Ton Coolen

- Survival analysis and competing risks
- Individual versus cohort level risk analysis
- Modelling heterogeneity-induced competing risks
- Applications: synthetic data and prostate cancer data

Ton Coolen

- Survival analysis and competing risks
- Individual versus cohort level risk analysis
- Modelling heterogeneity-induced competing risks
- Applications: synthetic data and prostate cancer data

Ton Coolen

- Survival analysis and competing risks
- Individual versus cohort level risk analysis
- Modelling heterogeneity-induced competing risks
- Applications: synthetic data and prostate cancer data

Ton Coolen

- Survival analysis and competing risks
- Individual versus cohort level risk analysis
- Modelling heterogeneity-induced competing risks
- Applications: synthetic data and prostate cancer data

Ton Coolen

- Survival analysis and competing risks
- Individual versus cohort level risk analysis
- Modelling heterogeneity-induced competing risks
- Applications: synthetic data and prostate cancer data

Survival analysis and competing risks

- N individuals, subject to R 'hazards' or 'risks'
 e.g. cancer recurrence, other death, end of trial ...
- If one event happens, others can no longer be observed
- Data, i = 1 ... N:

$$\mathbf{z}_i = (z_1^i, \dots, z_p^i):$$
 values of p covariates $t_i \geq 0:$ time of first event $r_i \in \{1, \dots, R\}:$ type of first event

Question

Extract regularities that connect covariates to risks

Survival analysis and competing risks

- N individuals, subject to R 'hazards' or 'risks'
 e.g. cancer recurrence, other death, end of trial ...
- If one event happens, others can no longer be observed
- Data, *i* = 1 . . . *N*:

$$\mathbf{z}_i = (z_1^i, \dots, z_p^i):$$
 values of p covariates $t_i \geq 0:$ time of first event $r_i \in \{1, \dots, R\}:$ type of first event

Question:

Extract regularities that connect covariates to risks

competing risk problem

 If event times of risks correlated: informative censoring primary hazard rate contaminated by non-primary risks

$$\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \mathcal{P}(t_1|\mathbf{z})\mathcal{P}(t_2,\ldots,t_R|\mathbf{z})$$

• What would be primary risk survival function if all other risks were disabled?

nontrivial ...

- disabling non-primary risks affects also primary hazard rate
- Tsiatis: without further assumptions one cannot infer risk correlations from survival data
- Most methods assume risk independence so non-primary risks don't affect primary hazard rate (Cox, KM, fraily models ...)

$$\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \mathcal{P}(t_1|\mathbf{z})\mathcal{P}(t_2,\ldots,t_R|\mathbf{z})$$

competing risk problem

 If event times of risks correlated: informative censoring primary hazard rate contaminated by non-primary risks

$$\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \mathcal{P}(t_1|\mathbf{z})\mathcal{P}(t_2,\ldots,t_R|\mathbf{z})$$

• What would be primary risk survival function if all other risks were disabled?

nontrivial ...

- disabling non-primary risks affects also primary hazard rate
- Tsiatis: without further assumptions one cannot infer risk correlations from survival data
- Most methods assume risk independence so non-primary risks don't affect primary hazard rate (Cox, KM, fraily models ...)

$$\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \mathcal{P}(t_1|\mathbf{z})\mathcal{P}(t_2,\ldots,t_R|\mathbf{z})$$

competing risk problem

 If event times of risks correlated: informative censoring primary hazard rate contaminated by non-primary risks

$$\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \mathcal{P}(t_1|\mathbf{z})\mathcal{P}(t_2,\ldots,t_R|\mathbf{z})$$

• What would be primary risk survival function if all other risks were disabled?

nontrivial ...

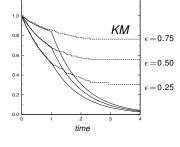
- disabling non-primary risks affects also primary hazard rate
- Tsiatis: without further assumptions one cannot infer risk correlations from survival data
- Most methods assume risk independence so non-primary risks don't affect primary hazard rate (Cox, KM, fraily models ...)

$$\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \mathcal{P}(t_1|\mathbf{z})\mathcal{P}(t_2,\ldots,t_R|\mathbf{z})$$

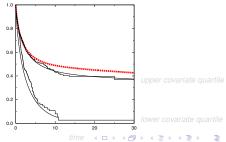
a serious problem?

some illustrations ...

$$\mathcal{P}(t_1, t_2) = \epsilon e^{-t_2} \delta(t_1 - t_2 - 1) + (1 - \epsilon)e^{-t_1 - t_2}$$



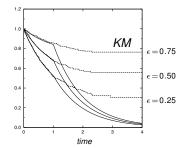
KM & Cox-Breslow estimators true survival curves



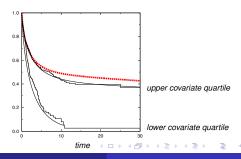
a serious problem?

some illustrations ...

$$\mathcal{P}(t_1, t_2) = \epsilon e^{-t_2} \delta(t_1 - t_2 - 1) + (1 - \epsilon)e^{-t_1 - t_2}$$



KM & Cox-Breslow estimators true survival curves

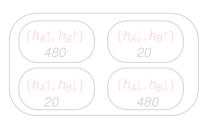


Possible causes of informative censoring

Say we have 1000 people in a cohort two risks, hazard rates h_A and h_B

• homogeneous cohort: all *individuals* have (h_A, h_B)

heterogeneous cohort, four subaroups: (h_A, h_B)
1000

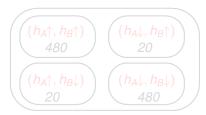


Possible causes of informative censoring

Say we have 1000 people in a cohort two risks, hazard rates h_A and h_B

homogeneous cohort:
 all individuals have (h_A, h_B)

 heterogeneous cohort, four subgroups: (h_A, h_B)
1000



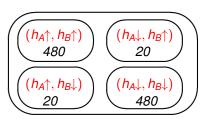
Possible causes of informative censoring

Say we have 1000 people in a cohort two risks, hazard rates h_A and h_B

• homogeneous cohort: all *individuals* have (h_A, h_B)

(h_A, h_B)
1000

heterogeneous cohort, four subgroups:



to make progress:

model all risks and their relations at individual and cohort level

risk description

$$\mathfrak{P}(t_1,\ldots,t_R) = \frac{1}{N} \sum_{i=1}^{N} \mathfrak{P}_i(t_1,\ldots,t_R) \qquad S_r(t) = \frac{1}{N} \sum_{i=1}^{N} S_r^i(t)$$

$$h_r(t) = \frac{\sum_{i=1}^{N} h_r^i(t) e^{-\sum_{r'=1}^{R} \int_0^t ds \ h_{r'}^i(s)}}{\sum_{i=1}^{N} e^{-\sum_{r'=1}^{R} \int_0^t ds \ h_{r'}^i(s)}}$$

to make progress:

model all risks and their relations at individual and cohort level

individual versus cohort level risk description

cohort: individual i:

event time statistics: $\mathcal{P}(t_1,\ldots,t_R)$ $\mathcal{P}_i(t_1,\ldots,t_R)$

 $h_r(t)$ $h_r^i(t)$ cause-specific hazard rates:

 $S_r^i(t)$ cause-specific survival functions: $S_r(t)$

$$\mathcal{P}(t_1,\ldots,t_R) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{P}_i(t_1,\ldots,t_R)$$
 $S_r(t) = \frac{1}{N} \sum_{i=1}^{N} S_r^i(t)$

$$h_r(t) = \frac{\sum_{i=1}^{N} h_r^i(t) e^{-\sum_{r'=1}^{R} \int_0^t ds \ h_{r'}^i(s)}}{\sum_{i=1}^{N} e^{-\sum_{r'=1}^{R} \int_0^t ds \ h_{r'}^i(s)}}$$

to make progress:

model all risks and their relations at individual and cohort level

individual versus cohort level risk description

cohort: individual i:

event time statistics: $\mathcal{P}(t_1,\ldots,t_R)$ $\mathcal{P}_i(t_1,\ldots,t_R)$

cause-specific hazard rates: $h_r(t)$ $h_r^i(t)$

cause-specific survival functions: $S_r(t)$ $S_r^i(t)$

cause-specific survival functions: $S_r(t)$ $S_r'(t)$

links:

$$\mathcal{P}(t_1,\ldots,t_R) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{P}_i(t_1,\ldots,t_R)$$
 $S_r(t) = \frac{1}{N} \sum_{i=1}^{N} S_r^i(t)$

$$h_r(t) = \frac{\sum_{i=1}^{N} h_r^i(t) e^{-\sum_{i'=1}^{R} \int_0^t ds \ h_{r'}^i(s)}}{\sum_{i=1}^{N} e^{-\sum_{i'=1}^{R} \int_0^t ds \ h_{r'}^i(s)}}$$

level 1: homogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1, \dots, t_R) = \prod_r \overline{\mathcal{P}}(t_r | \mathbf{z}_i)
\mathcal{P}(t_1, \dots, t_R | \mathbf{z}) = \prod_r \mathcal{P}(t_r | \mathbf{z})$$

h_A, h_B

level 2: heterogeneous cohort, no competing risks

$$\mathfrak{P}_i(t_1,\ldots,t_R) = \prod_r \mathfrak{P}_i(t_r)
\mathfrak{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathfrak{P}(t_r|\mathbf{z})$$

level 3: heterogeneity-induced competing risks

$$\mathfrak{P}_i(t_1,\ldots,t_R) = \prod_r \mathfrak{P}_i(t_r)
\mathfrak{P}(t_1,\ldots,t_R|\mathbf{Z}) \neq \prod_r \mathfrak{P}(t_r|\mathbf{Z})$$

$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$

level 1: homogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1, \dots, t_R) = \prod_r \overline{\mathcal{P}}(t_r | \mathbf{z}_i)
\mathcal{P}(t_1, \dots, t_R | \mathbf{z}) = \prod_r \mathcal{P}(t_r | \mathbf{z})$$

h_A, h_B 1000

level 2: heterogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathcal{P}(t_r|\mathbf{z})$$

level 3: heterogeneity-induced competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$

$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$

level 1: homogeneous cohort, no competing risks

$$\begin{array}{l} \mathbb{P}_i(t_1,\ldots,t_R) = \prod_r \overline{\mathbb{P}}(t_r|\mathbf{z}_i) \\ \mathbb{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathbb{P}(t_r|\mathbf{z}) \end{array}$$

h_A, h_B 1000

level 2: heterogeneous cohort, no competing risks

$$\mathfrak{P}_i(t_1,\ldots,t_R) = \prod_r \mathfrak{P}_i(t_r)
\mathfrak{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathfrak{P}(t_r|\mathbf{z})$$

level 3: heterogeneity-induced competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$

$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$

level 1: homogeneous cohort, no competing risks

$$\begin{array}{l} \mathbb{P}_i(t_1,\ldots,t_R) = \prod_r \overline{\mathbb{P}}(t_r|\mathbf{z}_i) \\ \mathbb{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathbb{P}(t_r|\mathbf{z}) \end{array}$$

h_A, h_B 1000

level 2: heterogeneous cohort, no competing risks

$$\mathfrak{P}_i(t_1,\ldots,t_R) = \prod_r \mathfrak{P}_i(t_r)
\mathfrak{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathfrak{P}(t_r|\mathbf{z})$$



level 3: heterogeneity-induced competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$

$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$

level 1: homogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \overline{\mathcal{P}}(t_r|\mathbf{z}_i)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathcal{P}(t_r|\mathbf{z})$$

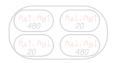
h_A, h_B 1000

level 2: heterogeneous cohort, no competing risks

$$\mathfrak{P}_i(t_1,\ldots,t_R) = \prod_r \mathfrak{P}_i(t_r)
\mathfrak{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathfrak{P}(t_r|\mathbf{z})$$

level 3: heterogeneity-induced competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$



$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$

level 1: homogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1, \dots, t_R) = \prod_r \overline{\mathcal{P}}(t_r | \mathbf{z}_i)
\mathcal{P}(t_1, \dots, t_R | \mathbf{z}) = \prod_r \mathcal{P}(t_r | \mathbf{z})$$

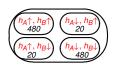
h_A, h_B 1000

level 2: heterogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathcal{P}(t_r|\mathbf{z})$$

level 3: heterogeneity-induced competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$



$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$

level 1: homogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \overline{\mathcal{P}}(t_r|\mathbf{z}_i)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathcal{P}(t_r|\mathbf{z})$

h_A, h_B 1000

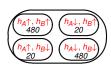
level 2: heterogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathcal{P}(t_r|\mathbf{z})$$



level 3: heterogeneity-induced competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$



$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$

level 1: homogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \overline{\mathcal{P}}(t_r|\mathbf{z}_i)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathcal{P}(t_r|\mathbf{z})$

h_A, h_B 1000

level 2: heterogeneous cohort, no competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) = \prod_r \mathcal{P}(t_r|\mathbf{z})$$



level 3: heterogeneity-induced competing risks

$$\mathcal{P}_i(t_1,\ldots,t_R) = \prod_r \mathcal{P}_i(t_r)
\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$$



$$\mathcal{P}_i(t_1,\ldots,t_R) \neq \prod_{r=1} \mathcal{P}_i(t_r)$$

 $\mathcal{P}(t_1,\ldots,t_R|\mathbf{z}) \neq \prod_r \mathcal{P}(t_r|\mathbf{z})$

Heterogeneity-induced competing risks

Natural description

covariate-conditioned joint *distribution* of all cause-specific hazard rates:

$$\mathcal{W}[\textit{h}_1,\ldots,\textit{h}_{\textit{R}}|\textbf{z}] = \frac{\sum_{\textit{i},\textbf{z}_{\textit{i}}=\textbf{z}} \prod_{\textit{r}} \delta_{\text{F}}[\textit{h}_{\textit{r}} - \textit{h}_{\textit{r}}^{\textit{i}}]}{\sum_{\textit{i},\textbf{z}_{\textit{i}}=\textbf{z}} 1}$$

 $h_r^i = \{h_r^i(t)\}$ risk r hazard rate of individual i

Disabling non-primary risks:

$$h_r^i \rightarrow 0$$
 for all $r > 1$

$$\mathcal{W}[h_1,\ldots,h_R|\mathbf{z}] \to \mathcal{W}[h_1|\mathbf{z}] \prod_{r>1} \delta_F[h_r] \qquad \mathcal{W}[h_1|\mathbf{z}] = \frac{\sum_{i,\mathbf{z}_i=\mathbf{z}} \delta_F[h_1-h_1']}{\sum_{i,\mathbf{z}_i=\mathbf{z}} 1}$$

Data log-likelihood

$$\mathcal{L}(D|\mathcal{W}) = \sum_{i=1}^{N} \log \int \{\mathrm{d}h_1 \dots \mathrm{d}h_R\} \ \mathcal{W}[h_1, \dots, h_R|\mathbf{z}_i] \ h_{r_i}(t_i) \mathrm{e}^{-\sum_{r=1}^{R} \int_0^{t_i} \mathrm{d}s \ h_r(s)}$$

Heterogeneity-induced competing risks

Natural description

covariate-conditioned joint *distribution* of all cause-specific hazard rates:

$$\mathcal{W}[\textit{h}_1,\ldots,\textit{h}_\textit{R}|\textbf{z}] = \frac{\sum_{\textit{i},\textbf{z}_\textit{i}=\textbf{z}} \prod_{\textit{r}} \delta_{\text{F}}[\textit{h}_\textit{r} - \textit{h}_\textit{r}^\textit{i}]}{\sum_{\textit{i},\textbf{z}_\textit{i}=\textbf{z}} 1}$$

 $h_r^i = \{h_r^i(t)\}$ risk r hazard rate of individual i

Disabling non-primary risks:

$$h_r^i o 0$$
 for all $r > 1$

$$\mathcal{W}[h_1,\ldots,h_R|\mathbf{z}] \rightarrow \mathcal{W}[h_1|\mathbf{z}] \prod_{r>1} \delta_F[h_r] \qquad \mathcal{W}[h_1|\mathbf{z}] = \frac{\sum_{i,\mathbf{z}_i=\mathbf{z}} \delta_F[h_1-h_1']}{\sum_{i,\mathbf{z}_i=\mathbf{z}} 1}$$

Data log-likelihood

$$\mathcal{L}(D|\mathcal{W}) = \sum_{i=1}^{N} \log \int \{\mathrm{d} h_1 \dots \mathrm{d} h_R\} \ \mathcal{W}[h_1, \dots, h_R | \boldsymbol{z}_i] \ h_{r_i}(t_i) \mathrm{e}^{-\sum_{r=1}^{R} \int_0^{t_i} \mathrm{d} s \ h_r(s)}$$

Heterogeneity-induced competing risks

Natural description

covariate-conditioned joint *distribution* of all cause-specific hazard rates:

$$\mathcal{W}[\textit{h}_1,\ldots,\textit{h}_{\textit{R}}|\textbf{z}] = \frac{\sum_{\textit{i},\textbf{z}_{\textit{i}}=\textbf{z}} \prod_{\textit{r}} \delta_{\text{F}}[\textit{h}_{\textit{r}} - \textit{h}_{\textit{r}}^{\textit{i}}]}{\sum_{\textit{i},\textbf{z}_{\textit{i}}=\textbf{z}} 1}$$

 $h_r^i = \{h_r^i(t)\}$ risk r hazard rate of individual i

Disabling non-primary risks:

$$h_r^i \rightarrow 0$$
 for all $r > 1$

$$\mathcal{W}[h_1,\ldots,h_R|\mathbf{z}] \rightarrow \mathcal{W}[h_1|\mathbf{z}] \prod_{r>1} \delta_{\mathrm{F}}[h_r] \qquad \mathcal{W}[h_1|\mathbf{z}] = \frac{\sum_{i,\mathbf{z}_i=\mathbf{z}} \delta_{\mathrm{F}}[h_1-h_1']}{\sum_{i,\mathbf{z}_i=\mathbf{z}} 1}$$

Data log-likelihood:

$$\mathcal{L}(D|\mathcal{W}) = \sum_{i=1}^N \log \int \{\mathrm{d} h_1 \dots \mathrm{d} h_R\} \; \mathcal{W}[h_1, \dots, h_R | \boldsymbol{z}_i] \; h_{r_i}(t_i) \mathrm{e}^{-\sum_{r=1}^R \int_0^{t_i} \mathrm{d} s \; h_r(s)}$$

Decontamination formulae

'crude' cause-specific quantities:

$$\begin{array}{lcl} S_r(t|\mathbf{z}) & = & \mathrm{e}^{-\int_0^t \mathrm{d} s \; h_r(s|\mathbf{z})} \\ h_r(t|\mathbf{z}) & = & \frac{\int \{\mathrm{d} h_1 \ldots \mathrm{d} h_R\} \; \mathcal{W}[h_1, \ldots, h_R|\mathbf{z}] \; h_r(t) \mathrm{e}^{-\sum_{r'} \int_0^t \mathrm{d} s \; h_{r'}(s)}}{\int \{\mathrm{d} h_1 \ldots \mathrm{d} h_R\} \; \mathcal{W}[h_1, \ldots, h_R|\mathbf{z}] \; \mathrm{e}^{-\sum_{r'} \int_0^t \mathrm{d} s \; h_{r'}(s)}} \end{array}$$

decontaminated

$$\begin{split} \tilde{S}_r(t|\mathbf{z}) &= \int \{\mathrm{d}h_1 \dots \mathrm{d}h_R\} \ \mathcal{W}[h_1, \dots, h_R|\mathbf{z}] \ \mathrm{e}^{-\int_0^t \mathrm{d}\mathbf{s} \ h_r(\mathbf{s})} \\ \tilde{h}_r(t|\mathbf{z}) &= \frac{\int \{\mathrm{d}h_1 \dots \mathrm{d}h_R\} \ \mathcal{W}[h_1, \dots, h_R|\mathbf{z}] \ h_r(t) \mathrm{e}^{-\int_0^t \mathrm{d}\mathbf{s} \ h_r(\mathbf{s})}}{\int \{\mathrm{d}h_1 \dots \mathrm{d}h_R\} \ \mathcal{W}[h_1, \dots, h_R|\mathbf{z}] \ \mathrm{e}^{-\int_0^t \mathrm{d}\mathbf{s} \ h_r(\mathbf{s})}} \end{split}$$

Decontamination formulae

'crude' cause-specific quantities:

$$\begin{array}{lcl} S_r(t|\mathbf{z}) & = & \mathrm{e}^{-\int_0^t \mathrm{d} s \; h_r(s|\mathbf{z})} \\ h_r(t|\mathbf{z}) & = & \frac{\int \{\mathrm{d} h_1 \ldots \mathrm{d} h_R\} \; \mathcal{W}[h_1, \ldots, h_R|\mathbf{z}] \; h_r(t) \mathrm{e}^{-\sum_{r'} \int_0^t \mathrm{d} s \; h_{r'}(s)}}{\int \{\mathrm{d} h_1 \ldots \mathrm{d} h_R\} \; \mathcal{W}[h_1, \ldots, h_R|\mathbf{z}] \; \mathrm{e}^{-\sum_{r'} \int_0^t \mathrm{d} s \; h_{r'}(s)}} \end{array}$$

decontaminated:

$$\begin{split} \tilde{S}_r(t|\mathbf{z}) &= \int \{\mathrm{d}h_1 \dots \mathrm{d}h_R\} \ \mathcal{W}[h_1, \dots, h_R|\mathbf{z}] \ \mathrm{e}^{-\int_0^t \mathrm{d}\mathbf{s} \ h_r(\mathbf{s})} \\ \tilde{h}_r(t|\mathbf{z}) &= \frac{\int \{\mathrm{d}h_1 \dots \mathrm{d}h_R\} \ \mathcal{W}[h_1, \dots, h_R|\mathbf{z}] \ h_r(t) \mathrm{e}^{-\int_0^t \mathrm{d}\mathbf{s} \ h_r(\mathbf{s})}}{\int \{\mathrm{d}h_1 \dots \mathrm{d}h_R\} \ \mathcal{W}[h_1, \dots, h_R|\mathbf{z}] \ \mathrm{e}^{-\int_0^t \mathrm{d}\mathbf{s} \ h_r(\mathbf{s})}} \end{split}$$

Parametrisations of $W[h_1, \ldots, h_R | \mathbf{z}]$

proportional hazards at level of individuals

$$\mathcal{W}[h_1, \dots, h_R | \mathbf{z}] = \int d\boldsymbol{\beta}_1 \dots d\boldsymbol{\beta}_R \int \{d\lambda_1 \dots d\lambda_R\} \, \mathcal{M}(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_R; \lambda_1, \dots \lambda_R) \\ \times \prod_r \delta_F \Big[h_r - \lambda_r e^{\beta_r^0 + \sum_{\mu=1}^{\rho} \beta_r^{\mu} z_{\mu}} \Big]$$

includes as special cases:

Cox regression, frailty models, random effect models, ...

• e.g. latent class heterogeneity:

$$\mathcal{M}(\beta_1, \dots, \beta_R; \lambda_1, \dots, \lambda_R) = \mathcal{M}(\beta_1, \dots, \beta_R) \prod_{r=1}^R \delta_F[\lambda_r - \hat{\lambda}_r]$$

$$\mathcal{M}(\beta_1, \dots, \beta_R) = \sum_{\ell=1}^L w_\ell \prod_{r=1}^R \delta(\beta_r - \hat{\beta}_r^\ell)$$

 $\hat{\boldsymbol{\beta}}_r^{\ell} = (\hat{\beta}_r^{\ell 0}, \dots, \hat{\beta}_r^{\ell p})$

Parametrisations of $W[h_1, \ldots, h_R | \mathbf{z}]$

proportional hazards at level of individuals

$$\mathcal{W}[h_1, \dots, h_R | \mathbf{z}] = \int d\boldsymbol{\beta}_1 \dots d\boldsymbol{\beta}_R \int \{d\lambda_1 \dots d\lambda_R\} \, \mathcal{M}(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_R; \lambda_1, \dots \lambda_R) \\ \times \prod_r \delta_F \Big[h_r - \lambda_r e^{\beta_r^0 + \sum_{\mu=1}^{\rho} \beta_r^{\mu} z_{\mu}} \Big]$$

includes as special cases:

Cox regression, frailty models, random effect models, ...

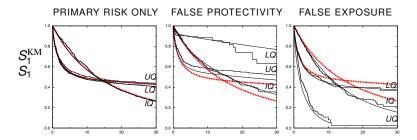
• e.g. latent class heterogeneity:

$$\mathcal{M}(\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{R};\lambda_{1},\ldots,\lambda_{R}) = \mathcal{M}(\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{R}) \prod_{r=1}^{R} \delta_{F}[\lambda_{r} - \hat{\lambda}_{r}]$$

$$\mathcal{M}(\boldsymbol{\beta}_{1},\ldots,\boldsymbol{\beta}_{R}) = \sum_{\ell=1}^{L} \boldsymbol{w}_{\ell} \prod_{r=1}^{R} \delta(\boldsymbol{\beta}_{r} - \hat{\boldsymbol{\beta}}_{r}^{\ell})$$

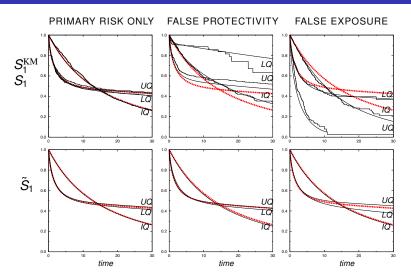
$$\hat{oldsymbol{eta}}_r^\ell = (\hat{eta}_r^{\ell 0}, \dots, \hat{eta}_r^{\ell p})$$

Applications – synthetic data



S₁^{KM}: Kaplan-Meier S₁: crude survival curve red dashed: true survival curves

Applications - synthetic data



S₁^{KM}: Kaplan-Meier S₁: crude survival curve red dashed: true survival curves \tilde{S}_1 : decontaminated curves

retrospective class identification

$$P(\ell|t,r,\mathbf{z}) = \frac{\mathbf{w}_{\ell} \ \mathrm{e}^{\hat{\boldsymbol{\beta}}_{r}^{\ell} \cdot \mathbf{z} - \sum_{r'=1}^{R} \exp(\hat{\boldsymbol{\beta}}_{r'}^{\ell} \cdot \mathbf{z}) \int_{0}^{t} \mathrm{d}s \ \hat{\lambda}_{r'}(s)}{\sum_{\ell'=1}^{L} \mathbf{w}_{\ell'} \ \mathrm{e}^{\hat{\boldsymbol{\beta}}_{r}^{\ell'} \cdot \mathbf{z} - \sum_{r'=1}^{R} \exp(\hat{\boldsymbol{\beta}}_{r'}^{\ell'} \cdot \mathbf{z}) \int_{0}^{t} \mathrm{d}s \ \hat{\lambda}_{r'}(s)}$$

Data

3 classes, $W_1 = W_2 = W_3 = \frac{1}{3}$ 2 competing risks

$$\beta_1^1 = (0.5, 0.5, 0.5) + (2, 0, 2)$$

$$\beta_1^2 = (0.5, 0.5, 0.5) + (-2, -2, 0)$$

$$\beta_1^3 = (0.5, 0.5, 0.5) + (0, 2, -2)$$

each individual i: point (p_1^i, p_2^i, p_3^i) in \mathbb{R}^3 $p_\ell^i = P(\ell|t_i, r_i, \mathbf{z}_i)$

retrospective class identification

$$P(\ell|t,r,\mathbf{z}) = \frac{\mathbf{w}_{\ell} \ \mathrm{e}^{\hat{\boldsymbol{\beta}}_{r}^{\ell} \cdot \mathbf{z} - \sum_{r'=1}^{R} \exp(\hat{\boldsymbol{\beta}}_{r'}^{\ell} \cdot \mathbf{z}) \int_{0}^{t} \mathrm{d}s \ \hat{\lambda}_{r'}(s)}{\sum_{\ell'=1}^{L} \mathbf{w}_{\ell'} \ \mathrm{e}^{\hat{\boldsymbol{\beta}}_{r}^{\ell'} \cdot \mathbf{z} - \sum_{r'=1}^{R} \exp(\hat{\boldsymbol{\beta}}_{r'}^{\ell'} \cdot \mathbf{z}) \int_{0}^{t} \mathrm{d}s \ \hat{\lambda}_{r'}(s)}$$

Data:

3 classes,

$$w_1 = w_2 = w_3 = \frac{1}{3}$$

2 competing risks

$$\begin{split} \beta_1^1 &= (0.5, 0.5, 0.5) + (2, 0, 2) \\ \beta_1^2 &= (0.5, 0.5, 0.5) + (-2, -2, 0) \\ \beta_1^3 &= (0.5, 0.5, 0.5) + (0, 2, -2) \end{split}$$

each individual i: point (p_1^i, p_2^i, p_3^i) in \mathbb{R}^3 $p_\ell^i = P(\ell|t_i, r_i, \mathbf{z}_i)$

retrospective class identification

$$P(\ell|t,r,\mathbf{z}) = \frac{\mathbf{w}_{\ell} \ \mathrm{e}^{\hat{\boldsymbol{\beta}}_{r}^{\ell} \cdot \mathbf{z} - \sum_{r'=1}^{R} \exp(\hat{\boldsymbol{\beta}}_{r'}^{\ell} \cdot \mathbf{z}) \int_{0}^{t} \mathrm{d}s \ \hat{\lambda}_{r'}(s)}{\sum_{\ell'=1}^{L} \mathbf{w}_{\ell'} \ \mathrm{e}^{\hat{\boldsymbol{\beta}}_{r}^{\ell'} \cdot \mathbf{z} - \sum_{r'=1}^{R} \exp(\hat{\boldsymbol{\beta}}_{r'}^{\ell'} \cdot \mathbf{z}) \int_{0}^{t} \mathrm{d}s \ \hat{\lambda}_{r'}(s)}$$

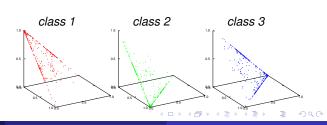
Data:

3 classes, $w_1 = w_2 = w_3 = \frac{1}{3}$ 2 competing risks

$$eta_1^1 = (0.5, 0.5, 0.5) + (2, 0, 2)$$

 $eta_1^2 = (0.5, 0.5, 0.5) + (-2, -2, 0)$
 $eta_1^3 = (0.5, 0.5, 0.5) + (0, 2, -2)$

each individual i: point (p_1^i, p_2^i, p_3^i) in \mathbb{R}^3 $p_\ell^i = P(\ell|t_i, r_i, \mathbf{z}_i)$



Applications – ULSAM prostate cancer data set

N = 2047,

primary events: 208 death (non-PC): 910 end of trial: 929

covariates: body mass index (real-valued) serum selenium level (integer) physical activity, leisure time physical activity, work (0/1/2) smoking (0/1/2)

Cox regression

BMI	selenium	phys1	phys2	smoking
$\beta_1 = 0.14$	$\beta_2 = -0.15$	$\beta_3 = 0.20$	$\beta_4 = -0.09$	

 $HR_{\mu} = \exp(2\beta_{\mu})$

Applications – ULSAM prostate cancer data set

N = 2047,

primary events: 208 death (non-PC): 910 end of trial: 929

covariates: body mass index (real-valued) serum selenium level (integer)

physical activity, leisure time (0/1/2) physical activity, work (0/1/2)

smoking (0/1/2)

Cox regression:

BMI	selenium	phys1	phys2	smoking
$\beta_1 = 0.14$	$\beta_2 = -0.15$	$\beta_3 = 0.20$	$\beta_4 = -0.09$	$\beta_5 = -0.08$

$$HR_{\mu} = \exp(2\beta_{\mu})$$

	CLASSES	PRIMARY RISK	SECONDARY RISK
		208 events	910 events
		BMI selen phys1 phys2 smok	BMI selen phys1 phys2 smok
Cox		0.14 -0.15 0.20 -0.09 -0.08	
new		1.22 -0.41 0.73 -0.01 1.43 -0.07 -0.16 0.19 -0.10 -0.27	0.82 -0.42 -0.31 -0.14 1.35 0.10 -0.07 -0.07 0.04 0.18
	frailties:	$\beta_{10}^1 - \beta_{10}^2 = -4.61$ (HR 0.010)	$\beta_{20}^1 - \beta_{20}^2 = -4.06$ (HR 0.017)

healthy class: strong effects of covariates,

BMI and smoking important risk factors

frail class: weak effects of covariates,

BMI and smoking weakly protective

(reverse causal effects?)

	CLASSES	PRIMARY RISK	SECONDARY RISK	
		208 events	910 events	
		BMI selen phys1 phys2 smok	BMI selen phys1 phys2 smok	
Cox		0.14 -0.15 0.20 -0.09 -0.08		
new		1.22 -0.41 0.73 -0.01 1.43 -0.07 -0.16 0.19 -0.10 -0.27	0.82 -0.42 -0.31 -0.14 1.35 0.10 -0.07 -0.07 0.04 0.18	
	frailties:	$\beta_{10}^1 - \beta_{10}^2 = -4.61$ (HR 0.010)	$\beta_{20}^1 - \beta_{20}^2 = -4.06 \text{ (HR 0.017)}$	

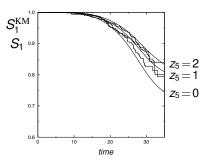
healthy class: strong effects of covariates,

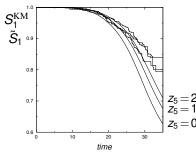
BMI and smoking important risk factors

frail class: weak effects of covariates,

BMI and smoking weakly protective

(reverse causal effects?)





S₁^{KM}: Kaplan-Meier,

 S_1 : crude survival curves, \tilde{S}_1 : decontaminated curves

 $z_5 = 0$: non-smokers

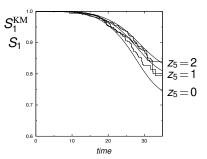
 $z_5 = 1$: ex-smokers

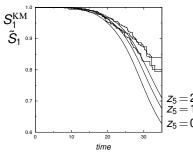
 $z_5 = 2$: smokers

false protectivity due to competing risks

Cox/KM underestimate PC risk

BMI & smoking important risk factors in *healthy class*, frail class dominate Cox regression and survival curves (due to larger nr of events)





S₁^{KM}: Kaplan-Meier,

 S_1 : crude survival curves, \tilde{S}_1 : decontaminated curves

 $z_5 = 0$: non-smokers

 $z_5 = 1$: ex-smokers

 $z_5 = 2$: smokers

false protectivity due to competing risks

Cox/KM underestimate PC risk

BMI & smoking important risk factors in *healthy class*, frail class dominate Cox regression and survival curves (due to larger nr of events)

Summary

- competing risk problem can be solved if we assume risk correlations are caused by residual heterogeneity (heterogeneity not captured by covariates)
- formulae for decontaminated survival curves, expressed in terms of $W[h_1, \ldots, h_R | \mathbf{z}]$ covariate-conditioned joint distribution of hazard rates for all risks
- Natural parametrisation of W[h₁,..., h_R|z], includes standard methods as special cases (Cox, frailty models, random effects models, ...)
- Application to synthetic data with competing risks: method detects structure, parameters, and survival curves correctly
- Application to ULSAM cancer data: new intuitive explanations for previously unexplained results

Thanks to

Collaborators

Hans van Baardewijk, Hans Garmö Mieke van Hemelrijck, Lars Holmberg

Discussions

Shola Agbaje, Salma Ayis, Maria D'Iorio, Niels Keiding, Katherine Lawler

Funding

