho(\lambda)\int_{0}^{t} ds \ e^{2\lambda(t-s)}\Gamma(s) = \Gamma(t)$$

• calculate observables, e.g.

$$C(t,t') = \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{2T}{\sqrt{\Gamma(t)\Gamma(t')}} \int_0^{\min(t,t')} ds \ \Gamma(s) \int d\lambda \ \varrho(\lambda) e^{\lambda(t+t'-2s)} ds = \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{2T}{\sqrt{\Gamma(t)\Gamma(t')}} \int_0^{\min(t,t')} ds \ \Gamma(s) \int d\lambda \ \varrho(\lambda) e^{\lambda(t+t'-2s)} ds = \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{2T}{\sqrt{\Gamma(t)\Gamma(t')}} \int_0^{\min(t,t')} ds \ \Gamma(s) \int d\lambda \ \varrho(\lambda) e^{\lambda(t+t'-2s)} ds = \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{2T}{\sqrt{\Gamma(t)\Gamma(t')}} \int_0^{\min(t,t')} ds \ \Gamma(s) \int d\lambda \ \varrho(\lambda) e^{\lambda(t+t'-2s)} ds = \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{2T}{\sqrt{\Gamma(t)\Gamma(t')}} \int_0^{\min(t,t')} ds \ \Gamma(s) \int d\lambda \ \varrho(\lambda) e^{\lambda(t+t'-2s)} ds = \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} \int_0^{\min(t,t')} ds \ \Gamma(s) \int d\lambda \ \varrho(\lambda) e^{\lambda(t+t'-2s)} ds = \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t+t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t')}}{\sqrt{\Gamma(t)\Gamma(t')}} + \frac{1}{N} \sum_{\lambda} \frac{\sigma_{\lambda}^2(0) e^{\lambda(t')}}{\sqrt{$$

## problem reduced to finding Eigenvalue spectrum of sparse random matrix

$$\varrho(\lambda) = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \delta[\lambda - \lambda_i]$$

 $\lambda_i$ : ev of matrix **A** with entries  $A_{ij} = c_{ij}J_{ij}$ 

Examples: 
$$J_{ij} = 1$$
 for all  $(i, j)$   
(Dorogovtsev et al, 2004)  
 $\circ$ : Erdös-Rényi,  $p(k) = e^{-c}c^k/k!$   
 $\Box$ : scale-free,  $p(k) \sim k^{-3}$ ,  $k_{\min} = 5$ 

methods:

- cluster expansions for c small (tree-like graphs)
- path counting for c small (tree-like graphs)
- replica method (general):

$$\overline{\varrho(\lambda)} = \lim_{N \to \infty} \frac{2}{N\pi} \lim_{\varepsilon \downarrow 0} \operatorname{Im} \frac{\partial}{\partial \lambda} \overline{\log Z(\lambda + i\varepsilon)} \qquad Z(\lambda) = \int d\phi \ e^{-\frac{1}{2}i\phi \cdot (\mathbf{A} - \lambda \mathbf{n})\phi}$$
$$\overline{\log Z(\lambda + i\varepsilon)} \to \quad \lim_{n \to 0} \frac{1}{n} \log \overline{Z^n(\lambda + i\varepsilon)}$$

results for Erdös-Rényi graphs:

symmetric central band, similar to semi-circular law tails of the form  $\sim \exp[-c\lambda^2 \log(\lambda^2)]$  as  $\lambda \to \pm \infty$ 



#### Generating functional analysis ('dynamic mean field theory')

consider all possible paths of N-spin system  $\{\boldsymbol{\sigma}(t)\}$  through phase space

target: generating functional

$$\overline{\mathcal{Z}[\psi]} = \overline{\left\langle e^{i \int_0^t ds \sum_{i=1}^N \psi_i(s)\sigma_i(s)} \right\rangle_{\text{paths}}}$$

'generates' all relevant macroscopic multiple-time observables via (functional) differentiation, e.g.



 $\boldsymbol{\sigma}(0)$ 

- theory involving path integrals
- $c \to \infty$ : closed eqns for correlation and response functions

$$C(t,t') = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \overline{\langle \sigma_i(t) \sigma_i(t') \rangle} \qquad G(t,t') = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \frac{\partial}{\partial \theta_i(t')} \overline{\langle \sigma_i(t) \rangle}$$

- N-spin system on random graph  $\rightarrow$  one non-disordered 'effective' spin
- new forces: non-trivial noise, retarded self-interaction

#### Synchronous dynamics on finitely connected random graphs

(J Hatchett, B Wemmenhove, I Pérez-Castillo, T Nikoletopoulos, NS Skantzos & ACCC, J. Phys. A37 2004)

finitely connected Ising model with parallel stochastic dynamics (Markov chain):

$$p_{t+1}(\boldsymbol{\sigma}) = \sum_{\boldsymbol{\sigma}'} W_t[\boldsymbol{\sigma}; \boldsymbol{\sigma}'] p_t(\boldsymbol{\sigma}') \qquad W_t[\boldsymbol{\sigma}; \boldsymbol{\sigma}'] = \prod_i \frac{e^{\beta \sigma_i h_i(\boldsymbol{\sigma}'; t)}}{2 \cosh[\beta h_i(\boldsymbol{\sigma}'; t)]}$$



local fields:

$$h_i(\boldsymbol{\sigma};t) = \frac{1}{c} \sum_{j \neq i} c_{ij} J_{ij} \sigma_j + \theta_i(t)$$

Poissonnian directed graph with controlled symmetry:

$$i < j: \qquad \operatorname{Prob}(c_{ij}) = \frac{c}{N} \delta_{c_{ij},1} + (1 - \frac{c}{N}) \delta_{c_{ij},0}$$
$$i > j: \qquad \operatorname{Prob}(c_{ij}) = \epsilon \delta_{c_{ij},c_{ji}} + (1 - \epsilon) \left\{ \frac{c}{N} \delta_{c_{ij},1} + (1 - \frac{c}{N}) \delta_{c_{ij},0} \right\}$$

 $J_{ij} = J_{ji}$  random detailed balance:  $\epsilon = 1$ 

technicalities in generating functional analysis:

(i) advantage of synchronous dynamics: path sums rather than path integrals

(ii) at the end of derivation: set  $\theta_i(t) \to 0$ 

(iii) no longer closed eqns for C and G

(iv) more complicated dynamic order parameters

### result of generating functional analysis

$$\begin{split} P(\boldsymbol{\sigma}|\boldsymbol{\theta}): & \text{fraction of sites } i \text{ which exhibit single spin path } \boldsymbol{\sigma} = (\sigma(0), \sigma(1), \sigma(2), \ldots) \\ & \text{given a local field perturbation path } \boldsymbol{\theta} = (\theta(0), \theta(1), \theta(2), \ldots) \end{split}$$

to be solved from effective single spin problem:

$$P(\boldsymbol{\sigma}|\boldsymbol{\theta}) = p_0(\sigma(0)) \sum_{k\geq 0} \frac{e^{-c}c^k}{k!} \int dJ_1 P(J_1) \dots dJ_k P(J_k) \sum_{\boldsymbol{\sigma}_1\dots\boldsymbol{\sigma}_k} \times \prod_{\ell=1}^k \left[ \epsilon P(\boldsymbol{\sigma}_\ell|\frac{J_\ell}{c}\boldsymbol{\sigma}) + (1-\epsilon)P(\boldsymbol{\sigma}_\ell|\mathbf{0}) \right] \prod_t \frac{e^{\beta\sigma(t+1)[\theta(t)+\frac{1}{c}\sum_{\ell\leq k}J_\ell\sigma_\ell(t)]}}{2\cosh[\beta[\theta(t)+\frac{1}{c}\sum_{\ell\leq k}J_\ell\sigma_\ell(t)]]}$$

exact, but very hard to solve in practice ... nr of order parameters grows exponentially with  $t_{\max}$  ...

exception:

•  $\epsilon = 0$ : asymmetric graphs can be reduced to

$$p_{t+1}(\sigma) = \sum_{k \ge 0} \frac{e^{-c} c^k}{k!} \int dJ_1 P(J_1) \dots dJ_k P(J_k) \sum_{\sigma_1 \dots \sigma_k} p_t(\sigma_1) \dots p_t(\sigma_\ell) \frac{e^{\frac{\beta}{c} \sigma \sum_{0 < \ell \le k} J_\ell \sigma_\ell}}{2 \cosh(\frac{\beta}{c} \sum_{0 < \ell \le k} J_\ell \sigma_\ell)}$$

(as in Derrida, Gardner & Zippelius, 1987)

Some applications:

• asymmetric Poissonnian graphs,  $\epsilon = 0$ random bonds,  $P(J') = \frac{1}{2}(1+\eta)\delta(J'-J) + \frac{1}{2}(1-\eta)\delta(J'+J)$ 



• symmetric Poissonnian graphs,  $\epsilon=1$  random bonds,  $P(J')=\frac{1}{2}(1\!+\!\eta)\delta(J'\!-\!J)+\frac{1}{2}(1\!-\!\eta)\delta(J'\!+\!J)$ 

dynamics

$$\begin{split} m &= \frac{1}{N} \sum_{i} \sigma_{i} \\ \text{at } c \!=\! 2, \, \eta \!=\! \frac{2}{5}, \frac{4}{5}, \, T/J \!=\! \frac{1}{3} \\ \text{simulations:} \, N \!=\! 64.10^{6} \end{split}$$



#### Dynamical replica theory

objective: closed dynamical laws for macroscopic observables e.g. for Markov chains:

• observables:  $\Omega_{\mu}(\boldsymbol{\sigma}) = \mathcal{O}(1)$ 

$$\boldsymbol{\Omega} = (\Omega_1, \dots, \Omega_L): \quad P_{t+1}(\boldsymbol{\Omega}) = \int d\boldsymbol{\Omega}' \ \mathcal{W}_t(\boldsymbol{\Omega}, \boldsymbol{\Omega}') P_t(\boldsymbol{\Omega}') \qquad \mathcal{W}_t(\boldsymbol{\Omega}, \boldsymbol{\Omega}') = \dots$$

macroscopic observables:  $\lim_{N\to\infty} P_{t+1}(\mathbf{\Omega}) = \delta[\mathbf{\Omega} - \mathbf{\Omega}_t]$ 

$$\Omega_{t+1} = \lim_{N \to \infty} \sum_{\sigma \sigma'} \Omega(\sigma) W(\sigma, \sigma') p_t(\sigma' | \Omega_t) \qquad p_t(\sigma | \Omega) = \frac{p_t(\sigma) \delta[\Omega - \Omega(\sigma)]}{\sum_{\sigma'} p_t(\sigma') \delta[\Omega - \Omega(\sigma')]}$$

- (i) assume for  $N \to \infty$  that  $\Omega$  is self-averaging over disorder
  - (ii) assume for  $N \to \infty$  that  $p_t(\boldsymbol{\sigma}) = p_t(\boldsymbol{\sigma}')$  if  $\Omega(\boldsymbol{\sigma}) = \Omega(\boldsymbol{\sigma}')$ :

 $p_t(\boldsymbol{\sigma}|\boldsymbol{\Omega}) \rightarrow p(\boldsymbol{\sigma}|\boldsymbol{\Omega}) = \frac{\delta[\boldsymbol{\Omega} - \boldsymbol{\Omega}(\boldsymbol{\sigma})]}{\sum_{\boldsymbol{\sigma}'} \delta[\boldsymbol{\Omega} - \boldsymbol{\Omega}(\boldsymbol{\sigma}')]}$  closure of macroscopic laws (max entropy)

• replica identity for disorder average:

$$\frac{\sum_{\boldsymbol{\sigma}} g(\boldsymbol{\sigma}) w(\boldsymbol{\sigma})}{\sum_{\boldsymbol{\sigma}} w(\boldsymbol{\sigma})} = \lim_{n \to 0} \sum_{\boldsymbol{\sigma}^1 \dots \boldsymbol{\sigma}^n} g(\boldsymbol{\sigma}^1) \prod_{\alpha} w(\boldsymbol{\sigma}^{\alpha})$$

End result:

(exact if  $\Omega$  obey closed deterministic laws, otherwise: best closed theory in terms of  $\Omega$ )

$$\boldsymbol{\Omega}_{t+1} = \lim_{N \to \infty} \lim_{n \to 0} \sum_{\boldsymbol{\sigma}^0 \dots \boldsymbol{\sigma}^n} \boldsymbol{\Omega}(\boldsymbol{\sigma}^0) W(\boldsymbol{\sigma}^0, \boldsymbol{\sigma}^1) \prod_{\alpha=1}^n \delta[\boldsymbol{\Omega}_t - \boldsymbol{\Omega}(\boldsymbol{\sigma}^\alpha)]$$

### Dynamical replica analysis – Ising ferromagnets on regular random graphs

(G Semerjian, M Weigt, J. Phys. A37 2004)

finitely connected Ising model with Glauber dynamics (master eqn):

$$\frac{d}{dt}p_t(\boldsymbol{\sigma}) = \sum_{k=1}^{N} [p_t(F_k\boldsymbol{\sigma})w_k(F_k\boldsymbol{\sigma}) - p_t(\boldsymbol{\sigma})w_k(\boldsymbol{\sigma})]$$

$$w_k(\boldsymbol{\sigma}) = \frac{1}{2} \{1 - \sigma_k \tanh[\beta h_k(\boldsymbol{\sigma})]\} \qquad h_i(\boldsymbol{\sigma}) = \sum_{j \neq i} c_{ij}\sigma_j \qquad F_k\boldsymbol{\sigma} = (\sigma_1, \dots, -\sigma_k, \dots, \sigma_k)$$

regular random graph:  $P(k) = \delta_{k,c}$ 

chosen observables  $\{\Omega_{\mu}(\boldsymbol{\sigma})\}$ : (analysis with cavity method instead of replicas)

• magnetization & energy per spin:

$$m(\boldsymbol{\sigma}) = N^{-1} \sum_{i} \sigma_{i}, \ E(\boldsymbol{\sigma}) = -N^{-1} \sum_{i < j} c_{ij} \sigma_{i} \sigma_{j}$$

• joint spin-field distribution:

 $p_{\sigma,h}(\boldsymbol{\sigma}) = N^{-1} \sum_{i} \delta_{\sigma,\sigma_i} \delta_{h,h_i}$  $\sigma = \pm 1, h \in \{-c, -c+2, \dots, c-2, c\}$ 

• joint spin-field distribution for connected pairs:

 $p_{\sigma,h;\sigma',h'}(\boldsymbol{\sigma}) = (cN)^{-1} \sum_{ij} c_{ij} \delta_{\sigma,\sigma_i} \delta_{h,h_i} \delta_{\sigma',\sigma_j} \delta_{h',h_j}$  $\sigma,\sigma' = \pm 1, \ h,h' \in \{-c,-c+2,\ldots,c-2,c\}$ 

# Simulations:

 $N=3.10^6,\,\beta=1,\ln 3,1.2$ 





0.3

0.2

### Dynamical replica analysis – bond-disordered Ising systems on arbitrary random graphs

(J Hatchett, I Pérez-Castillo, ACCC, N Skantzos, Phys. Rev. Lett. 95 2005)

finitely connected Ising model with Glauber dynamics (master eqn):

$$\frac{d}{dt}p_t(\boldsymbol{\sigma}) = \sum_{k=1}^{N} [p_t(F_k\boldsymbol{\sigma})w_k(F_k\boldsymbol{\sigma}) - p_t(\boldsymbol{\sigma})w_k(\boldsymbol{\sigma})]$$

$$w_k(\boldsymbol{\sigma}) = \frac{1}{2} \{1 - \sigma_k \tanh[\beta h_k(\boldsymbol{\sigma})]\} \qquad h_i(\boldsymbol{\sigma}) = \sum_{j \neq i} J_{ij}c_{ij}\sigma_j \qquad F_k\boldsymbol{\sigma} = (\sigma_1, \dots, -\sigma_k, \dots, \sigma_N)$$

random graph & bonds, degree distr p(k)observables: magnetization & energy per spin:  $m(\boldsymbol{\sigma}) = N^{-1} \sum_{i} \sigma_{i}, \ E(\boldsymbol{\sigma}) = -N^{-1} \sum_{i < j} c_{ij} J_{ij} \sigma_{i} \sigma_{j}$ 

• regular connectivity, random bonds:

$$p(k) = \delta_{k3}$$
  

$$P(J) = \eta \delta(J-1) + (1-\eta)\delta(J+1)$$
  

$$\eta = 0.95, T = 3/2$$

• Poissonnian graph, uniform bonds:  $p(k) = e^{-c}c^k/k!$ 

$$\begin{split} P(J) &= \delta(J\!-\!1) \\ c &= 2, \, T/J = 0.75 \end{split}$$

Simulations:  $N = 10^4$ 



# III. New directions

Find solutions of the (closed) GFA equations Construct exact formulation of DRT Develop alternative dynamical methods



#### Exact formulation of dynamical replica theory?

Choose p macroscopic observables  $\Omega_{\mu}(\boldsymbol{\sigma}) = \mathcal{O}(1)$ 

- if deterministic & self-averaging for  $N \to \infty$
- if Ω obey closed laws, due to either
  (a) p<sub>t</sub>(σ|Ω) dropping out of macroscopic laws, or
  (b) probability equi-partitioning in Ω-subshells, i.e. p<sub>t</sub>(σ|Ω) depends only on Ω
- then put  $p(\boldsymbol{\sigma}|\boldsymbol{\Omega}) \sim \delta[\boldsymbol{\Omega} \boldsymbol{\Omega}(\boldsymbol{\sigma})]$ , and use replica identity for disorder average

result, for e.g. Markov chains

$$\boldsymbol{\Omega}_{t+1} = \lim_{N \to \infty} \lim_{n \to 0} \sum_{\boldsymbol{\sigma}^0 \dots \boldsymbol{\sigma}^n} \boldsymbol{\Omega}(\boldsymbol{\sigma}^0) W(\boldsymbol{\sigma}^0, \boldsymbol{\sigma}^1) \prod_{\alpha=1}^n \delta[\boldsymbol{\Omega}_t - \boldsymbol{\Omega}(\boldsymbol{\sigma}^\alpha)]$$

drawback:

theory as good/bad as one's choice of observables ...

Relevant questions:

- 1. can DRT in principle be exact? i.e. does a set of observables  $\Omega(\sigma)$  exist that for  $N \to \infty$  obey closed laws?
- 2. If yes: can we devise a method with which to construct such a set?
- 3. If yes: can we define and construct the <u>simplest</u> such set? (since if there is one, there is an infinite number ...)

tentative answers:

- 1. yes
- $2. \ {\rm yes}$
- 3. working on at the moment ...

Partitioning phase phase according to the value of macroscopic observables:



information theory picture of probability equi-partitioning in  $\Omega$ -subshells

• adding one observable:

$$p(\boldsymbol{\sigma}|\boldsymbol{\Omega}) \sim \prod_{\mu=1}^{p} \delta[\Omega_{\mu} - \Omega_{\mu}(\boldsymbol{\sigma})] \rightarrow p_{\text{new}}(\boldsymbol{\sigma}|\boldsymbol{\Omega}) \sim \prod_{\mu=1}^{p+1} \delta[\Omega_{\mu} - \Omega_{\mu}(\boldsymbol{\sigma})]$$

canonical instead of micro-canonical version (exponential families):

$$p(\boldsymbol{\sigma}) \sim e^{N \sum_{\mu=1}^{p} \Lambda_{\mu} \Omega_{\mu}(\boldsymbol{\sigma})} \rightarrow p_{\text{new}}(\boldsymbol{\sigma} | \boldsymbol{\Omega}) \sim e^{N \sum_{\mu=1}^{p+1} \Lambda_{\mu} \Omega_{\mu}(\boldsymbol{\sigma})}$$

• equipartitioning exact for  $\Omega = (\Omega, ..., \Omega_p)$ , for  $t = 1...t_{max}$ :

 $\forall t \leq t_{\max}: \quad p_t \text{ in manifold } \mathcal{M}_p = \left\{ p \mid p(\boldsymbol{\sigma}) \sim e^{N \sum_{\mu=1}^p \Lambda_\mu \Omega_\mu(\boldsymbol{\sigma})}, \quad (\Lambda_1, \dots, \Lambda_p) \in \mathbb{R}^p \right\}$ our problem: find  $\mathcal{M}_p$ 

• existence & construction of  $\Omega(\sigma)$  such that probability equi-partitioning is exact:

$$\Omega_0(\boldsymbol{\sigma}) = \frac{1}{N} \log p_0(\boldsymbol{\sigma}) \qquad \Omega_{\mu+1}(\boldsymbol{\sigma}) = \frac{1}{N} \log \sum_{\boldsymbol{\sigma}'} W(\boldsymbol{\sigma}, \boldsymbol{\sigma}') e^{N\Omega_{\mu}(\boldsymbol{\sigma}')}$$

(nr of required order parameters grows as  $\sim t$ )

• finding the simplest set:

develop formalism to 'project' new probability measures onto previous ones

linear algebra of probability measures on phase space  $\Gamma$ :

$$\mathcal{H} = \left\{ p: \Gamma \to \mathbb{R}^+ | \ p(\boldsymbol{\sigma}) > 0 \ \forall \boldsymbol{\sigma} \in \Gamma, \ \sum_{\boldsymbol{\sigma} \in \Gamma} p(\boldsymbol{\sigma}) = 1 \right\}$$
$$(p+q)(\boldsymbol{\sigma}) = \frac{p(\boldsymbol{\sigma})q(\boldsymbol{\sigma})}{\sum_{\boldsymbol{\sigma}' \in \Gamma} p(\boldsymbol{\sigma}')q(\boldsymbol{\sigma}')} \qquad (\lambda p)(\boldsymbol{\sigma}) = \frac{p^{\lambda}(\boldsymbol{\sigma})}{\sum_{\boldsymbol{\sigma}' \in \Gamma} p^{\lambda}(\boldsymbol{\sigma}')} \qquad (0.p)(\boldsymbol{\sigma}) = 2^{-N}$$

null-element  $0 \in \mathcal{H}$ :  $p_0(\boldsymbol{\sigma}) = |\Gamma|^{-1}$  for all  $\boldsymbol{\sigma} \in \Gamma$ 

inner product on  $\mathcal{H}$ :

$$\langle p|q \rangle = \frac{1}{|\Gamma|} \sum_{\boldsymbol{\sigma} \in \Gamma} \left[ \log p(\boldsymbol{\sigma}) - \frac{1}{|\Gamma|} \sum_{\boldsymbol{\sigma}' \in \Gamma} \log p(\boldsymbol{\sigma}') \right] \left[ \log q(\boldsymbol{\sigma}) - \frac{1}{|\Gamma|} \sum_{\boldsymbol{\sigma}' \in \Gamma} \log q(\boldsymbol{\sigma}') \right]$$

$$p(\boldsymbol{\sigma}) = e^{\phi(\boldsymbol{\sigma})}, \ q(\boldsymbol{\sigma}) = e^{\psi(\boldsymbol{\sigma})}: \quad \langle p|q \rangle = \langle \phi\psi \rangle_0 - \langle \phi \rangle_0 \langle \psi \rangle_0 \qquad \langle \ldots \rangle_0 = \frac{1}{|\Gamma|} \sum_{\boldsymbol{\sigma} \in \Gamma} \ldots$$

## Summary

- Spin models on finitely connected random graphs: interesting & nontrivial, even in equilibrium
- In the last three years attention has turned towards their dynamics
- Three main approaches:
  - pseudo-linear spherical models (easily to solve, but artificial spin variables)
  - generating functional analysis (exact, but rather nasty macroscopic laws, nr of order parameters grows as  $\sim e^t$ )
  - dynamical replica theory (relatively easy, similar to equil calculations, but not yet manifestly exact)

exact formulation possible? (nr of order parameters would grow as  $\sim t$ )

- A Barrat, R Zecchina, Phys. Rev. E59 (1999), R1299
- G Semerjian, L Cugliandolo, Europhys. Lett. 61 (2003), 247
- G Semerjian, M Weigt, J. Phys. A37 (2004), 5525
- G Semerjian, L Cugliandolo, A Montanari, J. Stat. Phys. 115 (2004), 493
- JPL Hatchett, B Wemmenhove, I Pérez-Castillo, T Nikoletopoulos, NS Skantzos, ACC Coolen, J. Phys. A37 (2004), 6201
- JPL Hatchett, I Pérez-Castillo, ACC Coolen, NS Skantzos, Phys. Rev. Lett. 95 (2005), 117204
- A Montanari, G Semerjian, cond-mat/0509366 (2005)