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Several research and teaching initiatives
at maths-computation-biomedicine interface
at King’s College London

Dec 2011: Institute for Mathematical and Molecular Biomedicine

biological networks:
– graph theory for cellular signalling networks
– network null models via MCMC processes
– reaction dynamics in large protein interaction networks

Bayesian analysis and biomedical statistics:
– analysis of fluorescence lifetime data
– clinical outcome prediction from biomarkers
– survival analysis for heterogeneous cohorts with competing risks

other topics:
– theory of cell re-programming
– immune networks
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THIS TALK

Problems with pathway analysis
How to quantify protein network topology
Analysis of signalling dynamics in large protein networks

ACC Coolen (King’s College London) Signalling in large protein networks 4 / 24



Problems with proteomic pathway analysis

usual description:
reaction equations

cannot solve equations analytically ...

uncertainty regarding pathways & parameters ...

too many components for numerical exploration ...
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‘The most significant challenges that face mechanistic modelling are the
lack of quantitative kinetic data and the combinatorial increase in the number
of distinct species ... of the protein network ...’ (Kholodenko 2006)

so usually ...

⇒

many-variable problem is not limited to biology
can we adapt methods from physics?
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statistical physics

dynamical variables:
coordinates and velocities

(~x1, ~v1), (~x2, ~v2), . . .

microscopic dynamics:
Newton’s equations of motion

d
dt (~x1, ~v1) = . . . , d

dt (~x2, ~v2) = . . . ← don’t try to solve these!

macroscopic description:
densities, correlation functions,
perturbation response functions,
phase transitions ...
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statistical physics statistical biology?

dynamical variables: dynamical variables:
coordinates and velocities concentr of proteins & complexes

(~x1, ~v1), (~x2, ~v2), . . . ~x1, ~x2, ~x3, . . .

microscopic dynamics: microscopic dynamics:
Newton’s equations of motion reaction equations

d
dt (~x1, ~v1) = ..., d

dt (~x2, ~v2) = ... d
dt
~x1 = ..., d

dt
~x2 = ..., d

dt
~x3 = ...

macroscopic description: macroscopic description:
densities, correlation functions,
response functions (to perturbations), ???
phase transitions ...
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Proteome:
heterogeneous many-particle system,
small number of partners per node

math methods since ∼1980/2000 (statics/dynamics)

what is many? N =1000 or more ...

biology is not physics:
no evolution to equilibrium, conservation laws ...

What should we expect to get out?

predictions for macroscopic quantities in typical proteomes
(correlation functions, response functions, ...)

collective phenomena (e.g. phase transitions)

not dependent on details of network or reaction rates,
only on network and rate statistics (‘self-averaging’)

potential to address both of Kholodenko’s fundamental problems
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numerical illustration:

two states/protein,
binary complexes,

random topology,
average nr of partners: 7

dashed lines: conc of complexes
solid lines: conc of unbound proteins
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e.g. distribution of
complex concentrations
in stationary state

N =10 N =100 N =1000
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individual trajectories not predictable,

statistics of trajectories predictable as N →∞
(and dependent only on topology and rate distributions)
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The research programme

quantify protein network stats

• systematic topological measures
• generate precise null models
• quantify experimental bias
• remove experimental bias

generating functional analysis
statistics of concentration
trajectories in time (path integrals)
• binary complexes only
• arbitrary complexes

? ?
quantitative macroscopic theory of signalling in large proteomes

?
integration with small module descriptions
• investigate phenomenology & response to perturbation
• experimentally testable predictions?
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Quantify protein network topology

Quantify topology beyond degrees:
joint degree stats of connected nodes

•

ki =k?

•

kj =k ′?

�
�
�@
@
@ �

�
�@
@
@

cij =1
W (k , k ′)

W (k)=p(k)k/〈k〉: so use Π(k , k ′)=W (k , k ′)/W (k)W (k ′)

Π(k , k ′) 6= 1:
structural information in degree correlations

k

p(k) Π(k, k′)

k

k′ H sapiens
N = 9306
〈k〉 = 7.53
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network classification
via increasingly detailed
measurements

'
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all size-N networks'

&

$

%

〈k〉 = ...'
&
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p(k) = . . .�
�
�
�Π(k , k ′) = . . .

Questions:

– complexity: how many networks exist with given properties?
– hypothesis testing: graphs with controlled features as null models

(e.g. how ‘special’ are local modules?)
– quantifying network dissimilarity

can al be done analytically
(information theory and statistical mechanics of complex graphs)

entropy & complexity in terms of p(k) and Π(k , k ′),
structural distances in terms of p(k) and Π(k , k ′)

present focus: short loops
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Can we trust protein interaction data?

e.g. yeast

Π(k , k ′) 6= 1:
degree-degree correlations
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S.cerevisiae X

S.cerevisiae VIII

S.cerevisiae IV

S.cerevisiae IX

S.cerevisiae VI

S.cerevisiae XI

S.cerevisiae XII

S.cerevisiae II

S.cerevisiae I

S.cerevisiae III

Y2H

AP-MS

PCA

A B

Affinity Purification-Mass Spectrometry Protein Complementation AssayYeast-two-Hybrid
Database Datasets Data Integration

C.jejuni
S.cerevisiae VIII

T.pallidum
S.cerevisiae X

H.sapiens III
S.cerevisiae V

E.coli
D.melanogaster

H.sapiens IV
S.cerevisiae XI

H.pylori
S.cerevisiae IV
S.cerevisiae IX

P.falciparum
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H.sapiens II
H.sapiens I

S.cerevisiae VII
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S.cerevisiae III
C.elegans

S.cerevisiae I
S.cerevisiae II

S.cerevisiae XII
Synechocystis
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AP-MS

quantify sampling bias: see poster of Alessia Annibale

ACC Coolen (King’s College London) Signalling in large protein networks 16 / 24



Signalling dynamics in the proteome

adapt techniques from many-particle physics
to do many-particle biology

notation:

i = 1 . . .N labels proteins
xαi : concentr of protein i in state α
xij : concentration of dimer i�j

events:
rate:

complex formation: (i , α) + (j , β)→ (i�j) kαβ+
ij xαi xβj

complex dissociation: (i�j)→ (i , α) + (j , β) kαβ−ij xij

conformation change: (i , α)→ (i , β) λαβi xαi
protein degradation: (i , α)→ ∅ γαi xαi
protein synthesis: ∅ → (i , α) θαi
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reaction eqns:

d
dt

xαi =
∑

j

cij

complex formation & dissociation︷ ︸︸ ︷∑
β

[kαβ−ij xij−kαβ+
ij xαi xβj ] +

post−transl modification︷ ︸︸ ︷∑
β

[λβαi xβi −λ
αβ
i xαi ] +

synthesis︷︸︸︷
θαi −

decay︷ ︸︸ ︷
γαi xαi

d
dt

xij = cij

∑
αβ

[kαβ+
ij xαi xβj − kαβ−ij xij ]

tailored random
interaction network,

prescribed degrees p(k),
and degree correlations W (k , k ′)

k

p(k) Π(k, k′)

k

k′
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preparation:

solve equations for {xij}:

d
dt

xαi (t) = Fα
i [t , {x}]

Fα
i [t , {x}] = θαi − γαi xαi +

∑
β

[λβαi xβi −λ
αβ
i xαi ]

+
∑

j

cij

∫
ds
∑
ρλ

Wα;ρλ(t−s|kij ) xρi (t−s)xλj (t−s)︸ ︷︷ ︸
effective delayed free-protein interaction

Wα;ρλ(τ |k) = kρλ+
[∑

β

kαβ−θ[τ ]e−k−τ−δαρδ(τ)
]

closed equations for unbound protein concentrations,
price paid: equations are nonlocal in time
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generating functional analysis:

calculate correlations, response functions etc ...
without solving reaction equations!

generating functional:

Z [ψ] =

∫ [∏
iαt

dxαi (t)
]

ei
∑

iα

∫
dt ψα

i (t)xα
i (t)

∏
iαt

δ
[
xαi (t +dt)−xαi (t)−Fα

i [t , {x}]dt
]

path integral over all possible concentration trajectories in time

xαi (t) = −i lim
ψ→0

δZ [ψ]

δψαi (t)
xαi (t)xβj (t ′) = − lim

ψ→0

δ2Z [ψ]

δψαi (t)δψβj (t ′)

for N →∞ (large systems),

Z [ψ] will no longer depend on network details, just on statistics
so calculate instead its average over all tailored networks

ACC Coolen (King’s College London) Signalling in large protein networks 20 / 24



generating functional analysis:

calculate correlations, response functions etc ...
without solving reaction equations!

generating functional:

Z [ψ] =

∫ [∏
iαt

dxαi (t)
]

ei
∑

iα

∫
dt ψα

i (t)xα
i (t)

∏
iαt

δ
[
xαi (t +dt)−xαi (t)−Fα

i [t , {x}]dt
]

path integral over all possible concentration trajectories in time

xαi (t) = −i lim
ψ→0

δZ [ψ]

δψαi (t)
xαi (t)xβj (t ′) = − lim

ψ→0

δ2Z [ψ]

δψαi (t)δψβj (t ′)

for N →∞ (large systems),

Z [ψ] will no longer depend on network details, just on statistics
so calculate instead its average over all tailored networks

ACC Coolen (King’s College London) Signalling in large protein networks 20 / 24



after further calculations ...
(path integral techniques, saddle-point integration, etc)

key macroscopic quantities:

D[{x}|{y}] =
1
N

∑
j

〈
δ[{x} − {xj}]

〉∣∣
θαj (t)→θαj (t)+yα(t) ∀α

W [{x}|{y}] =
1
N

∑
j

〈
δ[{x} − {xj}]

〉∣∣
kj→kj−1, θαj (t)→θαj (t)+yα(t) ∀α

{x} = trajectories xα(t) for all α
{y} = time dep production rate perturbations yα(t) for all α

macroscopic equations:

W = G1[W ], D = G2[W ], G1,2 : complicated but exact formulas

equations interpreted in terms of
response to single-node perturbations
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Summary

signalling in large protein interaction networks
can be studied by adapting methods from many-particle physics

requires systematic characterisation of network topologies
(many spin-offs)

macroscopic theory in terms of W and D
(concentration trajectory response to time-dep perturbation)

Ongoing:
– solving equations for W and D
– phase diagrams, analysis of instabilities
– remove bias from protein network data
– include short loops in network characterisation

Next:
– inclusion of higher order complexes
– integration with ‘small module’ reaction equations
– connections with experiment, verifiable predictions
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can be studied by adapting methods from many-particle physics

requires systematic characterisation of network topologies
(many spin-offs)

macroscopic theory in terms of W and D
(concentration trajectory response to time-dep perturbation)

Ongoing:
– solving equations for W and D
– phase diagrams, analysis of instabilities
– remove bias from protein network data
– include short loops in network characterisation

Next:
– inclusion of higher order complexes
– integration with ‘small module’ reaction equations
– connections with experiment, verifiable predictions
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