Controlled Markovian dynamics of structured graphs

ES Roberts, A Annibale, ACC Coolen
Dept of Mathematics and Randall Division
King's College London
NOMA11 @ Évora, Sept 15/16 2011

Outline

(1) Background-tailored random graphs

Generating tailored random graphs numerically

Constrained Markovian graph dynamics

Degree-constrained dynamics of nondirected graphs

Degree-constrained dynamics of directed graphs

Summary

Outline

(1) Background - tailored random graphs
(2) Generating tailored random graphs numerically

Constrained Markovian graph dynamics

Degree-constrained dynamics of nondirected graphs

Degree-constrained dynamics of directed graphs

Summary

Outline

(1) Background - tailored random graphs
(2) Generating tailored random graphs numerically
(3) Constrained Markovian graph dynamics

Degree-constrained dynamics of nondirected graphs

Degree-constrained dynamics of directed graphs

Outline

(1) Background-tailored random graphs
(2) Generating tailored random graphs numerically
(3) Constrained Markovian graph dynamics

4 Degree-constrained dynamics of nondirected graphs Degree-constrained dynamics of directed graphs

Outline

(1) Background - tailored random graphs
(2) Generating tailored random graphs numerically
(3) Constrained Markovian graph dynamics

4 Degree-constrained dynamics of nondirected graphs
(5) Degree-constrained dynamics of directed graphs
(6) Summary

Outline

(1) Background - tailored random graphs
(2) Generating tailored random graphs numerically
(3) Constrained Markovian graph dynamics

4 Degree-constrained dynamics of nondirected graphs
(5) Degree-constrained dynamics of directed graphs
(6) Summary

Background - tailored random graphs

networks/graphs:

number of nodes: N nodes (vertices): $\quad i, j \in\{1, \ldots, N\}$
links (edges):
$c_{i j} \in\{0,1\}$
no self-links:
$c_{i i}=0$ for all i
$\mathbf{c}=\left\{c_{i j}\right\}$
nondirected: $\quad \forall(i, j): c_{i j}=c_{j i}$
directed: $\quad \exists(i, j): c_{i j} \neq c_{j i}$

degrees: $\quad k_{i}^{\text {in }}(\mathbf{c})=\sum_{j} c_{i j}, \quad k_{i}^{\text {out }}(\mathbf{c})=\sum_{j} c_{j i}$

$$
\mathbf{k}^{\mathrm{in}}(\mathbf{c})=\left(k_{1}^{\mathrm{in}}(\mathbf{c}), \ldots, k_{N}^{\text {in }}(\mathbf{c})\right), \mathbf{k}^{\mathrm{out}}(\mathbf{c})=\ldots
$$

Networks in cellular biology

- protein interaction networks: (nondirected)
nodes: proteins $i, j=1 \ldots N$
links: $c_{i j}=c_{j i}=1$ if i can bind to j
$c_{i j}=c_{j i}=0 \quad$ otherwise
$N \sim 10^{4}$, about 7 links/node
- gene regulation networks:

(directed)

$N \sim 10^{4}$, about 5 links/node

Networks in cellular biology

- protein interaction networks:
(nondirected)
nodes: proteins $i, j=1 \ldots N$
links: $c_{i j}=c_{j i}=1$ if i can bind to j

$$
c_{i j}=c_{j i}=0 \quad \text { otherwise }
$$

$N \sim 10^{4}$, about 7 links/node

- gene regulation networks: (directed)
nodes: proteins $i, j=1 \ldots N$
links: $c_{i j}=c_{j i}=1$ if j is transcription factor of i

$$
c_{i j}=c_{j i}=0 \quad \text { otherwise }
$$

$N \sim 10^{4}$, about 5 links/node

Quantify graph topology beyond degrees

joint degree statistics of connected nodes

$$
W\left(k, k^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{k, k_{i}(\mathbf{c})} \delta_{k^{\prime}, k_{j}(\mathbf{c})}
$$

Quantify graph topology beyond degrees

joint degree statistics of connected nodes

$$
W\left(k, k^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{k, k_{i}(\mathbf{c})} \delta_{k^{\prime}, k_{j}(\mathbf{c})}
$$

$$
k_{i}=k ?
$$

$$
k_{j}=k^{\prime} ?
$$

- $W(k \mid \mathbf{c})=p(k \mid \mathbf{c}) k /\langle k\rangle$
so focus on:

$$
\Pi\left(k, k^{\prime} \mid \mathbf{c}\right)=\frac{W\left(k, k^{\prime} \mid \mathbf{c}\right)}{W(k \mid \mathbf{c}) W\left(k^{\prime} \mid \mathbf{c}\right)}
$$

$\Pi\left(k, k^{\prime} \mid \mathbf{c}\right) \neq 1$:
structural information in degree correlations

H sapiens PIN $N=9306$ $\langle k\rangle=7.53$

for directed graphs:

joint in-out degree statistics
of connected nodes
$k_{i} \rightarrow \vec{k}_{i}=\left(k_{i}^{\text {in }}, k_{i}^{\text {out }}\right)$

$$
W\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})}
$$

so focus on:

structural information in degree correlations

for directed graphs:

joint in-out degree statistics
of connected nodes
$k_{i} \rightarrow \vec{k}_{i}=\left(k_{i}^{\text {in }}, k_{i}^{\text {out }}\right)$
$W\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)=\frac{1}{N\langle k\rangle} \sum_{i j} c_{i j} \delta_{\vec{k}, \vec{k}_{j}(\mathbf{c})} \delta_{\vec{k}^{\prime}, \vec{k}_{j}(\mathbf{c})}$

- $W(\vec{k} \mid \mathbf{c}) \equiv \sum_{\vec{k}^{\prime}} W\left(\vec{k}, \vec{k}^{\prime}\right)=p(\vec{k} \mid \mathbf{c}) k^{\text {in }} /\langle k\rangle$
$W\left(\vec{k}^{\prime} \mid \mathbf{c}\right) \equiv \sum_{\vec{k}} W\left(\vec{k}, \vec{k}^{\prime}\right)=p\left(\vec{k}^{\prime} \mid \mathbf{c}\right) k^{\text {out }} /\langle k\rangle$
so focus on:

$$
\Pi\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)=\frac{W\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right)}{W_{1}(\vec{k} \mid \mathbf{c}) W_{2}\left(\overrightarrow{k^{\prime}} \mid \mathbf{c}\right)}
$$

$\Pi\left(\vec{k}, \vec{k}^{\prime} \mid \mathbf{c}\right) \neq 1:$
structural information in degree correlations

Graph classification

 via increasingly detailed measurements

- proxies for real networks in stat mech process modelling
- complexity: how many networks exist with same features as c?
- hypothesis testing: graphs with controlled features as null models
- quantifying network dissimilarity
analytically in leading order in N

Graph classification via increasingly detailed measurements
we are led to study:

Tailored random graph ensembles

maximum entropy random graph ensembles, with prescribed values for $\langle k\rangle, p(k), \Pi\left(k, k^{\prime}\right), \ldots$

- proxies for real networks in stat mech process modelling
- complexity: how many networks exist with same features as c?
- hypothesis testing: graphs with controlled features as null models
- quantifying network dissimilarity
analytically in leading order in N

Graph classification via increasingly detailed measurements
we are led to study:

Tailored random graph ensembles

maximum entropy random graph ensembles, with prescribed values for $\langle k\rangle, p(k), \Pi\left(k, k^{\prime}\right), \ldots$

- proxies for real networks in stat mech process modelling
- complexity: how many networks exist with same features as \mathbf{c} ?
- hypothesis testing: graphs with controlled features as null models
- quantifying network dissimilarity
analytically in leading order in N
effective $\mathbf{n r}$ of graphs in ensemble $p(\mathbf{c})$, complexity of tailored random graphs

$$
\mathcal{N}=e^{N\langle k\rangle S}, \quad S=-\frac{1}{N\langle k\rangle} \sum_{\mathbf{c}} p(\mathbf{c}) \log p(\mathbf{c})
$$

- nondirected graphs:

$$
\begin{aligned}
& \quad p(\mathbf{c})=\frac{\prod_{i} \delta_{k_{i}, k_{i}(\mathbf{c})}}{Z} \prod_{i<j}\left[\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)} \delta_{c_{i j}, 1}+\left(1-\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)}\right) \delta_{c_{i j}, 0}\right] \\
& \text { - write } \delta_{k_{i}, k_{i}(\mathbf{c})}=(2 \pi)^{-1} \int_{0}^{2 \pi} \mathrm{~d} \omega_{i} \mathrm{e}^{\mathrm{i} \omega_{i}\left[k_{i}-k_{i}(\mathbf{c})\right]} \\
& \text { - factorisation over bonds, sum over graphs } \\
& \text { - write as path integral over } P(k, \omega)=N^{-1} \sum_{i} \delta_{k, k_{i}} \delta\left(\omega-\omega_{i}\right) \\
& \text { - integration via steepest descent } \\
& \text { - solve saddle-point equation analytically }
\end{aligned}
$$

effective $\mathbf{n r}$ of graphs in ensemble $p(\mathbf{c})$, complexity of tailored random graphs

$$
\mathcal{N}=e^{N\langle k\rangle S}, \quad S=-\frac{1}{N\langle k\rangle} \sum_{\mathbf{c}} p(\mathbf{c}) \log p(\mathbf{c})
$$

- nondirected graphs:

$$
p(\mathbf{c})=\frac{\prod_{i} \delta_{k_{i}, k_{i}(\mathbf{c})}}{Z} \prod_{i<j}\left[\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)} \delta_{c_{i j}, 1}+\left(1-\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)}\right) \delta_{c_{i j}, 0}\right]
$$

- write $\delta_{k_{i}, k_{i}(\mathrm{c})}=(2 \pi)^{-1} \int_{0}^{2 \pi} \mathrm{~d} \omega_{i} \mathrm{e}^{\mathrm{i} \omega_{i}\left[k_{i}-k_{i}(\mathrm{c})\right]}$
- factorisation over bonds, sum over graphs
- write as path integral over $P(k, \omega)=N^{-1} \sum_{i} \delta_{k, k_{i}} \delta\left(\omega-\omega_{i}\right)$
- integration via steepest descent
- solve saddle-point equation analytically
effective $\mathbf{n r}$ of graphs in ensemble $p(\mathbf{c})$, complexity of tailored random graphs

$$
\mathcal{N}=e^{N\langle k\rangle S}, \quad S=-\frac{1}{N\langle k\rangle} \sum_{\mathbf{c}} p(\mathbf{c}) \log p(\mathbf{c})
$$

- nondirected graphs:

$$
p(\mathbf{c})=\frac{\prod_{i} \delta_{k_{i}, k_{i}(\mathbf{c})}}{Z} \prod_{i<j}\left[\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)} \delta_{c_{i j}, 1}+\left(1-\frac{\langle k\rangle}{N} \frac{W\left(k_{i}, k_{j}\right)}{p\left(k_{i}\right) p\left(k_{j}\right)}\right) \delta_{c_{i j}, 0}\right]
$$

- write $\delta_{k_{i}, k_{i}(\mathbf{c})}=(2 \pi)^{-1} \int_{0}^{2 \pi} \mathrm{~d} \omega_{i} \mathrm{e}^{\mathrm{i} \omega_{i}\left[k_{i}-k_{i}(\mathbf{c})\right]}$
- factorisation over bonds, sum over graphs
- write as path integral over $P(k, \omega)=N^{-1} \sum_{i} \delta_{k, k_{i}} \delta\left(\omega-\omega_{i}\right)$
- integration via steepest descent
- solve saddle-point equation analytically

$$
\begin{equation*}
S=\frac{1}{2}\left[1+\log \left(\frac{N}{\langle k\rangle}\right)\right]-\left\{\frac{1}{\langle k\rangle} \sum_{k} p(k) \log \left[\frac{1}{\pi(k)}\right]+\frac{1}{2} \sum_{k, k^{\prime}} W\left(k, k^{\prime}\right) \log \left[\frac{W\left(k, k^{\prime}\right)}{W(k) W\left(k^{\prime}\right)}\right]\right\} \tag{N}
\end{equation*}
$$

effective $\mathbf{n r}$ of graphs in ensemble $p(\mathbf{c})$, complexity of tailored random graphs

$$
\mathcal{N}=e^{N\langle k\rangle S}, \quad S=-\frac{1}{N\langle k\rangle} \sum_{\mathbf{c}} p(\mathbf{c}) \log p(\mathbf{c})
$$

- directed graphs:

$$
p(\mathbf{c})=\frac{\prod_{i} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})}}{Z} \prod_{i<j}\left[\frac{\langle k\rangle}{N} \frac{W\left(\vec{k}_{i}, \vec{k}_{j}\right)}{p\left(\vec{k}_{i}\right) p\left(\vec{k}_{j}\right)} \delta_{c_{i j}, 1}+\left(1-\frac{\langle k\rangle}{N} \frac{W\left(\vec{k}_{i}, \vec{k}_{j}\right)}{p\left(\vec{k}_{i}\right) p\left(\vec{k}_{j}\right)}\right) \delta_{c_{i j}, 0}\right]
$$

with $\vec{k}_{i}(\mathbf{c})=\left(k_{i}^{\text {in }}(\mathbf{c}), k_{i}^{\text {out }}(\mathbf{c})\right)$
similar methods
final result:
effective $\mathbf{n r}$ of graphs in ensemble $p(\mathbf{c})$, complexity of tailored random graphs

$$
\mathcal{N}=e^{N\langle k\rangle S}, \quad S=-\frac{1}{N\langle k\rangle} \sum_{\mathbf{c}} p(\mathbf{c}) \log p(\mathbf{c})
$$

- directed graphs:

$$
p(\mathbf{c})=\frac{\prod_{i} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})}}{Z} \prod_{i<j}\left[\frac{\langle k\rangle}{N} \frac{W\left(\vec{k}_{i}, \vec{k}_{j}\right)}{p\left(\vec{k}_{i}\right) p\left(\vec{k}_{j}\right)} \delta_{c_{i j}, 1}+\left(1-\frac{\langle k\rangle}{N} \frac{W\left(\vec{k}_{i}, \vec{k}_{j}\right)}{p\left(\vec{k}_{i}\right) p\left(\vec{k}_{j}\right)}\right) \delta_{c_{i j}, 0}\right]
$$

with $\vec{k}_{i}(\mathbf{c})=\left(k_{i}^{\text {in }}(\mathbf{c}), k_{i}^{\text {out }}(\mathbf{c})\right)$
similar methods ...
final result:

$$
\begin{aligned}
& S=+\log \left(\frac{N}{\langle k\rangle}\right) \\
& \quad-\left\{\frac{1}{\langle k\rangle} \sum_{\vec{k}} p(\vec{k}) \log \left[\frac{1}{\pi\left(k^{\text {in }}\right) \pi\left(k^{\text {out }}\right)}\right]+\sum_{\vec{k}, \vec{k}^{\prime}} W\left(\vec{k}, \vec{k}^{\prime}\right) \log \left[\frac{W\left(\vec{k}, \vec{k}^{\prime}\right)}{W(\vec{k}) W\left(\vec{k}^{\prime}\right)}\right]\right\} \\
&+\epsilon_{N}
\end{aligned}
$$

Information in degree correlations?

plot $\Pi\left(k, k^{\prime}\right)=W\left(k, k^{\prime}\right) / W(k) W\left(k^{\prime}\right)$ for protein interaction networks: a problem ...

structural dissimilarity of graphs \mathbf{c}_{A} and \mathbf{c}_{B}, based on Information-theoretic distance between associated ensembles

$$
D_{A B}=\frac{1}{2 N} \sum_{\mathbf{c} \in G}\left\{p\left(\mathbf{c} \mid p_{A}, W_{A}\right) \log \left[\frac{p\left(\mathbf{c} \mid p_{A}, W_{A}\right)}{p\left(\mathbf{c} \mid p_{B}, W_{B}\right)}\right]+p\left(\mathbf{c} \mid p_{B}, W_{B}\right) \log \left[\frac{p\left(\mathbf{c} \mid p_{B}, W_{B}\right)}{p\left(\mathbf{c} \mid p_{A}, W_{A}\right)}\right]\right\}
$$

same methods as in calculating

Shannon entropy:

structural dissimilarity of graphs \mathbf{c}_{A} and \mathbf{c}_{B}, based on Information-theoretic distance between associated ensembles
$D_{A B}=\frac{1}{2 N} \sum_{\mathbf{c} \in G}\left\{p\left(\mathbf{c} \mid p_{A}, W_{A}\right) \log \left[\frac{p\left(\mathbf{c} \mid p_{A}, W_{A}\right)}{p\left(\mathbf{c} \mid p_{B}, W_{B}\right)}\right]+p\left(\mathbf{c} \mid p_{B}, W_{B}\right) \log \left[\frac{p\left(\mathbf{c} \mid p_{B}, W_{B}\right)}{p\left(\mathbf{c} \mid p_{A}, W_{A}\right)}\right]\right\}$
same methods as in calculating
Shannon entropy:

$$
\begin{aligned}
D_{A B}= & \frac{1}{2} \sum_{k} p_{A}(k) \log \left[\frac{p_{A}(k)}{p_{B}(k)}\right]+\frac{1}{2} \sum_{k} p_{B}(k) \log \left[\frac{p_{B}(k)}{p_{A}(k)}\right] \\
& +\frac{1}{4\langle k\rangle_{A}} \sum_{k k^{\prime}} p_{A}(k) p_{A}\left(k^{\prime}\right) k k^{\prime} \Pi_{A}\left(k, k^{\prime}\right) \log \left[\frac{\Pi_{A}\left(k, k^{\prime}\right)}{\Pi_{B}\left(k, k^{\prime}\right)}\right] \\
& +\frac{1}{4\langle k\rangle_{B}} \sum_{k k^{\prime}} p_{B}(k) p_{B}\left(k^{\prime}\right) k k^{\prime} \Pi_{B}\left(k, k^{\prime}\right) \log \left[\frac{\Pi_{B}\left(k, k^{\prime}\right)}{\Pi_{A}\left(k, k^{\prime}\right)}\right] \\
& +\frac{1}{2} \sum_{k} p_{A}(k) k \log \rho_{A B}(k)+\frac{1}{2} \sum_{k} p_{B}(k) k \log \rho_{B A}(k)
\end{aligned}
$$

with

$$
\Pi\left(k, k^{\prime}\right)=W(k, k) / W(k) W\left(k^{\prime}\right), \quad \rho_{A B}(k)=\sum_{k^{\prime}} \Pi_{B}\left(k, k^{\prime}\right) W_{A}\left(k^{\prime}\right) \rho_{A B}^{-1}\left(k^{\prime}\right)
$$

clustering of protein interaction networks with
information-theoretic distance measure

- PINs of same species and measured via same experimental method are statistically similar (in spite of limited overlap)
- PINs measured via same method cluster together, revealing bias introduced by experimental method that overrules species information
clustering of protein interaction networks with
information-theoretic distance measure

- PINs of same species and measured via same experimental method are statistically similar (in spite of limited overlap)

PINs measured via same method cluster together, revealing bias introduced by experimental method that overrules species information
clustering of protein interaction networks with
information-theoretic distance measure

- PINs of same species and measured via same experimental method are statistically similar (in spite of limited overlap)
- PINs measured via same method cluster together, revealing bias introduced by experimental method that overrules species information

finally: let us

generate tailored random graphs

from the above families numerically ...

Generating tailored random graphs numerically

$G[\mathbf{k}]$: all nondirected graphs \mathbf{c} with degrees \mathbf{k}

how to generate

- random $\mathbf{c} \in G[\mathbf{k}]$, with uniform probability
- random $\mathbf{c} \in G[\mathbf{k}]$, with specified probability $p(\mathbf{c})$ (e.g. tailored graphs)

available approaches

- matching algorithm (Bender \& Canfield, 1978)
builds one random graph c with specified degrees k
(assign k_{i} 'stubs' to each node i, then randomly connect pairs of 'stubs')
- edge switching algorithm (Seidel, 1976; Taylor, 1981)
ergodic Markov process in $G[k]$
$\mathrm{c} \rightarrow \mathrm{c}^{\prime} \rightarrow \mathrm{c}^{\prime \prime} \rightarrow$
- sampling all graphs in $G[\mathbf{k}]$: in principle easy
- main problem: sampling with correct probabilities
- matching and edge switching: both biased (yet widely used

Generating tailored random graphs numerically

$G[\mathbf{k}]$: all nondirected graphs \mathbf{c} with degrees \mathbf{k} how to generate

- random $\mathbf{c} \in G[\mathbf{k}]$, with uniform probability
- random $\mathbf{c} \in G[\mathbf{k}]$, with specified probability $p(\mathbf{c})$ (e.g. tailored graphs)

available approaches

- matching algorithm (Bender \& Canfield, 1978) builds one random graph \mathbf{c} with specified degrees \mathbf{k} (assign k_{i} 'stubs' to each node i, then randomly connect pairs of 'stubs')
- edge switching algorithm (Seidel, 1976; Taylor, 1981) ergodic Markov process in $G[\mathbf{k}]$

$$
\mathbf{c} \rightarrow \mathbf{c}^{\prime} \rightarrow \mathbf{c}^{\prime \prime} \rightarrow \ldots
$$

- sampling all graphs in $G[\mathbf{k}]$: in principle easy
- main problem: sampling with correct probabilities
- matching and edge switching: both biased (yet widely used

Generating tailored random graphs numerically

$G[\mathbf{k}]$: all nondirected graphs \mathbf{c} with degrees \mathbf{k} how to generate

- random $\mathbf{c} \in G[\mathbf{k}]$, with uniform probability
- random $\mathbf{c} \in G[\mathbf{k}]$, with specified probability $p(\mathbf{c})$ (e.g. tailored graphs)

available approaches

- matching algorithm (Bender \& Canfield, 1978) builds one random graph \mathbf{c} with specified degrees \mathbf{k} (assign k_{i} 'stubs' to each node i, then randomly connect pairs of 'stubs')
- edge switching algorithm (Seidel, 1976; Taylor, 1981) ergodic Markov process in $G[\mathbf{k}]$

$$
\mathbf{c} \rightarrow \mathbf{c}^{\prime} \rightarrow \mathbf{c}^{\prime \prime} \rightarrow \ldots
$$

- sampling all graphs in $G[\mathbf{k}]$: in principle easy
- main problem: sampling with correct probabilities
- matching and edge switching: both biased (yet widely used ...)

Matching algorithm

- stochastic growth dynamics
- start with graph without any links
- pick at random two nodes whose in- and out degrees have not yet reached required values, and connect these if possible (Bender \& Canfield, 1978)
bond creation as elementary moves:
$c_{i j}=0 \rightarrow c_{i j}=1$

if $k_{i}^{\text {in }}(\mathbf{c})<k_{i}^{\text {in }}$ and $k_{j}^{\text {out }}(\mathbf{c})<k_{j}^{\text {out }}$
origin of sampling bias:
- process can terminate before $k_{i}(\mathrm{c})=k_{i}$ for all i (e.g. if remaining 'stubs' require self-loops)
- requires 'backtracking' which creates correlations between graph realisations

Matching algorithm

- stochastic growth dynamics
- start with graph without any links
- pick at random two nodes whose in- and out degrees have not yet reached required values, and connect these if possible (Bender \& Canfield, 1978)
bond creation as elementary moves:

$$
c_{i j}=0 \rightarrow c_{i j}=1
$$

if $k_{i}^{\text {in }}(\mathbf{c})<k_{i}^{\text {in }}$ and $k_{j}^{\text {out }}(\mathbf{c})<k_{j}^{\text {out }}$

origin of sampling bias:

- process can terminate before $k_{i}(\mathbf{c})=k_{i}$ for all i
(e.g. if remaining 'stubs' require self-loops)
- requires 'backtracking' which creates correlations between graph realisations

Edge switching

- construct arbitrary graph with degrees \mathbf{k}
- shuffle links repeatedly via randomly drawn 'edge swaps' (Seidel, 1976)
edge swaps as elementary moves:
- preserve the degrees of all nodes
- are ergodic on $G[\mathbf{k}]$ (Taylor, 1981)
origin of sampling bias:
nr of possible moves
depends on state c!
result:
stationary state of Markov chain
favours high-mobility graphs
dangerous for scale-free graphs

Edge switching

- construct arbitrary graph with degrees \mathbf{k}
- shuffle links repeatedly via randomly drawn 'edge swaps' (Seidel, 1976)
edge swaps as elementary moves:
- preserve the degrees of all nodes
- are ergodic on $G[\mathbf{k}]$ (Taylor, 1981)
origin of sampling bias:
nr of possible moves
depends on state c !
result:
stationary state of Markov chain
favours high-mobility graphs
many possible moves

only one move ...

dangerous for scale-free graphs

Edge switching

- construct arbitrary graph with degrees \mathbf{k}
- shuffle links repeatedly via randomly drawn 'edge swaps' (Seidel, 1976)
edge swaps as elementary moves:
- preserve the degrees of all nodes
- are ergodic on $G[\mathbf{k}]$ (Taylor, 1981)
origin of sampling bias:
nr of possible moves depends on state c!
result:
stationary state of Markov chain favours high-mobility graphs
many possible moves
only one move ...

Constrained Markovian graph dynamics

need to study graph dynamics more systematically ...

- constraints:
$G[\star] \subseteq G: \quad$ all $\mathbf{c} \in G$ that satisfy constraints *
- stochastic graph dynamics as a Markov chain,
transition probabilities $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$

- allowed moves (exclude identity):

क: set of allowed moves $F: G_{F}[*] \rightarrow G[*]$
$G_{F}[\star]$: those $c \in G[\star]$ on which F can act
all moves are auto-invertible: $(\forall F \in \Phi): F^{2}=\mathbf{I}$
Φ is ergodic on $G[\star]$

- graph mobility $n(\mathbf{c})$:

Constrained Markovian graph dynamics

need to study graph dynamics more systematically ...

- constraints:
$G[\star] \subseteq G: \quad$ all $\mathbf{c} \in G$ that satisfy constraints \star
- stochastic graph dynamics as a Markov chain, transition probabilities $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$

$$
\forall \mathbf{c} \in G[\star]: \quad p_{t+1}(\mathbf{c})=\sum_{\mathbf{c}^{\prime} \in G[\star]} W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right) p_{t}\left(\mathbf{c}^{\prime}\right)
$$

- allowed moves (exclude identity):
Φ : \quad set of allowed moves $F: G_{F}[*] \rightarrow G[\star]$ $G_{F}[\star]$: those $c \in G[\star]$ on which F can act
all moves are auto-invertible: $(\forall F \in \Phi): F^{2}=\mathbf{I}$ Φ is ergodic on $G[\star]$
- graph mobility $n(\mathbf{c})$:

Constrained Markovian graph dynamics

need to study graph dynamics more systematically ...

- constraints:
$G[\star] \subseteq G: \quad$ all $\mathbf{c} \in G$ that satisfy constraints \star
- stochastic graph dynamics as a Markov chain, transition probabilities $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$

$$
\forall \mathbf{c} \in G[\star]: \quad p_{t+1}(\mathbf{c})=\sum_{\mathbf{c}^{\prime} \in G[\star]} W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right) p_{t}\left(\mathbf{c}^{\prime}\right)
$$

- allowed moves (exclude identity):
Φ : \quad set of allowed moves $F: G_{F}[\star] \rightarrow G[\star]$
$G_{F}[\star]$: those $\mathbf{c} \in G[\star]$ on which F can act
all moves are auto-invertible: $(\forall F \in \Phi): F^{2}=\mathbf{I}$
Φ is ergodic on $G[\star]$
- graph mobility n(c):

Constrained Markovian graph dynamics

need to study graph dynamics more systematically ...

- constraints:
$G[\star] \subseteq G: \quad$ all $\mathbf{c} \in G$ that satisfy constraints \star
- stochastic graph dynamics as a Markov chain, transition probabilities $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$

$$
\forall \mathbf{c} \in G[\star]: \quad p_{t+1}(\mathbf{c})=\sum_{\mathbf{c}^{\prime} \in G[\star]} W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right) p_{t}\left(\mathbf{c}^{\prime}\right)
$$

- allowed moves (exclude identity):
Φ : \quad set of allowed moves $F: G_{F}[\star] \rightarrow G[\star]$
$G_{F}[\star]$: those $\mathbf{c} \in G[\star]$ on which F can act
all moves are auto-invertible: $(\forall F \in \Phi): F^{2}=\mathbf{I}$
Φ is ergodic on $G[\star]$
- graph mobility $n(\mathbf{c})$:

$$
n(\mathbf{c})=\sum_{F \in \Phi} I_{F}(\mathbf{c}), \quad I_{F}(\mathbf{c})= \begin{cases}1 & \text { if } \mathbf{c} \in G_{F}[\star] \\ 0 & \text { if } \mathbf{c} \notin G_{F}[\star]\end{cases}
$$

MCMC objective

 construct transition probs $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$, based on moves $F \in \Phi$, such that process converges to $p_{\infty}(\mathbf{c})=Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$- structure:

$q(F \mid \mathbf{c})$: move proposal probability A(c|c'): move acceptance probability
- detailed balance condition:

allowed F equally probable: $q(F \mid \mathbf{c})=I_{F}(\mathbf{c}) / n(\mathbf{c})$

MCMC objective

 construct transition probs $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$, based on moves $F \in \Phi$, such that process converges to $p_{\infty}(\mathbf{c})=Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$- structure:

$$
W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\sum_{F \in \Phi} q\left(F \mid \mathbf{c}^{\prime}\right)\left[\delta_{\mathbf{c}, F \mathbf{c}^{\prime}} A\left(F \mathbf{c}^{\prime} \mid \mathbf{c}^{\prime}\right)+\delta_{\mathbf{c}, \mathbf{c}^{\prime}}\left[1-A\left(F \mathbf{c}^{\prime} \mid \mathbf{c}^{\prime}\right)\right]\right]
$$

$q(F \mid \mathbf{c})$: move proposal probability $A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$: move acceptance probability

- detailed balance condition:

allowed F equally probable: $q(F \mid \mathbf{c})=I_{F}(\mathbf{c}) / n(\mathbf{c})$

MCMC objective

construct transition probs $W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)$, based on moves $F \in \Phi$, such that process converges to $p_{\infty}(\mathbf{c})=Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$

- structure:

$$
W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\sum_{F \in \Phi} q\left(F \mid \mathbf{c}^{\prime}\right)\left[\delta_{\mathbf{c}, F \mathbf{c}^{\prime}} A\left(F \mathbf{c}^{\prime} \mid \mathbf{c}^{\prime}\right)+\delta_{\mathbf{c}, \mathbf{c}^{\prime}}\left[1-A\left(F \mathbf{c}^{\prime} \mid \mathbf{c}^{\prime}\right)\right]\right]
$$

$$
\begin{array}{ll}
q(F \mid \mathbf{c}): & \text { move proposal probability } \\
A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right): & \text { move acceptance probability }
\end{array}
$$

- detailed balance condition:

$$
(\forall F \in \Phi)(\forall \mathbf{c} \in G[\star]): \quad q(F \mid \mathbf{c}) A(F \mathbf{c} \mid \mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}=q(F \mid F \mathbf{c}) A(\mathbf{c} \mid F \mathbf{c}) \mathrm{e}^{-H(F \mathbf{c})}
$$

allowed F equally probable:
$q(F \mid \mathbf{c})=I_{F}(\mathbf{c}) / n(\mathbf{c})$

$$
(\forall F \in \Phi)\left(\forall \mathbf{c} \in G_{F}[\star]\right): \quad \frac{1}{n(\mathbf{c})} A(F \mathbf{c} \mid \mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}=\frac{1}{n(F \mathbf{c})} A(\mathbf{c} \mid F \mathbf{c}) \mathrm{e}^{-H(F \mathbf{c})}
$$

canonical Markov chain

ergodic auto-invertible moves $F \in \Phi$, convergence to $p_{\infty}(\mathbf{c})=Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$ for acceptance probabilities

$$
A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\frac{n\left(\mathbf{c}^{\prime}\right) \mathrm{e}^{-\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}}{n\left(\mathbf{c}^{\prime}\right) \mathrm{e}^{-\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}+n(\mathbf{c}) \mathrm{e}^{\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}}
$$

naive edge-swapping, $A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=$ const,
corresponds to $H(\mathbf{c})=-\log n(\mathbf{c})$,
so would give
sampling bias

canonical Markov chain

ergodic auto-invertible moves $F \in \Phi$, convergence to $p_{\infty}(\mathbf{c})=Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$ for acceptance probabilities

$$
A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\frac{n\left(\mathbf{c}^{\prime}\right) \mathrm{e}^{-\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}}{n\left(\mathbf{c}^{\prime}\right) \mathrm{e}^{-\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}+n(\mathbf{c}) \mathrm{e}^{\frac{1}{2}\left[H(\mathbf{c})-H\left(\mathbf{c}^{\prime}\right)\right]}}
$$

corollary:

naive edge-swapping, $A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=$ const, corresponds to $H(\mathbf{c})=-\log n(\mathbf{c})$, so would give

$$
\text { sampling bias : } \quad p_{\infty}(\mathbf{c})=\frac{n(\mathbf{c})}{\sum_{\mathbf{c}^{\prime} \in G[\star]} n\left(\mathbf{c}^{\prime}\right)}
$$

Master equation representation of the process

- soln of Markov chain: $p_{n}(\mathbf{c}), n=0,1,2, \ldots$
continuous time process, $p_{t}(\mathbf{c}), t \in[0, \infty\rangle$
via random durations of MC steps
$\pi_{m}(t)=(t / \tau)^{m} \mathrm{e}^{-t / \tau} / m!:$
prob that at time t precisely m MC steps have been made

$$
\tau \frac{\mathrm{d}}{\mathrm{~d} t} p_{t}(\mathbf{c})=\sum_{\mathbf{c}^{\prime} \in G[\star]} W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right) p_{t}\left(\mathbf{c}^{\prime}\right)-p_{t}(\mathbf{c})
$$

- work out details, using $\Delta_{F} U(\mathbf{c})=U(F \mathbf{c})-U(\mathbf{c})$

$$
\begin{aligned}
\tau \frac{\mathrm{d}}{\mathrm{~d} t} p_{t}(\mathbf{c}) & =\sum_{F \in \Phi} I_{F}(\mathbf{c})\left\{\frac{w_{F}^{+}(\mathbf{c})}{n(F \mathbf{c})} p_{t}(F \mathbf{c})-\frac{w_{F}^{-}(\mathbf{c})}{n(\mathbf{c})} p_{t}(\mathbf{c})\right\} \\
w_{F}^{ \pm}(\mathbf{c}) & =\frac{1}{2} \pm \frac{1}{2} \tanh \left[\frac{1}{2} \Delta_{F}[H(\mathbf{c})+\log n(\mathbf{c})]\right]
\end{aligned}
$$

- Convergence:

$$
\text { let } \hat{p}(\mathbf{c})=Z^{-1} \mathrm{e}^{-H(\mathbf{c})}, \quad F(t)=\sum_{\mathbf{c} \in G[\star]} p_{t}(\mathbf{c}) \log \left[p_{t}(\mathbf{c}) / \hat{p}(\mathbf{c})\right]
$$

$F(t)$ is Lyapunov function

$$
\forall t \geq 0: \quad F(t) \geq 0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} F(t) \leq 0
$$

- Proof (standard):
use detailed balance

$\left(e^{x}-e^{y}\right)(x-y) \geq 0$, equality only if $x=y$
- stationarity: ${ }^{\mathrm{d}} \mathrm{F}(\mathrm{t})=0$,
write $p(\mathbf{c})=\chi(\mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}$,

- Convergence:

$$
\text { let } \hat{p}(\mathbf{c})=Z^{-1} \mathrm{e}^{-H(\mathbf{c})}, \quad F(t)=\sum_{\mathbf{c} \in G[\star]} p_{t}(\mathbf{c}) \log \left[p_{t}(\mathbf{c}) / \hat{p}(\mathbf{c})\right]
$$

$F(t)$ is Lyapunov function

$$
\forall t \geq 0: \quad F(t) \geq 0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} F(t) \leq 0
$$

- Proof (standard):
use detailed balance

$$
\left.\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=-\frac{1}{2 \tau} \sum_{\mathbf{c}, \mathbf{c}^{\prime} \in G[*]} W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right) \mathrm{e}^{-H\left(\mathbf{c}^{\prime}\right)} & {[}
\end{array}\left[H(\mathbf{c})+\log p_{t}(\mathbf{c})\right]-\left[H\left(\mathbf{c}^{\prime}\right)+\log p_{t}\left(\mathbf{c}^{\prime}\right)\right]\right] .\right] ~\left(\mathrm{e}^{H(\mathbf{c})+\log p_{t}(\mathbf{c})}-\mathrm{e}^{H\left(\mathbf{c}^{\prime}\right)+\log p_{t}\left(\mathbf{c}^{\prime}\right)}\right] \leq 0 \quad \$
$$

$\left(e^{x}-e^{y}\right)(x-y) \geq 0$, equality only if $x=y$

- stationarity: $\frac{\mathrm{d}}{\mathrm{dt}} F(t)=0$,
write $p(\mathbf{c})=\chi(\mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}$,

- Convergence:

$$
\text { let } \hat{p}(\mathbf{c})=Z^{-1} \mathrm{e}^{-H(\mathbf{c})}, \quad F(t)=\sum_{\mathbf{c} \in \mathcal{G}[\nmid x]} p_{t}(\mathbf{c}) \log \left[p_{t}(\mathbf{c}) / \hat{p}(\mathbf{c})\right]
$$

$F(t)$ is Lyapunov function

$$
\forall t \geq 0: \quad F(t) \geq 0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} F(t) \leq 0
$$

- Proof (standard):
use detailed balance

$$
\left.\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} t} F(t)=-\frac{1}{2 \tau} \sum_{\mathbf{c}, \mathbf{c}^{\prime} \in G[\star]} W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right) \mathrm{e}^{-H\left(\mathbf{c}^{\prime}\right)} & {[}
\end{array}\left[H(\mathbf{c})+\log p_{t}(\mathbf{c})\right]-\left[H\left(\mathbf{c}^{\prime}\right)+\log p_{t}\left(\mathbf{c}^{\prime}\right)\right]\right] .\right] ~\left(\mathrm{e}^{H(\mathbf{c})+\log p_{t}(\mathbf{c})}-\mathrm{e}^{H\left(\mathbf{c}^{\prime}\right)+\log p_{t}\left(\mathbf{c}^{\prime}\right)}\right] \leq 0 \quad \$
$$

$\left(e^{x}-e^{y}\right)(x-y) \geq 0$, equality only if $x=y$

- stationarity: $\frac{\mathrm{d}}{\mathrm{d} t} F(t)=0$, write $p(\mathbf{c})=\chi(\mathbf{c}) \mathrm{e}^{-H(\mathbf{c})}$,

$$
\begin{aligned}
& \left(\forall \mathbf{c}, \mathbf{c}^{\prime} \in G[\star]\right): \quad W\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=0 \text { or } \chi(\mathbf{c})=\chi\left(\mathbf{c}^{\prime}\right) \\
& \text { ergodic } \Rightarrow \chi(\mathbf{c})=\text { const } \Rightarrow p(\mathbf{c})=Z^{-1} \mathrm{e}^{-H(\mathbf{c})}=\hat{p}(\mathbf{c})
\end{aligned}
$$

Degree-constrained dynamics of nondirected graphs

- constraints: imposed degrees, so graph set is $G[\mathbf{k}]$
ergodic set Φ of admissible moves:
edge swaps $F: G_{F}[\mathbf{k}] \rightarrow G[\mathbf{k}]$
$Q=\{(i, j, k, \ell) \in\{1$
$\left.N\}^{4} \mid i<j<k<\ell\right\}$, ordered node quadruplets
possible edge swaps to act on (i, j, k, ℓ) :

- group into pairs (I,IV), (II,V), and (III,VI)
auto-invertible swaps: $F_{i j k \ell ; \alpha}$, with $i<j<k<\ell$ and $\alpha \in\{1,2,3\}$ $l_{i j k \ell_{i \alpha}}(\mathbf{c})=1$

Degree-constrained dynamics of nondirected graphs

- constraints: imposed degrees, so graph set is $G[\mathbf{k}]$
ergodic set Φ of admissible moves:
edge swaps $F: G_{F}[\mathbf{k}] \rightarrow G[\mathbf{k}]$
$Q=\left\{(i, j, k, \ell) \in\{1, \ldots, N\}^{4} \mid i<j<k<\ell\right\}$, ordered node quadruplets possible edge swaps to act on (i, j, k, ℓ) :

- group into pairs (I,IV), (II, V), and (III, VI)
auto-invertible swaps: $F_{i j k \ell ; \alpha}$, with $i<j<k<\ell$ and $\alpha \in\{1,2,3\}$

Degree-constrained dynamics of nondirected graphs

- constraints: imposed degrees, so graph set is $G[\mathbf{k}]$
ergodic set Φ of admissible moves:
edge swaps $F: G_{F}[\mathbf{k}] \rightarrow G[\mathbf{k}]$
$Q=\left\{(i, j, k, \ell) \in\{1, \ldots, N\}^{4} \mid i<j<k<\ell\right\}$, ordered node quadruplets possible edge swaps to act on (i, j, k, ℓ) :

- group into pairs (I,IV), (II,V), and (III,VI) auto-invertible swaps: $F_{i j k \ell ; \alpha}$, with $i<j<k<\ell$ and $\alpha \in\{1,2,3\}$ $l_{i j k \ell ; \alpha}(\mathbf{c})=1:$
$F_{i j k \ell ; \alpha}(\mathbf{c})_{q r}=1-c_{q r} \quad$ for $(q, r) \in \mathcal{S}_{i j k \ell ; \alpha}$
$F_{i j k \ell ; \alpha}(\mathbf{c})_{q r}=c_{q r} \quad$ for $(q, r) \notin \mathcal{S}_{i j k \ell ; \alpha}$
$\mathcal{S}_{i j k \ell ; 1}=\{(i, j),(k, \ell),(i, \ell),(j, k)\}, \quad \mathcal{S}_{i j k \ell ; 2}=\{(i, j),(k, \ell),(i, k),(j, \ell)\}$
$\mathcal{S}_{i j k \ell ; 3}=\{(i, k),(j, \ell),(i, \ell),(j, k)\}$
to implement the Markov chain, need to calculate graph mobility analytically

$$
n(\mathbf{c})=\sum_{i<j<k<\ell}^{N} \sum_{\alpha=1}^{3} I_{j j k ; i \alpha}(\mathbf{c}) \ldots
$$

$$
\begin{aligned}
& \iota_{i j k \ell ; 1}(\mathbf{c})=c_{i j} c_{k \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i \ell} c_{j k} \\
& \iota_{i j k \ell ; 2}(\mathbf{c})=c_{i j} c_{k \ell}\left(1-c_{i k}\right)\left(1-c_{j \ell}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i k} c_{j \ell} \\
& l_{i j k \ell ; 3}(\mathbf{c})=c_{i k} c_{j \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i k}\right)\left(1-c_{j \ell}\right) c_{i \ell} c_{j k}
\end{aligned}
$$

combinatorial problem easily solved:

- computational feasibility:
calculate change $\Delta_{i j k i \alpha} n(c)$ for each executed move $F_{i j k \ell ;}$
to implement the Markov chain, need to calculate graph mobility analytically

$$
n(\mathbf{c})=\sum_{i<j<k<\ell}^{N} \sum_{\alpha=1}^{3} l_{j j k \ell ; \alpha}(\mathbf{c}) \ldots
$$

$$
\begin{aligned}
& l_{i j k \ell ; 1}(\mathbf{c})=c_{i j} c_{k \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i \ell} c_{j k} \\
& l_{i j k \ell ; 2}(\mathbf{c})=c_{i j} c_{k \ell}\left(1-c_{i k}\right)\left(1-c_{j \ell}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i k} c_{j \ell} \\
& I_{i j k \ell ; 3}(\mathbf{c})=c_{i k} c_{j \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i k}\right)\left(1-c_{j \ell}\right) c_{i \ell} c_{j k}
\end{aligned}
$$

combinatorial problem easily solved:

$$
n(\mathbf{c})=\underbrace{\frac{1}{4} N^{2}\langle k\rangle^{2}+\frac{1}{4} N\langle k\rangle-\frac{1}{2} N\left\langle k^{2}\right\rangle}_{\text {invariant }}+\underbrace{\frac{1}{4} \operatorname{Tr}\left(\mathbf{c}^{4}\right)+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{3}\right)-\frac{1}{2} \sum_{i j} k_{i} c_{i j} k_{j}}_{\text {state dependent }}
$$

- state-dependent part can be ignored if $\left\langle k^{2}\right\rangle k_{\max } /\langle k\rangle^{2} \ll N$ (in which case naive edge swapping is harmless)
- computational feasibility:
calculate change $\Delta_{i j k i \alpha} n(c)$ for each executed move $F_{i j k i \alpha}$
to implement the Markov chain, need to calculate graph mobility analytically

$$
n(\mathbf{c})=\sum_{i<j<k<\ell}^{N} \sum_{\alpha=1}^{3} l_{j j k \ell ; \alpha}(\mathbf{c}) \ldots
$$

$$
\begin{aligned}
& l_{i j k \ell ; 1}(\mathbf{c})=c_{i j} c_{k \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i \ell} c_{j k} \\
& l_{i j k \ell ; 2}(\mathbf{c})=c_{i j} c_{k \ell}\left(1-c_{i k}\right)\left(1-c_{j \ell}\right)+\left(1-c_{i j}\right)\left(1-c_{k \ell}\right) c_{i k} c_{j \ell} \\
& l_{i j k \ell ; 3}(\mathbf{c})=c_{i k} c_{j \ell}\left(1-c_{i \ell}\right)\left(1-c_{j k}\right)+\left(1-c_{i k}\right)\left(1-c_{j \ell}\right) c_{i \ell} c_{j k}
\end{aligned}
$$

combinatorial problem easily solved:

$$
n(\mathbf{c})=\underbrace{\frac{1}{4} N^{2}\langle k\rangle^{2}+\frac{1}{4} N\langle k\rangle-\frac{1}{2} N\left\langle k^{2}\right\rangle}_{\text {invariant }}+\underbrace{\frac{1}{4} \operatorname{Tr}\left(\mathbf{c}^{4}\right)+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{3}\right)-\frac{1}{2} \sum_{i j} k_{i} c_{i j} k_{j}}_{\text {state dependent }}
$$

- state-dependent part can be ignored if $\left\langle k^{2}\right\rangle k_{\max } /\langle k\rangle^{2} \ll N$ (in which case naive edge swapping is harmless)
- computational feasibility:
calculate change $\Delta_{i j k \ell ; \alpha} n(\mathbf{c})$ for each executed move $F_{i j k \ell ; \alpha}$

Example

$N=100$
naive versus correct acceptance probabilities
many possible moves only one move ...
predictions:
$p(\mathbf{c})=$ constant $:$
$\overline{n(\mathbf{c})} / N^{2} \approx 0.0195$
$p(\mathbf{c})=n(\mathbf{c}) / Z$:
$\overline{n(\mathbf{c})} / N^{2} \approx 0.0242$

Example

$N=4000$,

$$
\Pi\left(k, k^{\prime}\right)=\frac{\left(k-k^{\prime}\right)^{2}}{\left[\beta_{1}-\beta_{2} k+\beta_{3} k^{2}\right]\left[\beta_{1}-\beta_{2} k^{\prime}+\beta_{3} k^{\prime 2}\right]}
$$

Degree-constrained dynamics of directed graphs

- constraints: imposed in-out degrees, so graph set is $G\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right]$
set Φ of admissible moves: directed edge swaps $F: G_{F}\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right] \rightarrow G\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right]$

auto-invertible edge-swaps:
Let $\Lambda=\left\{(i, j) \in N^{2} \mid c_{i j}=1\right\}$

If $I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}=1$:

Degree-constrained dynamics of directed graphs

- constraints: imposed in-out degrees, so graph set is $G\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right]$
set Φ of admissible moves:
directed edge swaps $F: G_{F}\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right] \rightarrow G\left[\mathbf{k}^{\text {in }}, \mathbf{k}^{\text {out }}\right]$
- auto-invertible edge-swaps:

Let $\Lambda=\left\{(i, j) \in N^{2} \mid c_{i j}=1\right\}$

$$
I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}= \begin{cases}1 & \text { if }\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda \text { and }\left(i_{x}, j_{y}\right),\left(i_{y}, j_{x}\right) \notin \Lambda \\ 0 & \text { otherwise }\end{cases}
$$

If $l_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}=1$:

$$
\begin{array}{ll}
F_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}(\mathbf{c})_{i j}=1-c_{i j} & \\
F_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}(\mathbf{c})_{i j}=c_{i j} & \\
\text { otherwise }
\end{array}
$$

difference with nondirected graphs:

edge swaps no longer ergodic (Rao, 1996) (unless self-interactions are allowed)
further move type required
to restore ergodicity:
3-loop reversal

difference with nondirected graphs:

edge swaps no longer ergodic (Rao, 1996) (unless self-interactions are allowed)
further move type required to restore ergodicity:
3-loop reversal

difference with nondirected graphs:

edge swaps no longer ergodic (Rao, 1996) (unless self-interactions are allowed)
further move type required to restore ergodicity:
3-loop reversal

$$
\begin{gathered}
I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}=\left\{\begin{array}{l}
1 \quad \text { if }\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right),\left(j_{y}, i_{x}\right) \in \Lambda \text { and } x_{j}=y_{i} \\
\text { and }\left(j_{x}, i_{x}\right),\left(j_{y}, i_{y}\right),\left(i_{x}, j_{y}\right) \notin \Lambda \\
0 \quad \text { otherwise }
\end{array}\right. \\
F_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta(\mathbf{c})_{i j}=1-c_{i j} \quad \text { for }(i, j) \in \mathcal{S}_{i_{x}, j_{x}, j_{y}}}^{F_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}(\mathbf{c})_{i j}=c_{i j} \quad \text { for }(i, j) \notin \mathcal{S}_{i_{x}, j_{x}, j_{y}}} \\
\mathcal{S}_{a b c}=\{(a, b),(b, c),(c, a),(b, a),(c, b),(a, c)\}
\end{gathered}
$$

to implement the Markov chain, need to calculate graph mobility analytically:

$$
\begin{aligned}
& n(\mathbf{c})=n_{\square}(\mathbf{c})+n_{\triangle}(\mathbf{c}) \\
& \quad=\sum_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda} I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}+\sum_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda} I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta} \\
& I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}=c_{i_{x}, j_{x}} c_{i_{y}, j_{y}}\left(1-c_{i_{x}, j_{y}}\right)\left(1-c_{\left.i_{y}, j_{x}\right)}\right) \\
& I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}=\delta_{x_{j}, y_{i}} c_{i_{x}, j_{x}} c_{i_{y}, j_{y}} c_{j_{y}, i_{x}}\left(1-c_{\left.j_{x}, i_{x}\right)}\right)\left(1-c_{\left.j_{y}, i_{y}\right)\left(1-c_{i_{x}, j_{y}}\right)}\right)
\end{aligned}
$$

combinatorial problem easily solved:

to implement the Markov chain, need to calculate graph mobility analytically:

$$
\begin{aligned}
& n(\mathbf{c})=n_{\square}(\mathbf{c})+n_{\triangle}(\mathbf{c}) \\
& \quad=\sum_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda} I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}+\sum_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) \in \Lambda} I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta} \\
& I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \square}=c_{i_{x}, j_{x}} c_{i_{y}, j_{y}}\left(1-c_{i_{x}, j_{y}}\right)\left(1-c_{\left.i_{y}, j_{x}\right)}\right) \\
& I_{\left(i_{x}, j_{x}\right),\left(i_{y}, j_{y}\right) ; \Delta}=\delta_{x_{j}, y_{i}} c_{i_{x}, j_{x}} c_{i_{y}, j_{y}} c_{j_{y}, i_{x}}\left(1-c_{\left.j_{x}, i_{x}\right)}\right)\left(1-c_{\left.j_{y}, i_{y}\right)\left(1-c_{i_{x}, j_{y}}\right)}\right)
\end{aligned}
$$

combinatorial problem easily solved:

$$
\begin{aligned}
& n_{\square}(\mathbf{c})=\underbrace{\frac{1}{2} N^{2}\langle k\rangle^{2}-\sum_{j} k_{j}^{\text {in }} k_{j}^{\text {out }}}_{\text {invariant }}+\underbrace{\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{2}\right)+\frac{1}{2} \operatorname{Tr}\left(\mathbf{c}^{\dagger} \mathbf{c c}^{\dagger} \mathbf{c}\right)+\operatorname{Tr}\left(\mathbf{c}^{2} \mathbf{c}^{\dagger}\right)-\sum_{i j} k_{i}^{\text {in }} c_{i j} k_{j}^{\text {out }}}_{\text {state dependent }} \\
& n_{\triangle}(\mathbf{c})=\underbrace{\frac{1}{3} \operatorname{Tr}\left(\mathbf{c}^{3}\right)-\operatorname{Tr}\left(\hat{\mathbf{c}} \mathbf{c}^{2}\right)+\operatorname{Tr}\left(\hat{\mathbf{c}}^{2} \mathbf{c}\right)-\frac{1}{3} \operatorname{Tr}\left(\hat{\mathbf{c}}^{3}\right)}_{\text {state dependent }} \\
& \text { with: }\left(\mathbf{c}^{\dagger}\right)_{i j}=c_{j i}, \hat{\mathbf{c}}_{i j}=c_{i j} c_{i j}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(k_{1}^{\text {in }}, k_{1}^{\text {out }}\right)=(0, N-2) \\
& i=2 \ldots N-1: \\
& \quad\left(k_{i}^{\text {in }}, k_{i}^{\text {out }}\right)=(1,1) \\
& \left(k_{N}^{\text {in }}, k_{N}^{\text {out }}\right)=(N-2,0)
\end{aligned}
$$

$$
(N-2)(N-3) \text { moves }
$$

$2 N-7$ moves

predicted values versus
equilibrated dynamics for $\langle n(c)\rangle / N^{2}$:

	prediction for $p(c)=$ const	dynamics with $A\left(c \mid c^{\prime}\right)=1$	dynamics with $A\left(c \mid c^{\prime}\right)=\left[1+\frac{n(c)}{n\left(c^{\prime}\right)}\right]^{-1}$
$N=17:$	27.87	33.59	27.87
$N=27:$	47.92	58.32	47.95

Example

$$
\begin{aligned}
& \left(k_{1}^{\text {in }}, k_{1}^{\text {out }}\right)=(0, N-2) \\
& i=2 \ldots N-1: \\
& \quad\left(k_{i}^{\text {in }}, k_{i}^{\text {out }}\right)=(1,1) \\
& \left(k_{N}^{\text {in }}, k_{N}^{\text {out }}\right)=(N-2,0)
\end{aligned}
$$

$$
(N-2)(N-3) \text { moves }
$$

$2 N-7$ moves

predicted values versus
equilibrated dynamics for $\langle n(\mathbf{c})\rangle / N^{2}$:

	prediction for $p(\mathbf{c})=$ const	dynamics with $A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=1$	dynamics with $A\left(\mathbf{c} \mid \mathbf{c}^{\prime}\right)=\left[1+\frac{n(\mathbf{c})}{n\left(\mathbf{c}^{\prime}\right)}\right]^{-1}$
$N=17:$	27.87	33.59	27.87
$N=27:$	47.92	58.32	47.95

Summary

- standard 'matching' end 'edge swapping' algorithms, for generating graphs \mathbf{c} with prescribed degrees, are both biased
- need exact method for generating random graphs \mathbf{c} with prescribed degrees and prescribed sampling probabilities $p(\mathbf{c})$
- exact degree constrained Markovian graph dynamics can be defined, guaranteed to evolve to any prescribed measure $p(\mathbf{c})$
- process requires nontrivial state acceptance probabilities, that involve the mobilities $n(\mathbf{c})$ of states
- nondirected graph: edge swaps only directed graphs: edge swaps and 3-cycle reversals
- mobilities can be calculated exactly
- theory worked out, implemented and tested for nondirected and directed graphs

Summary

- standard 'matching' end 'edge swapping' algorithms, for generating graphs \mathbf{c} with prescribed degrees, are both biased
- need exact method for generating random graphs \mathbf{c} with prescribed degrees and prescribed sampling probabilities $p(\mathbf{c})$
- exact degree constrained Markovian graph dynamics can be defined, guaranteed to evolve to any prescribed measure p (c)
- process requires nontrivial state acceptance probabilities, that involve the mobilities $n(\mathbf{c})$ of states
- nondirected graph: edge swaps only directed graphs: edge swaps and 3-cycle reversals
- mobilities can be calculated exactly
- theory worked out, implemented and tested for nondirected and directed graphs

Summary

- standard 'matching' end 'edge swapping' algorithms, for generating graphs \mathbf{c} with prescribed degrees, are both biased
- need exact method for generating random graphs \mathbf{c} with prescribed degrees and prescribed sampling probabilities $p(\mathbf{c})$
- exact degree constrained Markovian graph dynamics can be defined, guaranteed to evolve to any prescribed measure $p(\mathbf{c})$
- process requires nontrivial state acceptance probabilities, that involve the mobilities $n(\mathbf{c})$ of states
- nondirected graph: edge swaps only directed graphs: edge swaps and 3-cycle reversals
- mobilities can be calculated exactly
- theory worked out, implemented and tested for nondirected and directed graphs

Current and future work

Development of theory for tailored graph ensembles characterised by statistics of loops ...
(in addition to degrees and degree correlations)

- loops versus closed paths (see talk by Clara Gracio)

Current and future work

Development of theory for tailored graph ensembles characterised by statistics of loops ...
(in addition to degrees and degree correlations)

- calculate Shannon entropies
- dynamics (constrained by degrees and loops)
- graph ensembles defined by eigenvalue spectrum

protein interaction networks
- loops versus closed paths (see talk by Clara Gracio)

Thanks to

theory:
Ela Kate Roberts

- Alessia Annibale
- Ginestra Bianconi
- Andrea De Martino
\& Conrad Pérez-Vicente
- Clara Gracio
bio-informatics applications:
- Luis FernandesFranca FraternaliJens KleinjungThomas Schlitt
grants:
EPSRC

papers - theory

G Bianconi, ACC Coolen and CJ Perez-Vicente
Phys. Rev. E78 2008, 016114
ACC Coolen, A De Martino and A Annibale
J. Stat. Phys. 136 2009, 1035-1067

A Annibale, ACC Coolen, LP Fernandes, F Fraternali and J Kleinjung
J. Phys. A: Math. Theor. 42 2009, 485001

A Annibale, ACC Coolen and G Bianconi
J. Phys. A: Math. Theor. 43 2010, 395001

ES Roberts, T Schlitt and ACC Coolen
J. Phys. A: Math. Theor. 44 2011, 275002
papers - applications in biology
LP Fernandes, A Annibale, J Kleinjung, ACC Coolen and F Fraternali PLoS ONE 5 2010, e12083

ACC Coolen, F Fraternali, A Annibale, LP Fernandes, and J Kleinjung Handbook of Statistical Systems Biology (in press, 2011)
A Annibale and ACC Coolen
Interface Focus (Royal Society, in press 2011), preprint ArXiv:1106.0236

