Counting and generating tailored random graphs

DPG physics school on efficient algorithms in computational physics Bad Honnef, September 2012

ACC Coolen

Institute for Mathematical and Molecular Biomedicine King's College London

London Institute for Mathematical Sciences

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
- Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- 4 Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

- Background
- Networks and graphs
- Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

1. Background - tailored random graphs

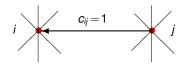
networks/graphs:

number of nodes: N

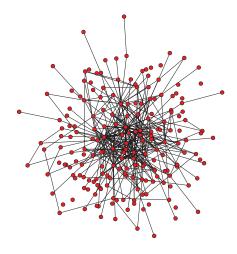
nodes (vertices): $i, j \in \{1, ..., N\}$

links (edges): $c_{ij} \in \{0, 1\}$ no self-links: $c_{ii} = 0$ for all i

graph: $\mathbf{c} = \{c_{ij}\}$



nondirected graph: $\forall (i,j): c_{ij} = c_{ji}$ directed graph: $\exists (i,j): c_{ij} \neq c_{ji}$



if we model real-world systems by graphs we want these graphs to be realistic ...

Networks in cell biology

protein interaction networks:

nodes: proteins i, j = 1 ... Nlinks: $c_{ij} = c_{ji} = 1$ if i can bind to j $c_{ij} = c_{ji} = 0$ otherwise

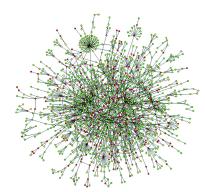
nondirected graphs, $N \sim 10^4$, links/node ~ 7

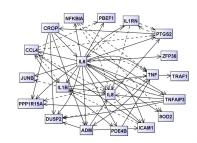
nodes: genes $i, j = 1 \dots N$

links: $c_{ij} = 1$ if j is transcription factor of i $c_{ii} = 0$ otherwise

 $c_{ij} = 0$ otherwise

directed graphs, $N \sim 10^4$, links/node ~ 5





Quantify topology of nondirected graphs

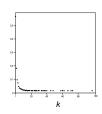
degrees, degree sequence:

$$k_i(\mathbf{c}) = \sum_i c_{ij},$$

$$k_i(\mathbf{c}) = \sum_i c_{ij}, \quad \mathbf{k}(\mathbf{c}) = (k_1(\mathbf{c}), \dots, k_N(\mathbf{c}))$$

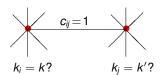
degree distribution:

$$p(k|\mathbf{c}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{k,k_i(\mathbf{c})}$$



joint degree statistics of connected nodes

$$W(k,k'|\mathbf{c}) = rac{1}{N\langle k \rangle} \sum_{ij} c_{ij} \delta_{k,k_i(\mathbf{c})} \delta_{k',k_j(\mathbf{c})}$$



normalisation:

$$\sum_{k,k'>0} W(k,k'|\mathbf{c}) = \frac{1}{N\langle k\rangle} \sum_{ij} c_{ij} = \frac{1}{N\langle k\rangle} \sum_{i} k_{i}(\mathbf{c}) = 1$$

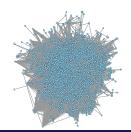
relation between p and W:

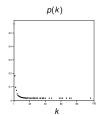
$$W(k|\mathbf{c}) = \sum_{k'} W(k, k'|\mathbf{c}) = \frac{1}{N\langle k \rangle} \sum_{ij} c_{ij} \delta_{k, k_j(\mathbf{c})}$$
$$= \frac{1}{N\langle k \rangle} \sum_{i} k_i(\mathbf{c}) \delta_{k, k_j(\mathbf{c})} = \frac{k}{N\langle k \rangle} \sum_{i} \delta_{k, k_j(\mathbf{c})} = p(k|\mathbf{c}) k / \langle k \rangle$$

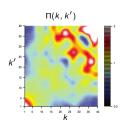
 hence maginals of W carry no info beyond degree statistics so focus on:

$$\Pi(k, k'|\mathbf{c}) = \frac{W(k, k'|\mathbf{c})}{W(k|\mathbf{c})W(k'|\mathbf{c})}$$

if $\exists (k, k')$ with $\Pi(k, k'|\mathbf{c}) \neq 1$: structural information in degree correlations







H sapiens PIN N=9306 $\langle k \rangle = 7.53$

Quantify topology of directed graphs

links now become arrows

degrees, degree sequences:

$$k_i^{\text{in}}(\mathbf{c}) = \sum_j c_{ij}, \qquad \mathbf{k}^{\text{in}}(\mathbf{c}) = (k_1^{\text{in}}(\mathbf{c}), \dots, k_N^{\text{in}}(\mathbf{c}))$$

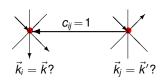
 $k_i^{\text{out}}(\mathbf{c}) = \sum_i c_{ii}, \qquad \mathbf{k}^{\text{out}}(\mathbf{c}) = (k_1^{\text{out}}(\mathbf{c}), \dots, k_N^{\text{out}}(\mathbf{c}))$

degree distribution:

$$k_i \rightarrow \vec{k}_i = (k_i^{\text{in}}, k_i^{\text{out}})$$
 $p(\vec{k}|\mathbf{c}) = \frac{1}{N} \sum_i \delta_{\vec{k}, \vec{k}_i(\mathbf{c})}$

 joint in-out degree statistics of connected nodes

$$W(\vec{k}, \vec{k}' | \mathbf{c}) = \frac{1}{N \langle k \rangle} \sum_{ij} c_{ij} \delta_{\vec{k}, \vec{k}_j(\mathbf{c})} \delta_{\vec{k}', \vec{k}_j(\mathbf{c})}$$



note:

$$W(\vec{k}, \vec{k}'|\mathbf{c}) - W(\vec{k}', \vec{k}|\mathbf{c}) = \frac{1}{N\langle k \rangle} \sum_{ij} (c_{ij} - c_{ji}) \ \delta_{\vec{k}, \vec{k}_j(\mathbf{c})} \delta_{\vec{k}', \vec{k}_j(\mathbf{c})} \neq 0$$

• relation between *p* and *W*:

$$\begin{aligned} W_{1}(\vec{k}|\mathbf{c}) &= \sum_{\vec{k}'} \frac{1}{N\langle k \rangle} \sum_{ij} c_{ij} \delta_{\vec{k},\vec{k}_{j}(\mathbf{c})} \delta_{\vec{k}',\vec{k}_{j}(\mathbf{c})} = \frac{1}{N\langle k \rangle} \sum_{ij} c_{ij} \delta_{\vec{k},\vec{k}_{j}(\mathbf{c})} \\ &= \frac{1}{N\langle k \rangle} \sum_{i} k_{i}^{\mathrm{in}}(\mathbf{c}) \delta_{\vec{k},\vec{k}_{j}(\mathbf{c})} = \frac{k^{\mathrm{in}}}{N\langle k \rangle} \sum_{i} \delta_{\vec{k},\vec{k}_{j}(\mathbf{c})} = p(\vec{k}|\mathbf{c}) k^{\mathrm{in}}/\langle k \rangle \end{aligned}$$

$$W_{2}(\vec{k}'|\mathbf{c}) = \sum_{\vec{k}} \frac{1}{N\langle k \rangle} \sum_{ij} c_{ij} \delta_{\vec{k}, \vec{k}_{i}(\mathbf{c})} \delta_{\vec{k}', \vec{k}_{j}(\mathbf{c})} = \frac{1}{N\langle k \rangle} \sum_{ij} c_{ij} \delta_{\vec{k}', \vec{k}_{j}(\mathbf{c})}$$

$$= \frac{1}{N\langle k \rangle} \sum_{j} k_{j}^{\text{out}}(\mathbf{c}) \delta_{\vec{k}', \vec{k}_{j}(\mathbf{c})} = \frac{k^{\text{out}'}(\mathbf{c})}{N\langle k \rangle} \sum_{j} \delta_{\vec{k}', \vec{k}_{j}(\mathbf{c})} = p(\vec{k}'|\mathbf{c}) k^{\text{out}'} / \langle k \rangle$$

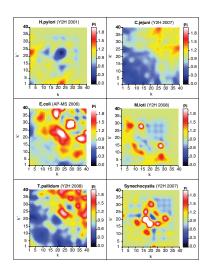
so focus on:

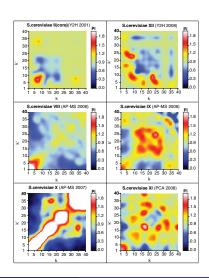
$$\Pi(\vec{k}, \vec{k}'|\mathbf{c}) = \frac{W(\vec{k}, \vec{k}'|\mathbf{c})}{W_1(\vec{k}|\mathbf{c})W_2(\vec{k}'|\mathbf{c})}$$

if $\exists (\vec{k}, \vec{k}')$ with $\Pi(\vec{k}, \vec{k}' | \mathbf{c}) \neq 1$: structural information in degree correlations

Information in degree correlations?

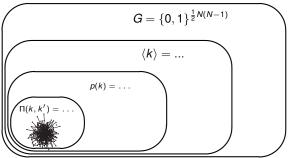
plot $\Pi(k, k') = W(k, k')/W(k)W(k')$ for protein interaction networks:





Graph classification via increasingly detailed feature prescription

e.g. directed graphs:



Tailored random graph ensembles

maximum entropy random graph ensembles, $p(\mathbf{c})$ with prescribed values for $\langle k \rangle$, p(k), $\Pi(k, k')$, ...

- proxies for real networks in stat mech models
- complexity: how many networks exist with same features as c?

counting

- hypothesis testing: graphs with controlled features as null models

generating

N=1000: $2^{\frac{1}{2}N(N-1)}\approx 10^{150,364}$ graphs (universe has $\sim 10^{82}$ atoms ...)

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

random graph ensembles

- (i) set G of allowed graphs,
- (ii) probability measure $p(\mathbf{c})$ on G

Tailoring via hard constraints

- (i) impose values for specific observables: $\Omega_{\mu}(\mathbf{c}) = \Omega_{\mu}$ for $\mu = 1 \dots p$
- (ii) $p(\mathbf{c})$: all graphs that meet constraints are equally likely

$$p(\mathbf{c}|\Omega) = \frac{\delta_{\mathbf{\Omega}(\mathbf{c}),\mathbf{\Omega}}}{\mathcal{N}(\mathbf{\Omega})}, \qquad \mathcal{N}(\mathbf{\Omega}) = \sum_{\mathbf{c}} \delta_{\mathbf{\Omega}(\mathbf{c}),\mathbf{\Omega}} \quad (\textit{nr of graphs in ensemble})$$

with
$$\mathbf{\Omega} = (\Omega_1, \dots, \Omega_p)$$

note 1:

$$p(\mathbf{c})$$
 maximises Shannon entropy S on $G[\Omega] = \{\mathbf{c} | \Omega(\mathbf{c}) = \Omega\}$

$$S = -\frac{1}{N\langle k \rangle} \sum_{\mathbf{c}} p(\mathbf{c}) \log p(\mathbf{c})$$

note 2:

$$\mathrm{e}^{\textit{N}(\textit{k})\textit{S}[\pmb{\Omega}]} = \mathrm{e}^{-\sum_{\pmb{c}} \textit{p}(\pmb{c})\log\textit{p}(\pmb{c})} = \mathrm{e}^{-\sum_{\pmb{c}} \frac{\delta \pmb{\Omega}_{(\pmb{c})},\pmb{\Omega}}{\mathcal{N}(\pmb{\Omega})} \left(\log\delta \pmb{\Omega}_{(\pmb{c})},\pmb{\Omega}^{-\log\mathcal{N}(\pmb{\Omega})}\right)} = \mathcal{N}(\pmb{\Omega})$$

Tailoring via soft constraints

- (i) impose averages for specific observables: $\Omega_{\mu}(\mathbf{c}) = \Omega_{\mu}$ for $\mu = 1 \dots p$
- (ii) $p(\mathbf{c})$: maximum entropy, subject to constraints

$$\label{eq:pchi} p(\mathbf{c}|\Omega) = Z^{-1}(\Omega) \ \mathrm{e}^{\sum_{\mu} \omega_{\mu}(\pmb{\Omega})\Omega_{\mu}(\mathbf{c})}, \qquad Z(\Omega) = \sum_{\mathbf{c}} \mathrm{e}^{\sum_{\mu} \omega_{\mu}(\pmb{\Omega})\Omega_{\mu}(\mathbf{c})}$$

parameters $\omega_{\mu}(\mathbf{\Omega})$: to be solved from

$$orall \mu: \sum_{\mathbf{c}}
ho(\mathbf{c}|\mathbf{\Omega})\Omega_{\mu}(\mathbf{c}) = \Omega_{\mu}$$

note 1:

all graphs $\bf c$ can in principle emerge; those with $\Omega(\bf c)\approx\Omega$ are the most likely

note 2:

effective number of graphs $\mathcal{N}(\Omega)$ defined via entropy:

$$\mathcal{N}(\Omega) = e^{N\langle k \rangle S[\Omega]}, \qquad S[\Omega] = -\frac{1}{N\langle k \rangle} \sum_{\mathbf{c} \in G} p(\mathbf{c}|\Omega) \log p(\mathbf{c}|\Omega)$$

note 3:

for observables $\Omega(\mathbf{c})$ that are *macroscopic in nature and* $\mathcal{O}(N^0)$, one will generally find deviations from $\Omega(\mathbf{c}) = \Omega$ to tend to zero as $N \to \infty$

Example 1a

nondirected graphs, $c_{ii}=0$ for all i, impose average connectivity via <u>hard</u> constraint, $\Omega(\mathbf{c})=\sum_{ij}c_{ij}$

• demand $\sum_{ij} c_{ij} = N\langle k \rangle$

$$p(\mathbf{c}|\langle k \rangle) = \frac{\delta_{\sum_{ij} c_{ij}, N \langle k \rangle}}{\mathcal{N}(\langle k \rangle)}, \qquad \mathcal{N}(\langle k \rangle) = \sum_{\mathbf{c}} \delta_{\sum_{ij} c_{ij}, N \langle k \rangle}$$

• calculate $\mathcal{N}(\langle k \rangle)$:

use
$$\delta_{nm} = (2\pi)^{-1} \int_{-\pi}^{\pi} d\omega \, e^{\mathrm{i}(n-m)\omega}$$

$$\mathcal{N}(\langle k \rangle) = \int_{-\pi}^{\pi} \frac{d\omega}{2\pi} \, e^{\mathrm{i}\omega N\langle k \rangle} \sum_{\mathbf{c}} e^{-\mathrm{i}\omega \sum_{ij} c_{ij}} = \int_{-\pi}^{\pi} \frac{d\omega}{2\pi} \, e^{\mathrm{i}\omega N\langle k \rangle} \prod_{i < j} \left[\sum_{c_{ij}} e^{-2\mathrm{i}\omega c_{ij}} \right]$$

$$= \int_{-\pi}^{\pi} \frac{d\omega}{2\pi} \, e^{\mathrm{i}\omega N\langle k \rangle} (1 + e^{-2\mathrm{i}\omega})^{\frac{1}{2}N(N-1)}$$

$$= \sum_{\ell=0}^{\frac{1}{2}N(N-1)} \left(\frac{1}{2}N(N-1) \right) \int_{-\pi}^{\pi} \frac{d\omega}{2\pi} \, e^{\mathrm{i}\omega N\langle k \rangle - 2\mathrm{i}\ell\omega} = \left(\frac{1}{2}N(N-1) \right)$$

$$= e^{\frac{1}{2}N\langle k \rangle \left[\log(N/\langle k \rangle) + 1 \right] + \mathcal{O}(\log N)} \quad \text{Stirling: } n! = e^{n\log n - n + \mathcal{O}(\log n)} \quad n \to \infty$$

Example 1b

nondirected graphs, $c_{ii}=0$ for all i, impose average connectivity via <u>soft</u> constraint, $\Omega(\mathbf{c})=\sum_{ii}c_{ij}$

• demand $\langle \sum_{ij} c_{ij} \rangle = N \langle k \rangle$

$$\begin{split} \rho(\mathbf{c}|\langle k \rangle) &= \frac{1}{Z(\omega)} \mathrm{e}^{\omega \sum_{ij} c_{ij}}, \qquad Z(\omega) = \sum_{\mathbf{c}} \mathrm{e}^{\omega \sum_{ij} c_{ij}} \\ \omega \text{ solved from}: \qquad \langle k \rangle &= \frac{1}{Z(\omega)} \sum_{\mathbf{c}} \left(\frac{1}{N} \sum_{k\ell} c_{k\ell}\right) \mathrm{e}^{\omega \sum_{ij} c_{ij}} = \frac{\mathrm{d}}{\mathrm{d}\omega} \frac{1}{N} \log Z(\omega) \end{split}$$

• calculate $Z(\omega)$ and ω :

$$\langle \textbf{\textit{k}} \rangle = \frac{\mathrm{d}}{\mathrm{d}\omega} \frac{1}{\textbf{\textit{N}}} \log(\mathrm{e}^{2\omega} + 1)^{\frac{1}{2}\textbf{\textit{N}}(\textbf{\textit{N}}-1)} = (\textbf{\textit{N}}-1) \frac{\mathrm{e}^{2\omega}}{\mathrm{e}^{2\omega} + 1}$$

Equivalently:

$$\begin{split} \rho(\mathbf{c}|\langle \mathbf{k} \rangle) &= \frac{1}{Z(\omega)} \prod_{i < j} \mathrm{e}^{2\omega c_{ij}} = \frac{1}{Z(\omega)} \prod_{i < j} \left[\mathrm{e}^{2\omega} \delta_{c_{ij},1} + \delta_{c_{ij},0} \right] \\ &= \prod_{i < j} \frac{\mathrm{e}^{2\omega} \delta_{c_{ij},1} + \delta_{c_{ij},0}}{\mathrm{e}^{2\omega} + 1} = \prod_{i < j} \left[\frac{\mathrm{e}^{2\omega}}{\mathrm{e}^{2\omega} + 1} \delta_{c_{ij},1} + \frac{1}{\mathrm{e}^{2\omega} + 1} \delta_{c_{ij},0} \right] \end{split}$$

Example 2a

nondirected graphs, $c_{ii} = 0$ for all i, impose degree sequence via <u>hard</u> constraint, $\Omega_i(\mathbf{c}) = \sum_i c_{ii}$, $i = 1 \dots N$

• demand: $\sum_{i} c_{ij} = k_i$ for all i

$$ho(\mathbf{c}|\mathbf{k}) = rac{\prod_i \delta_{\sum_j c_{ij}, k_i}}{\mathcal{N}(\mathbf{k})}, \qquad \mathcal{N}(\mathbf{k}) = \sum_{\mathbf{c}} \prod_i \delta_{\sum_j c_{ij}, k_i}$$

o calculate N(k):

use
$$\delta_{nm}=(2\pi)^{-1}\int_{-\pi}^{\pi}\mathrm{d}\omega\;\mathrm{e}^{\mathrm{i}(n-m)\omega}$$

$$\mathcal{N}(\mathbf{k}) = \int_{-\pi}^{\pi} \prod_{i} \left(\frac{\mathrm{d}\omega_{i}}{2\pi} \, \mathrm{e}^{\mathrm{i}\omega_{i}k_{i}} \right) \sum_{\mathbf{c}} \mathrm{e}^{-\mathrm{i}\sum_{i}\omega_{i}\sum_{j}c_{ij}} = \int_{-\pi}^{\pi} \frac{\mathrm{d}\omega \, \mathrm{e}^{\mathrm{i}\boldsymbol{\omega} \cdot \mathbf{k}}}{(2\pi)^{N}} \prod_{i < j} \left[\sum_{c_{ij}} \mathrm{e}^{-\mathrm{i}(\omega_{i} + \omega_{j})c_{ij}} \right]$$

$$= \int_{-\pi}^{\pi} \frac{\mathrm{d}\omega \, \mathrm{e}^{\mathrm{i}\boldsymbol{\omega} \cdot \mathbf{k}}}{(2\pi)^{N}} \prod_{i < j} (1 + \mathrm{e}^{-\mathrm{i}(\omega_{i} + \omega_{j})}) = ? \qquad \text{possible (leading orders in N),}$$

$$\text{but no longer obvious ...}$$

Example 2b

nondirected graphs, $c_{ii} = 0$ for all i, impose degree sequence via <u>soft</u> constraint, $\Omega_i(\mathbf{c}) = \sum_i c_{ij}, \quad i = 1 \dots N$

• demand: $\langle \sum_{j} c_{ij} \rangle = k_i$ for all i

$$\rho(\mathbf{c}|\mathbf{k}) = \frac{1}{Z(\boldsymbol{\omega})} e^{\sum_{l} \omega_{l} \sum_{j} c_{ij}}, \qquad Z(\boldsymbol{\omega}) = \sum_{\mathbf{c}} e^{\sum_{l} \omega_{l} \sum_{j} c_{ij}}$$

 $\omega \ \textit{solved from}: \quad \forall \textit{m}: \ \textit{k}_\textit{m} = \frac{1}{Z(\omega)} \sum_{\textbf{c}} \Big(\sum_{\textit{n}} \textit{c}_\textit{mn} \Big) \mathrm{e}^{\sum_{\textit{i}} \omega_{\textit{i}} \sum_{\textit{j}} \textit{c}_\textit{ij}} = \frac{\partial}{\partial \omega_\textit{m}} \log Z(\omega)$

• calculate $Z(\omega)$ and ω :

$$\begin{split} k_m &= \frac{\partial}{\partial \omega_m} \log \sum_{\mathbf{c}} \mathrm{e}^{\sum_{i < j} c_{ij} (\omega_i + \omega_j)} = \frac{\partial}{\partial \omega_m} \log \prod_{i < j} \left[\sum_{c_{ij}} \mathrm{e}^{c_{ij} (\omega_i + \omega_j)} \right] \\ &= \sum_{i < j} \frac{\partial}{\partial \omega_m} \log (1 + \mathrm{e}^{\omega_i + \omega_j}) = \frac{1}{2} \sum_{i \neq j} (\delta_{im} + \delta_{jm}) \frac{\mathrm{e}^{\omega_i + \omega_j}}{1 + \mathrm{e}^{\omega_i + \omega_j}} = \sum_{i \neq m} \frac{\mathrm{e}^{\omega_i + \omega_m}}{1 + \mathrm{e}^{\omega_i + \omega_m}} \end{split}$$

N transcendental eqns to be solved ...

Example 3a

nondirected graphs, $c_{ii}=0$ for all i, impose degree sequence and kernel W(k,k') via <u>hard</u> constraint,

$$\begin{array}{l} \Omega_{i}(\boldsymbol{c}) = \sum_{j} c_{ij}, \ i,j = 1 \dots N, \\ \Omega_{kk'}(\boldsymbol{c}) = \sum_{ij} c_{ij} \delta_{k,\sum_{\ell} c_{i\ell}} \delta_{k',\sum_{\ell} c_{j\ell}}, \ k,k' \in \mathbb{N} \end{array}$$

• demand: $\sum_{j} c_{ij} = k_i$ for all i, and $\sum_{ij} c_{ij} \delta_{k, \sum_{\ell} c_{i\ell}} \delta_{k', \sum_{\ell} c_{j\ell}} = N \langle k \rangle W(k, k')$ for all (k, k') (with $\langle k \rangle = N^{-1} \sum_{i} k_i$)

$$\rho(\mathbf{c}|\mathbf{k}, W) = \frac{\left[\prod_{i} \delta_{\sum_{j} c_{ij}, k_{i}}\right] \left[\prod_{k, k'} \delta_{\sum_{ij} c_{ij} \delta_{k, k_{i}} \delta_{k', k_{j}}, N \langle k \rangle W(k, k')}\right]}{\mathcal{N}(\mathbf{k}, W)},$$

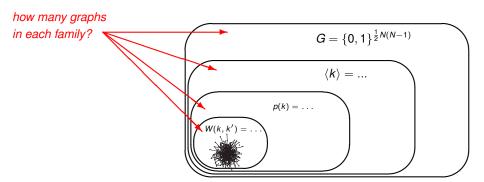
$$\mathcal{N}(\mathbf{k}, W) = \sum_{\mathbf{c}} \left[\prod_{i} \delta_{\sum_{j} c_{ij}, k_{i}}\right] \left[\prod_{k, k'} \delta_{\sum_{ij} c_{ij} \delta_{k, k_{i}} \delta_{k', k_{j}}, N \langle k \rangle W(k, k')}\right]$$

• calculate $\mathcal{N}(\mathbf{k}, W)$:

$$\mathcal{N}(\mathbf{k}, \mathbf{W}) = \int_{-\pi}^{\pi} \prod_{j} \left(\frac{\mathrm{d}\omega_{i}}{2\pi} \mathrm{e}^{\mathrm{i}\omega_{i}k_{j}} \right) \left(\prod_{k,k'} \frac{\mathrm{d}\psi_{kk'}}{2\pi} \mathrm{e}^{\mathrm{i}\psi_{kk'}N(k)W(k,k')} \right)$$

$$\times \sum_{i} \mathrm{e}^{-\mathrm{i}\sum_{i}\omega_{i}\sum_{j}c_{ij}-\mathrm{i}\sum_{kk'}\psi_{kk'}\sum_{ij}c_{ij}\delta_{k,k_{j}}\delta_{k',k_{j}}} \ \ doable, \ but \ increasingly \ complicated....$$

2. Counting tailored graphs



- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
- Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graph
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application example

entropy and complexity

properties of Shannon entropy (information theory)

effective nr of graphs in ensemble p(c|*):
 (*: imposed observables)

$$\mathcal{N}(\star) = e^{N\langle k \rangle S(\star)}, \qquad S(\star) = -\frac{1}{N\langle k \rangle} \sum_{\mathbf{c}} p(\mathbf{c}|\star) \log p(\mathbf{c}|\star) \quad (\textit{entropy per link})$$

- S(⋆): proportional to the average nr of bits one needs to specify to identify a member graph c in the ensemble
- complexity of graphs in ensemble $p(\mathbf{c}|\star)$:

$$C(\star) = S(\emptyset) - S(\star)$$

 \emptyset : no constraints nondirected, $c_{ii} = 0 \ \forall i$:

$$p(\mathbf{c}|\emptyset) = 2^{-\frac{1}{2}N(N-1)}, \qquad \mathcal{S}(\emptyset) = -\frac{1}{N\langle k\rangle}\log 2^{-\frac{1}{2}N(N-1)} = \frac{N-1}{2\langle k\rangle}\log 2$$

 \exists many graphs with feature \star : graphs with \star have low complexity

 \exists few graphs with feature \star : graphs with \star have high complexity

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
- Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
- Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

Entropy calculation for nondirected graphs

with controlled degree statistics and degree correlations

$$P(\mathbf{c}|p,W) = \underbrace{\sum_{k_{1}...k_{N}} \prod_{i} p(k_{i}) \underbrace{\frac{\prod_{i} \delta_{k_{i},k_{i}(\mathbf{c})}}{Z(\mathbf{k},W)}}_{location} \underbrace{\prod_{i < j} \left[\frac{\langle k \rangle}{N} \frac{W(k_{i},k_{j})}{p(k_{i})p(k_{j})} \delta_{c_{ij},1} + \left(1 - \frac{\langle k \rangle}{N} \frac{W(k_{i},k_{j})}{p(k_{i})p(k_{j})} \right) \delta_{c_{ij},0} \right]}_{Z(\mathbf{k},W) = \sum_{\mathbf{c}} \left[\prod_{i} \delta_{k_{i},k_{i}(\mathbf{c})} \right] \prod_{i < j} \left[\frac{\langle k \rangle}{N} \frac{W(k_{i},k_{j})}{p(k_{i})p(k_{j})} \delta_{c_{ij},1} + \left(1 - \frac{\langle k \rangle}{N} \frac{W(k_{i},k_{j})}{p(k_{i})p(k_{j})} \right) \delta_{c_{ij},0} \right]$$

to calculate for large
$$N$$
: $S(\mathbf{k}, W) = -\frac{1}{N\langle k \rangle} \sum_{\mathbf{c}} P(\mathbf{c}|p, W) \log P(\mathbf{c}|p, W)$

short-hands:
$$Q(k,k') = W(k,k')/p(k)p(k')$$

$$w(\mathbf{c}) = \prod_{i < j} \left[\frac{\langle k \rangle}{N} Q(k_i,k_j) \delta_{c_{ij},1} + \left(1 - \frac{\langle k \rangle}{N} Q(k_i,k_j) \right) \delta_{c_{ij},0} \right]$$

normalised:
$$\sum_{\mathbf{c}} w(\mathbf{c}) = \prod_{i < j} \sum_{c_{ij}} \left[\frac{\langle k \rangle}{N} Q(k_i, k_j) \delta_{c_{ij}, 1} + \left(1 - \frac{\langle k \rangle}{N} Q(k_i, k_j) \right) \delta_{c_{ij}, 0} \right] = 1$$

• in terms of new measure w:

$$w(\mathbf{c}) = \prod_{i < j} \left[\frac{\langle \mathbf{k} \rangle}{N} Q(\mathbf{k}_i, \mathbf{k}_j) \delta_{c_{ij}, 1} + \left(1 - \frac{\langle \mathbf{k} \rangle}{N} Q(\mathbf{k}_i, \mathbf{k}_j) \right) \delta_{c_{ij}, 0} \right]$$

$$P(\mathbf{c} | p, W) = \sum_{\mathbf{k}} \left[\prod_{i} p(\mathbf{k}_i) \right] \frac{w(\mathbf{c}) \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})}}{Z(\mathbf{k}, W)}, \qquad Z(\mathbf{k}, W) = \langle \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \rangle_{w}$$

• use $0 \log 0 = 0$:

$$S(\mathbf{k}, W) = -\frac{1}{N\langle k \rangle} \sum_{\mathbf{c}} \sum_{\mathbf{k}} \left[\prod_{i} p(k_{i}) \right] \frac{w(\mathbf{c}) \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})}}{Z(\mathbf{k}, W)} \log \left[\sum_{\mathbf{k}'} \left(\prod_{i} p(k_{i}') \right) \frac{w(\mathbf{c}) \delta_{\mathbf{k}', \mathbf{k}(\mathbf{c})}}{Z(\mathbf{k}', W)} \right]$$

$$= -\frac{1}{N\langle k \rangle} \sum_{\mathbf{c}} \sum_{\mathbf{k}} \left[\prod_{i} p(k_{i}) \right] \frac{w(\mathbf{c}) \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})}}{Z(\mathbf{k}, W)} \log \left[\left(\prod_{i} p(k_{i}) \right) \frac{w(\mathbf{c})}{Z(\mathbf{k}, W)} \right]$$

$$= -\frac{1}{N\langle k \rangle} \sum_{\mathbf{k}} \left[\prod_{i} p(k_{i}) \right] \left[\sum_{\mathbf{c}} \frac{w(\mathbf{c}) \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})}}{Z(\mathbf{k}, W)} \right] \left[\sum_{i} \log p(k_{i}) - \log Z(\mathbf{k}, W) \right]$$

$$-\frac{1}{N\langle k \rangle} \sum_{\mathbf{k}} \left[\prod_{i} p(k_{i}) \right] \underbrace{\left[\prod_{i} p(k_{i}) \right] \frac{\sum_{\mathbf{c}} w(\mathbf{c}) \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \log w(\mathbf{c})}{Z(\mathbf{k}, W)}}$$

$$= \frac{1}{N\langle k \rangle} \sum_{\mathbf{k}} \left[\prod_{i} p(k_{i}) \right] \underbrace{\left\{ \log \langle \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \rangle_{w} - \frac{\langle \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \log w(\mathbf{c}) \rangle_{w}}{\langle \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \rangle_{w}} \right\}}_{\text{doable...}} - \underbrace{\frac{1}{\langle k \rangle} \sum_{\mathbf{k}} p(k) \log p(k)}_{\text{trivial...}}}_{\text{trivial...}}$$

$$\textit{left to calculate}: \quad \textit{A}(\mathbf{k}) = \frac{1}{N} \log \langle \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \rangle_{\textit{w}} \qquad \textit{B}(\mathbf{k}) = \frac{1}{N} \frac{\langle \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \log \textit{w}(\mathbf{c}) \rangle_{\textit{w}}}{\langle \delta_{\mathbf{k}, \mathbf{k}(\mathbf{c})} \rangle_{\textit{w}}}$$

measure:
$$w(\mathbf{c}) = \prod_{i < j} \left[\frac{\langle k \rangle}{N} Q(k_i, k_j) \delta_{c_{ij}, 1} + \left(1 - \frac{\langle k \rangle}{N} Q(k_i, k_j) \right) \delta_{c_{ij}, 0} \right]$$

ullet degree constraints: $\delta_{\mathbf{k},\mathbf{k}(\mathbf{c})} = \int_{-\pi}^{\pi} \prod_{i} \left[rac{\mathrm{d}\omega_{i}}{2\pi} \mathrm{e}^{\mathrm{i}\omega_{i}(k_{i}-\sum_{j}c_{ij})}
ight]$

sum over graphs:

$$A(\mathbf{k}) = \frac{1}{N} \log \int \frac{\mathrm{d}\omega}{(2\pi)^N} \prod_{i < j} \left[1 + \frac{\langle k \rangle}{N} Q(k_i, k_j) [\mathrm{e}^{-\mathrm{i}(\omega_i + \omega_j)} - 1] \right]$$

$$\begin{split} B(\mathbf{k}) &= \frac{\mathrm{e}^{-NA(\mathbf{k})}}{N} \int \!\! \frac{\mathrm{d}\omega}{(2\pi)^N} \sum_{\mathbf{c}} \prod_{i < j} \left[\frac{\langle k \rangle}{N} Q(k_i, k_j) \delta_{c_{ij}, 1} \mathrm{e}^{-(\omega_i + \omega_j)} \! + \! \left(1 - \frac{\langle k \rangle}{N} Q(k_i, k_j) \right) \! \delta_{c_{ij}, 0} \right] \\ & \times \sum_{\ell < m} \log \left[\frac{\langle k \rangle}{N} Q(k_\ell, k_m) \delta_{c_{\ell m}, 1} + \left(1 - \frac{\langle k \rangle}{N} Q(k_\ell, k_m) \right) \! \delta_{c_{\ell m}, 0} \right] \\ &= \mathrm{e}^{-NA(\mathbf{k})} \int \!\! \frac{\mathrm{d}\omega}{(2\pi)^N} \prod_{i < j} \left[1 + \frac{\langle k \rangle}{N} Q(k_i, k_j) [\mathrm{e}^{-\mathrm{i}(\omega_i + \omega_j)} - 1] \right] \\ & \times \frac{1}{N} \sum \left\{ \log \left[\frac{\langle k \rangle}{N} Q(k_\ell, k_m) \right] - \frac{\langle k \rangle}{N} Q(k_\ell, k_m) \right\} + \mathcal{O}(\frac{1}{N}) \end{split}$$

■ B(k): easy for large N

$$B(\mathbf{k}) = \frac{1}{N} \sum_{\ell < m} \left\{ \log \left[\frac{\langle k \rangle}{N} Q(k_\ell, k_m) \right] - \frac{\langle k \rangle}{N} Q(k_\ell, k_m) \right\} + \mathcal{O}(\frac{1}{N}) \quad \text{done!}$$

A(k): still nontrivial

$$A(\mathbf{k}) = \frac{1}{N} \log \underbrace{\int \frac{\mathrm{d}\omega}{(2\pi)^N} \, \mathrm{e}^{\mathrm{i} \sum_i \omega_i k_i + \frac{1}{2} \sum_{ij} \frac{\langle k \rangle}{N} \, Q(k_i, k_j) [\mathrm{e}^{-\mathrm{i}(\omega_i + \omega_j)} - 1]}}_{\text{integral over } \omega?} + \mathcal{O}(\frac{1}{N})$$

introduce path integral over all functions $\frac{1}{N} \sum_{i} \delta_{k,k_i} \delta(\omega - \omega_i)$

$$\begin{split} 1 &= \prod_{k,\omega} \int \mathrm{d}P(k,\omega) \delta \Big[P(k,\omega) - \frac{1}{N} \sum_{i} \delta_{k,k_{i}} \delta(\omega - \omega_{i}) \Big] \\ &= \prod_{k,\omega} \int \frac{\mathrm{d}P(k,\omega) \mathrm{d}\hat{P}(k,\omega)}{2\pi} \, \mathrm{e}^{\mathrm{i}\hat{P}(k,\omega) \Big[P(k,\omega) - \frac{1}{N} \sum_{i} \delta_{k,k_{i}} \delta(\omega - \omega_{i}) \Big]} \\ &= \lim_{\Delta \to 0} \int \Big[\prod_{k,\omega} \frac{\mathrm{d}P(k,\omega) \mathrm{d}\hat{P}(k,\omega)}{2\pi/N\Delta} \Big] \mathrm{e}^{\mathrm{i}N\Delta \sum_{k,\omega} \hat{P}(k,\omega) \Big[P(k,\omega) - \frac{1}{N} \sum_{i} \delta_{k,k_{i}} \delta(\omega - \omega_{i}) \Big]} \\ &= \int \{ \mathrm{d}P \mathrm{d}\hat{P} \} \, \, \mathrm{e}^{\mathrm{i}N \sum_{k} \int \mathrm{d}\omega \, \hat{P}(k,\omega) P(k,\omega) - \mathrm{i} \sum_{i} \hat{P}(k_{i},\omega_{i})} \end{split}$$

• in terms of path integral:

$$\begin{split} A(\mathbf{k}) &= \frac{1}{N} \log \int \{\mathrm{d}P \mathrm{d}\hat{P}\} \; \mathrm{e}^{N\Psi[P,\hat{P}]} + \mathcal{O}(\frac{1}{N}) \\ \Psi[P,\hat{P}] &= \mathrm{i} \sum_{k} \int \!\!\mathrm{d}\omega \; \hat{P}(k,\omega) P(k,\omega) + \frac{1}{N} \sum_{i} \log \int \!\!\!\frac{\mathrm{d}\omega}{2\pi} \; \mathrm{e}^{\mathrm{i}\omega k_{i} - \mathrm{i}\hat{P}(k_{i},\omega)} \\ &+ \frac{1}{2} \langle k \rangle \sum_{kk'} \int \!\!\!\mathrm{d}\omega \mathrm{d}\omega' P(k,\omega) P(k',\omega') Q(k,k') [\mathrm{e}^{-\mathrm{i}(\omega + \omega')} - 1] \end{split}$$

large N:

$$\frac{1}{N} \sum_{i} \log \int \frac{\mathrm{d}\omega}{2\pi} \, \mathrm{e}^{\mathrm{i}\omega k_{i} - \mathrm{i}\hat{P}(k_{i},\omega)} \, \, \to \, \, \sum_{k} p(k) \log \int \frac{\mathrm{d}\omega}{2\pi} \, \mathrm{e}^{\mathrm{i}\omega k - \mathrm{i}\hat{P}(k,\omega)}$$

integral $\int \{\mathrm{d}P\mathrm{d}\hat{P}\}\dots$ via steepest descent, functional saddle-point eqns $\delta\Psi/\delta P=\delta\Psi/\delta\hat{P}=0$, can be solved analytically

Shannon entropy per bond final result for nondirected graphs

$$\begin{split} P(\mathbf{c}) &= \sum_{\mathbf{k}} \left[\prod_{i} \mathrm{d}k_{i} \; p(k_{i}) \right] \frac{\prod_{i} \delta_{k_{i}, k_{i}(\mathbf{c})}}{Z(\mathbf{k}, W)} \prod_{i < j} \left[\frac{\langle k \rangle}{N} \frac{W(k_{i}, k_{j})}{p(k_{i})p(k_{j})} \delta_{c_{ij}, 1} + \left(1 - \frac{\langle k \rangle}{N} \frac{W(k_{i}, k_{j})}{p(k_{i})p(k_{j})} \right) \delta_{c_{ij}, 0} \right] \\ S &= \frac{1}{2} [1 + \log(\frac{N}{\langle k \rangle})] - \left\{ \frac{1}{\langle k \rangle} \sum_{k} p(k) \log[\frac{p(k)}{\pi(k)}] + \frac{1}{2} \sum_{k \in \mathcal{K}} W(k, k') \log\left[\frac{W(k, k')}{W(k)W(k')}\right] \right\} \end{split}$$

Erdos—Renyi entropy degree complexity wiring complexity
$$+ \epsilon_{N}$$

$$\lim_{N\to\infty}\epsilon_N=0$$

$$\pi(\ell) = e^{-\langle k \rangle} \langle k \rangle^{\ell} / \ell!$$
 degree distr of Erdös-Renyi graphs

degree complexity: proportional to Kullback-Leibler distance (so \geq 0)

wiring complexity: proportional to mutual information (so \geq 0)

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - 3 Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- 4 Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

Shannon entropy per bond final result for directed graphs:

$$\vec{k}_i = (k_i^{\mathrm{in}}, k_i^{\mathrm{out}})$$

$$p(\boldsymbol{c}) = \sum_{\vec{\boldsymbol{k}}} \prod_{i} \left[\mathrm{d}\vec{k}_{i} \; p(\vec{k}_{i}) \right] \frac{\prod_{i} \delta_{\vec{k}_{i}, \vec{k}_{i}(\boldsymbol{c})}}{Z(\vec{\boldsymbol{k}}, W)} \prod_{i < j} \left[\frac{\langle \boldsymbol{k} \rangle}{N} \frac{W(\vec{k}_{i}, \vec{k}_{j})}{p(\vec{k}_{i})p(\vec{k}_{j})} \delta_{c_{ij}, 1} + \left(1 - \frac{\langle \boldsymbol{k} \rangle}{N} \frac{W(\vec{k}_{i}, \vec{k}_{j})}{p(\vec{k}_{i})p(\vec{k}_{j})} \right) \delta_{c_{ij}, 0} \right]$$

$$S = \underbrace{1 + \log(\frac{N}{\langle k \rangle})}_{\textit{directed ER entropy}} - \Big\{ \underbrace{\frac{1}{\langle k \rangle} \sum_{\vec{k}} p(\vec{k}) \log[\frac{p(\vec{k})}{\pi(k^{\text{in}})\pi(k^{\text{out}})}]}_{\textit{degree complexity}} + \underbrace{\sum_{\vec{k},\vec{k}'} W(\vec{k},\vec{k}') \log\left[\frac{W(\vec{k},\vec{k}')}{W(\vec{k})W(\vec{k}')}\right]}_{\textit{wiring complexity}} \Big\}$$

$$\lim_{N\to\infty} \epsilon_N = 0$$

$$\pi(\ell) = e^{-\langle k \rangle} \langle k \rangle^{\ell} / \ell!$$

 $\pi(k^{\rm in}) \pi(k^{\rm out})$: degree distr of directed Erdös-Renyi graphs

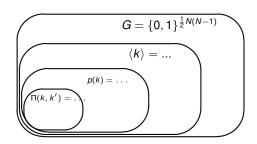
degree complexity: proportional to Kullback-Leibler distance (so \geq 0) wiring complexity: proportional to mutual information (so \geq 0)

3. Generating tailored random graphs numerically

next:

generate tailored random graphs

from these families numerically ...



typical questions

G: all nondirected N-node graphs $G[\mathbf{k}] \subset G$: all nondirected N-node graphs with degrees \mathbf{k}

how to generate

- random $\mathbf{c} \in G$, with specified probability $p(\mathbf{c})$
- random $\mathbf{c} \in G[\mathbf{k}]$, with uniform probability
- random $\mathbf{c} \in G[\mathbf{k}]$, with specified probability $p(\mathbf{c})$

similar for directed graphs ...

why is the generation of graphs a nontrivial issue?

- many users underestimate/misjudge what the real problem is:
 sampling the space of all graphs with given features: usually easy ...
 sampling them with required probabilities: nontrivial!
- many ad-hoc graph generation algorithms that appear sensible, but without proper analysis of which measure they converge to
- in cellular biology graphs are often used as 'null models', against which to test hypotheses on observed features in signalling networks
 - if these null models are *biased*, the hypothesis test is fundamentally flawed ...

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
- Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application example:

Fundamental limitations

since $\mathcal{N} = \exp(N\langle k \rangle S)$: entropy crisis when S becomes zero (nr of graphs with imposed features vanishes)

nondirected:

$$S \approx \frac{1}{2}[1 + \log(\frac{N}{\langle k \rangle})] - \frac{1}{\langle k \rangle} \sum_{k} p(k) \log[\frac{p(k)}{\pi(k)}] - \frac{1}{2} \sum_{k,k'} W(k,k') \log\left[\frac{W(k,k')}{W(k)W(k')}\right]$$

so graphs exist if

$$N > \langle k \rangle e^{\frac{2}{\langle k \rangle} \sum_{k} p(k) \log[\frac{p(k)}{\pi(k)}] + \sum_{k,k'} W(k,k') \log\left[\frac{W(k,k')}{W(k)W(k')}\right] - 1}$$

directed:

$$S \approx 1 + \log(\frac{N}{\langle k \rangle}) - \frac{1}{\langle k \rangle} \sum_{\vec{k}} p(\vec{k}) \log[\frac{p(\vec{k})}{\pi(k^{\text{in}})\pi(k^{\text{out}})}] - \sum_{\vec{k}, \vec{k}'} W(\vec{k}, \vec{k}') \log\left[\frac{W(\vec{k}, \vec{k}')}{W(\vec{k})W(\vec{k}')}\right]$$

so graphs exist if

$$N > \langle \mathbf{k} \rangle e^{\frac{1}{\langle \mathbf{k} \rangle} \sum_{\vec{k}} p(\vec{k}) \log \left[\frac{p(\vec{k})}{\pi(\vec{k}^{\mathrm{in}})\pi(\vec{k}^{\mathrm{out}})} \right] + \sum_{\vec{k},\vec{k}'} W(\vec{k},\vec{k}') \log \left[\frac{W(\vec{k},\vec{k}')}{W(\vec{k})W(\vec{k}')} \right] - 1}$$

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
- Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application example:

trivial case: no constraints standard Glauber/MCMC dynamics

(Metropolis et al 1953)

with specified probabilities $p(\mathbf{c})$

strategy: start from any graph c

propose random moves $c_{ij} \rightarrow 1 - c_{ij}$ (giving $\mathbf{c} \rightarrow F_{ij}\mathbf{c}$),

define acceptance probabilities $A(F_{ij}\mathbf{c}|\mathbf{c})$

via detailed balance condition

$$A(F_{ij}\mathbf{c}|\mathbf{c})p(\mathbf{c}) = A(\mathbf{c}|F_{ij}\mathbf{c})p(F_{ij}\mathbf{c}) \quad \rightarrow \quad A(\mathbf{c}'|\mathbf{c}) = \left[1 + p(\mathbf{c})/p(\mathbf{c}')\right]^{-1}$$

stochastic process is ergodic, and converges to the distribution $p(\mathbf{c})$

practicalities:

equilibration can take a *very long* time, so monitor Hamming distances

(trivially generalised to directed graphs)

Matching algorithm

(Bender and Canfield, 1978)

objective: generate random nondirected graph $\mathbf{c} \in \{0,1\}^{\frac{1}{2}N(N-1)}$

with specified degree sequence $\mathbf{k} = (k_1, \dots, k_N)$

strategy: stochastic growth dynamics,

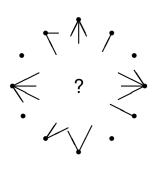
starting from graph with no links

• initialisation: $c_{ij} = 0$ for all (i, j)

repeat:

- pick at random two nodes (i, j)
- if $\sum_{\ell} c_{i\ell} < k_i$ and $\sum_{\ell} c_{j\ell} < k_j$: connect i and j $c_{ij} = 0 \rightarrow c_{ij} = 1$

terminate if $\sum_{j} c_{ij} = k_i$ for all i



(trivially generalised to directed graphs)

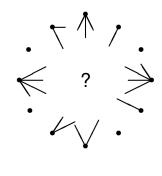
Matching algorithm

limitations and problems ...

- major limitation:
 - cannot control graph probabilities, just aims to generate $\mathbf{c} \in G[\mathbf{k}]$ with equal probs
- inconvenience: convergence not guaranteed process can 'hang' before $\sum_j c_{ij} = k_i$ for all i if one remaining 'stub' requires self-loops (happens more often when there are 'hubs', i.e. nodes with large degree)
 - monitor the evolving degrees, to test for this
 - if process 'hangs': reject and start over again from empty graph
- sampling bias:

if process 'hangs', users often don't reject the graph but do 'backtracking' (for CPU reasons), this creates correlations between graph realisations

even if we reject rather than backtrack: no proof published yet that sampling measure $p(\mathbf{c})$ is flat ...



Edge switching algorithm

(Seidel, 1976)

objective: generate random nondirected graph $\mathbf{c} \in \{0,1\}^{\frac{1}{2}N(N-1)}$

with specified degree sequence $\mathbf{k} = (k_1, \dots, k_N)$

strategy: degree-preserving randomisation ('shuffling') process,

starting from any graph $\mathbf{k} = (k_1, \dots, k_N)$

• initialisation: $c_{ij} = c_{ij}^0$ for all (i, j), where \mathbf{c}^0 is some graph with the correct degrees

repeat:

- pick at random four nodes (i, j, k, ℓ) that are *pairwise connected*
- carry out an 'edge swap' (or 'Seidel switch), see diagram (preserves all degrees!)

 $\begin{bmatrix}
i & i & k \\
i & k
\end{bmatrix}$

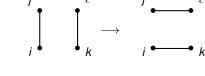
terminate if stochastic process has equilibrated

Edge switching algorithm

limitations and problems ...

major limitation:

cannot control graph probabilities, aims to generate $\mathbf{c} \in G[\mathbf{k}]$ with equal probs



- inconvenience: need for a 'seed graph' with the correct degrees $\mathbf{k} = (k_1, \dots, k_N)$
- sampling bias:

edge swaps are ergodic on $G[\mathbf{k}]$ (Taylor, 1981), but sampling is *not uniform*!

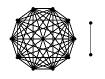
many possible moves

only one move ...

nr of possible moves depends on state **c**!

result:

stationary state of Markov chain favours high-mobility graphs



dangerous for scale-free graphs ...

target:

uniform measure $p(\mathbf{c})$ on $G[\mathbf{k}]$

1 graph

 $n(\mathbf{c}) = (N-2)(N-3)$

(N-2)(N-3) graphs $n(\mathbf{c}) = 2(N-3)$

for flat measure:

$$\langle n(\mathbf{c}) \rangle = \frac{(N-2)(N-3) + (N-2)(N-3).2(N-3)}{1 + (N-2)(N-3)}$$
$$= \frac{(N-2)(N-3)[1 + 2(N-3)]}{1 + (N-2)(N-3)}$$

N = 100:

 $\langle n(\mathbf{c}) \rangle / N^2 \approx 0.0195$

'accept all' $\overline{n(\mathbf{c})}/N^2$ edge swapping: \leftarrow theory

executed moves

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- 4 Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graph
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

4. Constrained Markovian graph dynamics

need to study graph dynamics more systematically ...

Monte Carlo processes for constrained graphs

- constraints: $G[\star] \subset G$: all $\mathbf{c} \in G$ that satisfy constraints \star
- stochastic graph dynamics as a Markov chain, transition probabilities $W(\mathbf{c}|\mathbf{c}')$ for the move $\mathbf{c}' \to \mathbf{c}$ $n \in \mathbb{N}$: algorithmic time

$$\forall \mathbf{c} \in G[\star]: \qquad p_{n+1}(\mathbf{c}) = \sum_{\mathbf{c}' \in G[\star]} W(\mathbf{c}|\mathbf{c}')p_n(\mathbf{c}')$$

allowed moves (exclude identity):

```
\Phi: set of allowed moves F: G_F[\star] \to G[\star] G_F[\star]: those \mathbf{c} \in G[\star] on which F can act all moves are auto-invertible: (\forall F \in \Phi) : F^2 = \mathbb{I} \Phi is ergodic on G[\star]
```

MCMC objective

construct transition probs $W(\mathbf{c}|\mathbf{c}')$, based on moves $F \in \Phi$, such that process converges to $p(\mathbf{c}) = Z^{-1}e^{-H(\mathbf{c})}$ on $G[\star]$

$$\begin{aligned} W(\mathbf{c}|\mathbf{c}') &= \sum_{F \in \Phi} q(F|\mathbf{c}') \Big[\delta_{\mathbf{c},F\mathbf{c}'} A(F\mathbf{c}'|\mathbf{c}') + \delta_{\mathbf{c},\mathbf{c}'} [1 - A(F\mathbf{c}'|\mathbf{c}')] \Big] \\ q(F|\mathbf{c}) : \quad \textit{move proposal probability} \end{aligned}$$

graph mobility n(c):

$$n(\mathbf{c}) = \sum_{F \in \Phi} I_F(\mathbf{c}), \qquad I_F(\mathbf{c}) = \begin{cases} 1 & \text{if } \mathbf{c} \in G_F[\star] \\ 0 & \text{if } \mathbf{c} \notin G_F[\star] \end{cases}$$

A(c|c'): move acceptance probability

detailed balance condition:

$$(\forall F \in \Phi)(\forall \mathbf{c} \in G[\star]): \qquad q(F|\mathbf{c})A(F\mathbf{c}|\mathbf{c})e^{-H(\mathbf{c})} = q(F|F\mathbf{c})A(\mathbf{c}|F\mathbf{c})e^{-H(F\mathbf{c})}$$

if allowed F equally probable: $q(F|\mathbf{c}) = I_F(\mathbf{c})/n(\mathbf{c})$

$$(\forall F \in \Phi)(\forall \mathbf{c} \in G_F[\star]): \qquad \frac{1}{n(\mathbf{c})} A(F\mathbf{c}|\mathbf{c}) e^{-H(\mathbf{c})} = \frac{1}{n(F\mathbf{c})} A(\mathbf{c}|F\mathbf{c}) e^{-H(F\mathbf{c})}$$

canonical Markov chain

ergodic auto-invertible moves $F \in \Phi$, convergence to $p(\mathbf{c}) = Z^{-1} e^{-H(\mathbf{c})}$ on $G[\star]$ for acceptance probabilities

$$A(\mathbf{c}|\mathbf{c}') = \frac{n(\mathbf{c}')e^{-\frac{1}{2}[H(\mathbf{c}) - H(\mathbf{c}')]}}{n(\mathbf{c}')e^{-\frac{1}{2}[H(\mathbf{c}) - H(\mathbf{c}')]} + n(\mathbf{c})e^{\frac{1}{2}[H(\mathbf{c}) - H(\mathbf{c}')]}}$$

conventional edge-swapping?

$$(\forall \mathbf{c}, \mathbf{c}'): A(\mathbf{c}|\mathbf{c}') = 1$$

$$(\forall F, \mathbf{c}): \frac{A(F\mathbf{c}|\mathbf{c})e^{-H(\mathbf{c})}}{n(\mathbf{c})} = \frac{A(\mathbf{c}|F\mathbf{c})e^{-H(F\mathbf{c})}}{n(F\mathbf{c})} \rightarrow (\forall F, \mathbf{c}): \frac{e^{-H(\mathbf{c})}}{n(\mathbf{c})} = \frac{e^{-H(F\mathbf{c})}}{n(F\mathbf{c})}$$

corresponds to $H(\mathbf{c}) = -\log n($

$$H(\mathbf{c}) = -\log n(\mathbf{c}),$$
 so would give

sampling bias:
$$p(\mathbf{c}) = \frac{n(\mathbf{c})}{\sum_{\mathbf{c}' \in G[\mathbf{c}]} n(\mathbf{c}')}$$

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - 3 Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- 4 Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

Master equation representation of the process

Markov chain:
$$p_{n+1}(\mathbf{c}) = \sum_{\mathbf{c}'} W(\mathbf{c}|\mathbf{c}')p_n(\mathbf{c}')$$

• from integer to real times:

continuous time process, $p_t(\mathbf{c})$, $t \in [0, \infty)$ via *random durations* of MC steps, $\pi_n(t)$: prob that n MC steps have been made at time t

$$p_t(\mathbf{c}) = \sum_{n \geq 0} \pi_n(t) p_n(\mathbf{c})$$

choose
$$\pi_m(t) = (t/\tau)^m e^{-t/\tau}/m!$$
:
so $\langle m \rangle = t/\tau$

$$\tau \frac{\mathrm{d}}{\mathrm{d}t} \pi_0(t) = -\pi_0(t) \qquad \tau \frac{\mathrm{d}}{\mathrm{d}t} \pi_{m>0}(t) = \pi_{m-1}(t) - \pi_m(t)$$

$$\tau \frac{\mathrm{d}}{\mathrm{d}t} \rho_t(\mathbf{c}) = \sum_{n>0} \pi_{n-1}(t) \rho_n(\mathbf{c}) - \sum_{n\geq0} \pi_n(t) \rho_n(\mathbf{c})$$

$$= \sum_{n\geq0} W(\mathbf{c}|\mathbf{c}') \rho_t(\mathbf{c}') - \rho_t(\mathbf{c})$$

• work out details (not done here), using $\Delta_F U(\mathbf{c}) = U(F\mathbf{c}) - U(\mathbf{c})$

$$\tau \frac{\mathrm{d}}{\mathrm{d}t} p_t(\mathbf{c}) = \sum_{F \in \Phi} I_F(\mathbf{c}) \left\{ \frac{w_F^+(\mathbf{c})}{n(F\mathbf{c})} p_t(F\mathbf{c}) - \frac{w_F^-(\mathbf{c})}{n(\mathbf{c})} p_t(\mathbf{c}) \right\}$$

'edge swap' rates:
$$w_F^{\pm}(\mathbf{c}) = \frac{1}{2} \pm \frac{1}{2} \tanh \left[\frac{1}{2} \Delta_F [H(\mathbf{c}) + \log n(\mathbf{c})] \right]$$

(very similar to master eqn for spin dynamics)

expectation values of observables,

$$\langle f(\mathbf{c}) \rangle = \sum_{\mathbf{c}} p_t(\mathbf{c}) f(\mathbf{c})$$
:

$$\tau \frac{\mathrm{d}}{\mathrm{d}t} \langle f(\mathbf{c}) \rangle = \sum_F \left\langle \frac{I_F(\mathbf{c})}{n(\mathbf{c})} w_F^-(\mathbf{c}) \Delta_F f(\mathbf{c}) \right\rangle$$

Convergence of the process

to show: $\lim_{t\to\infty} p_t(\mathbf{c}) = e^{-H(\mathbf{c})}/Z$ for all \mathbf{c}

requires only:

- (i) $(\forall \mathbf{c}): \frac{\mathrm{d}}{\mathrm{d}t} p_t(\mathbf{c}) = \sum_{\mathbf{c}'} W(\mathbf{c}|\mathbf{c}') p_t(\mathbf{c}') p_t(\mathbf{c})$
- (ii) $(\forall \mathbf{c}, \mathbf{c}')$: $W(\mathbf{c}|\mathbf{c}')e^{-H(\mathbf{c}')} = W(\mathbf{c}'|\mathbf{c})e^{-H(\mathbf{c})}$
- (iii) ergodicity: $(\forall \mathbf{c}, \mathbf{c}')(\exists \ell \in \mathbb{N}): W^{\ell}(\mathbf{c}|\mathbf{c}') > 0$

Proof (standard but nice ...)

define a quantity to act Lyapunov function

let
$$\hat{p}(\mathbf{c}) = Z^{-1} e^{-H(\mathbf{c})}, \quad L(t) = \sum_{\mathbf{c} \in G[\star]} p_t(\mathbf{c}) \log[p_t(\mathbf{c})/\hat{p}(\mathbf{c})]$$

L(t) is a Kullback-Leibler distance (information theory),

 $L(t) \ge 0$ for all t, L(t) = 0 if and only if $p_t = \hat{p}$ so we need to show only: $\lim_{t \to \infty} L(t) = 0$

$$L(t) = \sum_{\mathbf{c}} p_t(\mathbf{c}) \Big[\log p_t(\mathbf{c}) + H(\mathbf{c}) \Big] + \log Z$$

evolution of L(t):

$$\tau \frac{\mathrm{d}}{\mathrm{d}t} L(t) = \tau \frac{\mathrm{d}}{\mathrm{d}t} \sum_{\mathbf{c}} p_t(\mathbf{c}) [\log p_t(\mathbf{c}) + H(\mathbf{c})]$$

$$= \sum_{\mathbf{c}} \Big[\log p_t(\mathbf{c}) + H(\mathbf{c}) + 1 \Big] \Big[\sum_{\mathbf{c}'} W(\mathbf{c}|\mathbf{c}') p_t(\mathbf{c}') - p_t(\mathbf{c}) \Big]$$

$$= \sum_{\mathbf{c}\mathbf{c}'} \Big[\log p_t(\mathbf{c}) + H(\mathbf{c}) + 1 \Big] \Big[W(\mathbf{c}|\mathbf{c}') p_t(\mathbf{c}') - W(\mathbf{c}'|\mathbf{c}) p_t(\mathbf{c}) \Big]$$

$$= \frac{1}{2} \sum_{\mathbf{c}\mathbf{c}'} \Big[\Big(\log p_t(\mathbf{c}) + H(\mathbf{c}) \Big) - \Big(\log p_t(\mathbf{c}') + H(\mathbf{c}') \Big) \Big] \Big[W(\mathbf{c}|\mathbf{c}') p_t(\mathbf{c}') - W(\mathbf{c}'|\mathbf{c}) p_t(\mathbf{c}) \Big]$$

use detailed balance:

$$\textit{W}(\textit{\textbf{c}}'|\textit{\textbf{c}}) = \mathrm{e}^{\textit{H}(\textit{\textbf{c}})} \Big(\textit{W}(\textit{\textbf{c}}'|\textit{\textbf{c}}) \mathrm{e}^{-\textit{H}(\textit{\textbf{c}})} \Big) = \mathrm{e}^{\textit{H}(\textit{\textbf{c}})} \Big(\textit{W}(\textit{\textbf{c}}|\textit{\textbf{c}}') \mathrm{e}^{-\textit{H}(\textit{\textbf{c}}')} \Big)$$

now, with $\phi(\mathbf{c}) = H(\mathbf{c}) + \log p_t(\mathbf{c})$:

$$\tau \frac{\mathrm{d}}{\mathrm{d}t} L(t) = \frac{1}{2} \sum_{\mathbf{c}\mathbf{c}'} W(\mathbf{c}|\mathbf{c}') \mathrm{e}^{-H(\mathbf{c}')} \Big[\phi(\mathbf{c}) - \phi(\mathbf{c}') \Big] \Big[\mathrm{e}^{H(\mathbf{c}')} p_t(\mathbf{c}') - \mathrm{e}^{H(\mathbf{c})} p_t(\mathbf{c}) \Big]$$

$$= \frac{1}{2} \sum_{\mathbf{c}\mathbf{c}'} W(\mathbf{c}|\mathbf{c}') \mathrm{e}^{-H(\mathbf{c}')} \Big[\phi(\mathbf{c}) - \phi(\mathbf{c}') \Big] \Big[\mathrm{e}^{\phi(\mathbf{c}')} - \mathrm{e}^{\phi(\mathbf{c})} \Big] \leq 0$$

 $(e^x - e^y)(x - y) \ge 0$, equality only if x = y

since $\mathrm{d}L/\mathrm{d}t \leq 0$ and $L(t) \geq 0$: $\lim_{t\to\infty}\mathrm{d}L/\mathrm{d}t = 0$

last step, stationarity: $\frac{d}{dt}L(t) = 0$

$$\begin{aligned} (\forall \mathbf{c}, \mathbf{c}') : & W(\mathbf{c}|\mathbf{c}') = 0 & or & H(\mathbf{c}) + \log p(\mathbf{c}) = H(\mathbf{c}') + \log p(\mathbf{c}') \\ (\forall \mathbf{c}, \mathbf{c}') : & W(\mathbf{c}|\mathbf{c}') = 0 & or & p(\mathbf{c}) e^{H(\mathbf{c})} = p(\mathbf{c}') e^{H(\mathbf{c}')} \end{aligned}$$

since process is ergodic:

any state \mathbf{c} can be reached from any \mathbf{c}' by a sequence of intermediate states with nonzero transition probabilities,

hence

$$p(\mathbf{c})e^{H(\mathbf{c})} = const \Rightarrow p(\mathbf{c}) = Z^{-1}e^{-H(\mathbf{c})} = \hat{p}(\mathbf{c})$$

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - 3 Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

5. Constrained dynamics of nondirected graphs

bookkeeping of elementary moves

ullet constraints: imposed degrees, so graph set is $G[\mathbf{k}]$

ergodic set Φ of admissible moves: edge swaps $F: G_F[\mathbf{k}] \to G[\mathbf{k}]$

$$\{(i,j,k,\ell) \in \{1,\ldots,N\}^4 | i < j < k < \ell\}, \text{ ordered node quadruplets}$$

possible edge swaps to act on (i, j, k, ℓ) :

• group into pairs (I,IV), (II,V), and (III,VI) auto-invertible swaps: $F_{ijk\ell;\alpha}$, with $i < j < k < \ell$ and $\alpha \in \{1,2,3\}$

$$I_{ijk\ell;\alpha}(\mathbf{c})=1$$
:

$$F_{ijk\ell;\alpha}(\mathbf{c})_{qr} = 1 - c_{qr} \quad \text{for } (q,r) \in \mathcal{S}_{ijk\ell;\alpha}$$

 $F_{ijk\ell;\alpha}(\mathbf{c})_{qr} = c_{qr} \quad \text{for } (q,r) \notin \mathcal{S}_{ijk\ell;\alpha}$

$$S_{ijk\ell;1} = \{(i,j), (k,\ell), (i,\ell), (j,k)\}, \quad S_{ijk\ell;2} = \{(i,j), (k,\ell), (i,k), (j,\ell)\}$$
$$S_{ijk\ell;3} = \{(i,k), (j,\ell), (i,\ell), (j,k)\}$$

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
- Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

to implement the Markov chain, need analytical formula for the graph mobility

$$\begin{split} n(\mathbf{c}) &= \sum_{i < j < k < \ell}^{N} \sum_{\alpha = 1}^{3} I_{ijk\ell;\alpha}(\mathbf{c}) \\ &I_{ijk\ell;1}(\mathbf{c}) = c_{ij}c_{k\ell}(1 - c_{i\ell})(1 - c_{jk}) + (1 - c_{ij})(1 - c_{k\ell})c_{i\ell}c_{jk} \\ &I_{ijk\ell;2}(\mathbf{c}) = c_{ij}c_{k\ell}(1 - c_{ik})(1 - c_{j\ell}) + (1 - c_{ij})(1 - c_{k\ell})c_{ik}c_{j\ell} \\ &I_{ijk\ell;3}(\mathbf{c}) = c_{ik}c_{j\ell}(1 - c_{i\ell})(1 - c_{jk}) + (1 - c_{ik})(1 - c_{j\ell})c_{i\ell}c_{jk} \end{split}$$

 $= \frac{1}{4} \sum_{i=1} \overline{\delta}_{ik} \overline{\delta}_{i\ell} \overline{\delta}_{jk} \overline{\delta}_{j\ell} c_{ij} c_{k\ell} (1 - c_{i\ell}) (1 - c_{jk})$

combinatorial problem:

 $(\overline{\delta}_{ii} = 1 - \delta_{ii})$

$$n(\mathbf{c}) = \sum_{i < j < k < \ell} \overbrace{\left(I_{ijk\ell;1(\mathbf{c})} + I_{ijk\ell;2(\mathbf{c})} + I_{ijk\ell;3(\mathbf{c})}\right)}^{invariant under all permutations of (i,j,k,\ell)}$$

$$= \frac{1}{4!} \sum_{ijk\ell} \overline{\delta}_{ij} \overline{\delta}_{ik} \overline{\delta}_{i\ell} \overline{\delta}_{jk} \overline{\delta}_{j\ell} \overline{\delta}_{k\ell} \sum_{\alpha = 1}^{3} I_{ijk\ell;\alpha(\mathbf{c})} \qquad (permutation invariance)$$

$$= \frac{1}{4} \sum_{ijk\ell} \overline{\delta}_{ij} \overline{\delta}_{ik} \overline{\delta}_{i\ell} \overline{\delta}_{jk} \overline{\delta}_{j\ell} \overline{\delta}_{k\ell} c_{ij} c_{k\ell} (1 - c_{i\ell}) (1 - c_{jk}) \qquad (permutation, inversion)$$

(no diagonal entries)

work out remaining terms explicitly ...

$$n(\mathbf{c}) = \underbrace{\frac{1}{4}N^2\langle k \rangle^2 + \frac{1}{4}N\langle k \rangle - \frac{1}{2}N\langle k^2 \rangle}_{invariant} + \underbrace{\frac{1}{4}\mathrm{Tr}(\mathbf{c}^4) + \frac{1}{2}\mathrm{Tr}(\mathbf{c}^3) - \frac{1}{2}\sum_{ij}k_ic_{ij}k_j}_{state\ dependent}$$

Examples:

Fully connected graphs:

$$k_i = N-1$$
 for all i , ${\rm Tr}(\mathbf{c}^4) = (N-1)[(N-1)^3+1]$, ${\rm Tr}(\mathbf{c}^3) = N(N-1)(N-2)$ formula: $n(\mathbf{c}) = 0$ (ok by inspection)

- Periodic chains $c_{ij} = \delta_{i,j-1} + \delta_{i,j+1} \pmod{N}$, $N \ge 4$: $k_i = 2$ for all i, $\operatorname{Tr}(\mathbf{c}^4) = 6N$, $\operatorname{Tr}(\mathbf{c}^3) = 0$ formula: $n(\mathbf{c}) = N(N-4)$ (ok by inspection)
- Two isolated links $c_{12} = c_{21} = c_{34} = c_{43} = 1$, all other $c_{ij} = 0$: $k_1 = k_2 = k_3 = k_4 = 1$, $k_{i>4} = 0$, $\operatorname{Tr}(\mathbf{c}^4) = 4$, $\operatorname{Tr}(\mathbf{c}^3) = 0$ formula: $n(\mathbf{c}) = 2$ (ok by inspection)
- Regular random graphs with $p(k) = \delta_{k,2}$: use eigenvalue distribution of **c** (Dorogovtsev 2003), formula: $n(\mathbf{c}) = N(N-4) + o(N)$

$$n(\mathbf{c}) = \underbrace{\frac{1}{4}N^2\langle k \rangle^2 + \frac{1}{4}N\langle k \rangle - \frac{1}{2}N\langle k^2 \rangle}_{invariant} + \underbrace{\frac{1}{4}\mathrm{Tr}(\mathbf{c}^4) + \frac{1}{2}\mathrm{Tr}(\mathbf{c}^3) - \frac{1}{2}\sum_{ij}k_ic_{ij}k_j}_{state\ dependent}$$

practicalities

how to avoid calculating $n(\mathbf{c})$ at each iteration step,

use simple bounds:

$$\frac{N}{4} \Big(N \langle k \rangle^2 + \langle k \rangle - \langle k^2 \rangle \Big) - \frac{N}{2} \langle k^2 \rangle k_{\max} \le n(\mathbf{c}) \le \frac{N}{4} \Big(N \langle k \rangle^2 + \langle k \rangle - \langle k^2 \rangle \Big)$$
 state-dependent part can be ignored if $\langle k^2 \rangle k_{\max} / \langle k \rangle^2 \ll N$

- (i) calculate $n(\mathbf{c})$ only at time n=0
 - (ii) update $n(\mathbf{c})$ dynamically, by calculating at each step change $\Delta_{ijk\ell;\alpha}n(\mathbf{c})$ for executed move $F_{ijk\ell;\alpha}$

e.g.

$$\Delta_{ijk\ell;\alpha}\mathrm{Tr}(\mathbf{c}^3)=6\sum_{(a,b)\in S_{ijk\ell;\alpha},\ a< b}(1-2c_{ab})\sum_{v\notin\{i,j,k,\ell\}}c_{bv}c_{va}$$

 $\Delta_{ijk\ell;\alpha} \mathrm{Tr}(\mathbf{c}^4) = more \ complicated \ but \ explicit \ formula ...$

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
- Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

target = uniform measure on $G[\mathbf{k}]$

$$N = 100$$

naive versus correct acceptance probabilities

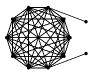
predictions:

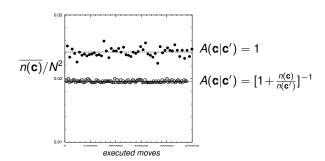
$$p(\mathbf{c}) = constant$$
:
 $\overline{n(\mathbf{c})}/N^2 \approx 0.0195$

$$p(\mathbf{c}) = n(\mathbf{c})/Z$$
:
 $\overline{n(\mathbf{c})}/N^2 \approx 0.0242$

many possible moves

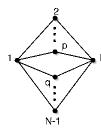
only one move ...

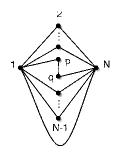




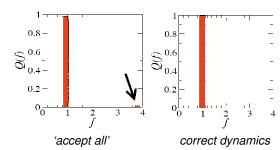
graph type A: $n(\mathbf{c}) = K(K-1)$ graph type B: $n(\mathbf{c}) = 2(K-1)$

measure distribution Q(f) of (rescaled) frequencies at which graphs are visited

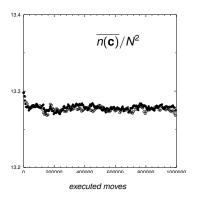


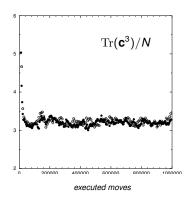


Type B



human protein interaction network N = 9463, $\langle k \rangle \approx 7.4$

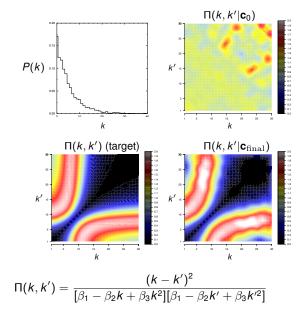




•: 'accept all' edge swap dynamics o: correct edge swap dynamics

(so no serious harm done yet ...)

target = degree-correlated measure on $G[\mathbf{k}]$



$$\frac{N}{\overline{k}} = 4000,$$

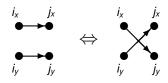
- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - 3 Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- 4 Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

6. Constrained dynamics of directed graphs

bookkeeping of elementary moves

ullet constraints: imposed in-out degrees, so graph set is $G[{f k}^{
m in},{f k}^{
m out}]$

set Φ of admissible moves: directed edge swaps $F: G_F[\mathbf{k}^{\mathrm{in}}, \mathbf{k}^{\mathrm{out}}] \to G[\mathbf{k}^{\mathrm{in}}, \mathbf{k}^{\mathrm{out}}]$



• auto-invertible edge-swaps:

Let
$$\Lambda = \{(i,j) \in N^2 | c_{ji} = 1\}$$

$$I_{(i_x,j_x),(i_y,j_y);\square} = \left\{ \begin{array}{ll} 1 & \text{if } (i_x,j_x),(i_y,j_y) \in \Lambda \text{ and } (i_x,j_y),(i_y,j_x) \notin \Lambda \\ 0 & \text{otherwise} \end{array} \right.$$

If
$$I_{(i_x,j_x),(i_y,j_y);\Box} = 1$$
:

$$\begin{aligned} F_{(i_x,j_x),(i_y,j_y);\square}(\mathbf{c})_{ij} &= 1 - c_{ij} & \text{if } i \in \{i_x,i_y\} \text{ and } j \in \{j_x,j_y\} \\ F_{(i_x,i_x),(i_y,j_y);\square}(\mathbf{c})_{ij} &= c_{ij} & \text{otherwise} \end{aligned}$$

for **nondirected** graphs:

edge swaps are *ergodic* set of moves (Taylor, 1981 – proof based on Lyapunov function)

for directed graphs:

are edge swaps ergodic set of moves?

Rao, 1996:

unless self-interactions are allowed, edge swaps not ergodic for directed graphs

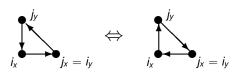
proof:

by counterexample

these two
$$N=3$$
 graphs are both in $G[\mathbf{k}^{\text{in}}, \mathbf{k}^{\text{out}}]$, with $\mathbf{k}^{\text{in}} = \mathbf{k}^{\text{out}} = (1, 1, 1)$

but no edge swap maps one to the other

further move type required to restore ergodicity: 3-loop reversal



$$I_{(i_x,j_x),(i_y,j_y);\triangle} = \begin{cases} 1 & \text{if } (i_x,j_x),(i_y,j_y),(j_y,i_x) \in \Lambda \text{ and } x_j = y_i \\ & \text{and } (j_x,i_x),(j_y,i_y),(i_x,j_y) \notin \Lambda \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned} F_{(i_x,j_x),(i_y,j_y);\triangle}(\mathbf{c})_{ij} &= 1 - c_{ij} & \text{for } (i,j) \in \mathcal{S}_{i_x,j_x,j_y} \\ F_{(i_x,j_x),(i_y,j_y);\triangle}(\mathbf{c})_{ij} &= c_{ij} & \text{for } (i,j) \notin \mathcal{S}_{i_x,j_x,j_y} \end{aligned}$$

$$S_{abc} = \{(a, b), (b, c), (c, a), (b, a), (c, b), (a, c)\}$$

- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - 3 Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

to implement the Markov chain, need to calculate graph mobility **analytically**:

$$n(\mathbf{c}) = n_{\square}(\mathbf{c}) + n_{\triangle}(\mathbf{c}) = \sum_{(i_x,j_x),(i_y,j_y) \in \Lambda} I_{(i_x,j_x),(i_y,j_y);\square} + \sum_{(i_x,j_x),(i_y,j_y) \in \Lambda} I_{(i_x,j_x),(i_y,j_y);\triangle}$$

$$\begin{array}{lcl} I_{(i_{x},j_{x}),(i_{y},j_{y});\Box} & = & c_{i_{x},j_{x}} c_{i_{y},j_{y}} (1-c_{i_{x},j_{y}})(1-c_{i_{y},j_{x}}) \\ I_{(i_{x},j_{x}),(i_{y},j_{y});\triangle} & = & \delta_{x_{j},y_{i}} c_{i_{x},j_{x}} c_{i_{y},j_{y}} c_{j_{y},i_{x}} (1-c_{j_{x},i_{x}})(1-c_{j_{y},i_{y}})(1-c_{i_{x},j_{y}}) \end{array}$$

combinatorial problem again easily solved:

$$n_{\square}(\mathbf{c}) = \underbrace{\frac{1}{2}N^2\langle k \rangle^2 - \sum_{j} k_j^{\text{in}} k_j^{\text{out}}}_{invariant} + \underbrace{\frac{1}{2}\text{Tr}(\mathbf{c}^2) + \frac{1}{2}\text{Tr}(\mathbf{c}^{\dagger}\mathbf{c}\mathbf{c}^{\dagger}\mathbf{c}) + \text{Tr}(\mathbf{c}^2\mathbf{c}^{\dagger}) - \sum_{ij} k_i^{\text{in}} c_{ij} k_j^{\text{out}}}_{state\ dependent}$$

$$n_{\square}(\mathbf{c}) = \underbrace{\frac{1}{2}N^2\langle k \rangle^2 - \sum_{j} k_j^{\text{in}} k_j^{\text{out}} + \frac{1}{2}\text{Tr}(\mathbf{c}^2) + \frac{1}{2}\text{Tr}(\mathbf{c}^{\dagger}\mathbf{c}\mathbf{c}^{\dagger}\mathbf{c}) + \text{Tr}(\mathbf{c}^2\mathbf{c}^{\dagger}) - \sum_{ij} k_i^{\text{in}} c_{ij} k_j^{\text{out}}}_{invariant}$$

$$n_{\triangle}(\mathbf{c}) = \underbrace{\frac{1}{3}\mathrm{Tr}(\mathbf{c}^3) - \mathrm{Tr}(\hat{\mathbf{c}}\mathbf{c}^2) + \mathrm{Tr}(\hat{\mathbf{c}}^2\mathbf{c}) - \frac{1}{3}\mathrm{Tr}(\hat{\mathbf{c}}^3)}_{state\ dependent}$$

with: $(\mathbf{c}^{\dagger})_{ii} = c_{ii}, \ \hat{\mathbf{c}}_{ii} = c_{ii}c_{ii}$

$$\begin{split} n_{\square}(\mathbf{c}) &= \frac{1}{2} N^2 \langle k \rangle^2 - \sum_j k_j^{\text{in}} k_j^{\text{out}} + \frac{1}{2} \text{Tr}(\mathbf{c}^2) + \frac{1}{2} \text{Tr}(\mathbf{c}^{\dagger} \mathbf{c} \mathbf{c}^{\dagger} \mathbf{c}) + \text{Tr}(\mathbf{c}^2 \mathbf{c}^{\dagger}) - \sum_{ij} k_i^{\text{in}} c_{ij} k_j^{\text{out}} \\ n_{\triangle}(\mathbf{c}) &= \frac{1}{3} \text{Tr}(\mathbf{c}^3) - \text{Tr}(\hat{\mathbf{c}} \mathbf{c}^2) + \text{Tr}(\hat{\mathbf{c}}^2 \mathbf{c}) - \frac{1}{3} \text{Tr}(\hat{\mathbf{c}}^3) \end{split}$$

practicalities

how to avoid calculating $n_{\square}(\mathbf{c})$ and $n_{\triangle}(\mathbf{c})$ at each iteration step,

 use simple bounds on n_□(c) and n_△(c), state-dependent part can be ignored if

$$\frac{1}{\langle \textbf{\textit{k}} \rangle} + \frac{2}{\langle \textbf{\textit{k}} \rangle^2} \Big(k_{\rm max}^{\rm in} \langle \textbf{\textit{k}}^{\rm out~2} \rangle + k_{\rm max}^{\rm out} \langle \textbf{\textit{k}}^{\rm in~2} \rangle \Big) \ll \textbf{\textit{N}}$$

- (i) calculate $n_{\square}(\mathbf{c})$ and $n_{\wedge}(\mathbf{c})$ only at time n=0
 - (ii) update $n_{\square}(\mathbf{c})$ and $n_{\triangle}(\mathbf{c})$ dynamically, by calculating at each step change $\Delta_{ijk\ell;\alpha}n_{\square}(\mathbf{c})$ and $\Delta_{ijk\ell;\alpha}n_{\triangle}(\mathbf{c})$ for executed move $F_{ijk\ell;\alpha}$

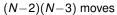
- Background
 - Networks and graphs
 - Tailored random graph ensembles
- Counting tailored graphs
 - Entropy and complexity
 - Entropy of tailored ensembles of nondirected graphs
 - Entropy of tailored ensembles of directed graphs
 - Generating tailored random graphs numerically
 - Fundamental limitations
 - The most common algorithms and their problems
- Constrained Markovian graph dynamics
 - Monte-Carlo processes for constrained graphs
 - Master equation and convergence to equilibrium
 - Degree-constrained MCMC dynamics of nondirected graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples
 - Degree-constrained dynamics of directed graphs
 - Bookkeeping of elementary moves
 - The mobility of graphs
 - Application examples

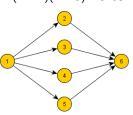
$$(k_1^{\text{in}}, k_1^{\text{out}}) = (0, N-2)$$

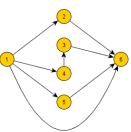
$$i = 2...N-1:$$

 $(k_i^{\text{in}}, k_i^{\text{out}}) = (1, 1)$

$$(k_N^{\text{in}}, k_N^{\text{out}}) = (N-2, 0)$$





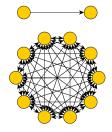


predicted values versus equilibrated dynamics for $\overline{n(\mathbf{c})}/N^2$:

	dynamics with $A(\mathbf{c} \mathbf{c}') = 1$	dynamics with $A(\mathbf{c} \mathbf{c}') = [1 + \frac{n(\mathbf{c})}{n(\mathbf{c}')}]^{-1}$
N = 17:	33.59	27.87
N = 27:	58.32	47.95

fully connected 'core' of N-2 nodes, plus two extra nodes

N = 20, target: flat measure

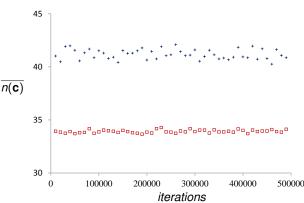


'accept all' edge swapping:

 $\overline{n(\mathbf{c})}\rangle \approx 41.09$ predicted: 41.03

edge swapping with correct acceptance probabilities:

 $\overline{n(\mathbf{c})} \approx 33.92$ predicted: 33.89

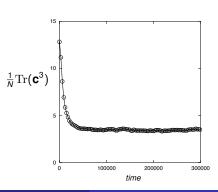


Looking ahead ...

- direct generalisations and extensions:
 - weigthed graphs: $c_{ij} \in {\rm I\!R}$
 - generalised degrees: $k_{i\ell}(\mathbf{c}) = \sum_{j} (\mathbf{c}^{\ell})_{ij}$
- study the edge-swap relaxation dynamics? (evolution of macroscopic observables $\psi(\mathbf{c})$)
- new macroscopic characterisations beyond p(k) and W(k, k')?

tailored graph ensembles characterised by statistics of **short loops** ...

(in addition to degrees and degree correlations)



all our current analytical techniques work only for locally tree-like graphs ...

simplest graph ensemble with short loops (Strauss ensemble)

k: average nr of links per node \overline{m} : average nr of triangles per node

$$p(\mathbf{c}) = \frac{1}{Z(u, v)} e^{u \sum_{ij} c_{ij} + v \sum_{ijk} c_{ij} c_{jk} c_{ki}}$$

$$\overline{k} = \sum_{\mathbf{c}} p(\mathbf{c}) \frac{1}{N} \sum_{ij} c_{ij}, \qquad \overline{m} = \sum_{\mathbf{c}} p(\mathbf{c}) \frac{1}{N} \sum_{ijk} c_{ij} c_{jk} c_{ki}$$

generating function:

$$\phi(u,v) = N^{-1} \log Z(u,v)$$

$$\overline{k} = \frac{\partial}{\partial u}\phi(u, v), \qquad \overline{m} = \frac{\partial}{\partial v}\phi(u, v), \qquad S = \phi(u, v) - u\overline{k} - v\overline{m}$$
$$\phi(u, v) = \frac{1}{N}\log\sum_{\mathbf{c}} e^{u\sum_{ij}c_{ij}+v\sum_{ijk}c_{ij}c_{jk}c_{ki}} = ?$$

some references

network reviews

R Albert and AL Barabasi, Rev Mod Phys 74, 2002 SN Dorogovtsev, AV Goltsev, and JFF Mendes, Rev Mod Phys 80, 2008 ACC Coolen, F Fraternali, A Annibale, L Fernandes and J Kleinjung, in Handbook of Statistical Systems Biology, Wiley, 2011

entropies of tailored graph ensembles

A Annibale, ACC Coolen, L P Fernandes, F Fraternali, J Kleinjung, J Phys A 42, 2009 ES Roberts, T Schlitt and ACC Coolen, J Phys A 44, 2011

graph dynamics and generation

R Taylor, in Combinatorial Mathematics VIII, Springer Lect Notes Math 884, 1981 AR Rao, R Jana, and S Bandyopadhya, Indian J of Statistics 58, 1996 ACC Coolen, A De Martino and A Annibale, J Stat Phys 136, 2009 K Roberts and ACC Coolen, Phys Rev E 85, 2012

websites

www.mth.kcl.ac.uk/~tcoolen www.mth.kcl.ac.uk/~tcoolen/Summerschool2012