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‘next generation’ data ...
... previous generation analysis
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Bayesian analysis of imaging data

Fluorescence Lifetime Imaging
data: arrival times of photons

goal

emission lifetime of
light emitting molecules

fast processes:
small nr of photons

problem with small photon nrs

– to fit to decay curve,
need histogram of arrival times

– large bins: time resolution poor ...
small bins: vertical resolution poor ...
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Bayesian analysis

photon detection = emission physics + instrument + noise
parameters θ

forward model : p(data|θ), prior : p(θ)

calculate p(data|θ)
Bayesian identity:

p(θ|data) =
p(data|θ)p(θ)∫

dθ′ p(data|θ′)p(θ′)

benefits

– exact, statistically optimal
– estimates with error bars
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‘forward modelling’

includes:

– instrument response function
– artifacts of repetitive excitation
– multi-exponential delay distributions
– Bayesian model selection
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example:
human epithelial cancer cells

compared to existing methods:
half nr photons needed for same accuracy
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Protein interaction networks

Quantify topology:

p(k):
fraction of nodes that
have k neighbours (degree distr)

W (k , k ′):
fraction of links that
connect nodes with k and k ′ neighbours

Mathematical tools

graph theory, information-theory,
and statistical physics

tailored random graph families,
characterised by {p,W}:

quantify complexity, appropriate network null models,
algorithms for correct randomisation,

proxies for process modelling, network dissimilarity measures, ...
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Quantify network
dissimilarity
using
information
theory
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Database Datasets Data Integration

PPINs of same species are similar only if measured via same method

strong bias in PPIN data, induced by experimental method,
that overrules species information
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analysis of
data contamination by experimental bias

node undersampling:

x(ki): prob to
detect protein i

•i • j
�
�@
@ �

�@
@

`ij =1 • j
�
�@
@ �

�@
@

◦i `′ij =0

link undersampling:

y(ki , kj): prob to
detect interaction (i , j)

•i • j
�
�@
@ �

�@
@

`ij =1 •i • j
�
�@
@ �

�@
@

`′ij =0

link oversampling:

z(ki , kj)/N: prob to
report false positive
interaction

•i • j
�
�@
@ �

�@
@

`ij =0 •i • j
�
�@
@ �

�@
@

`′ij =1

methods from statistical physics:

relation between measured p(k) and W (k , k ′)
and true p(k) and W (k , k ′)

in terms of x(k), y(k), z(k , k ′)
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colour plots of
W (k , k ′)/W (k)W (k ′):

true data

measurement prediction
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Bayesian decontamination of PPIN data

– protein species `=1 . . . L
unknown networks c`

– experimental methods α=1 . . .M (Y2H, PCA, MS, ...)
unknown error parameters θα = {xα(k), yα(k , k ′), zα(k , k ′)}

matrix of M×L
observed networks c`,α: method a

?

method b

?

method c

?

. . .

species I -

species II -

species III -

...recover:

true PINs {c1, . . . , cL}
sampling pars {θ1, . . . , θM}
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Analysis of signalling processes

proteome:
usual description
reaction equations

cannot solve eqns analytically ...

uncertain pathways and parameters ...

too many components for numerical exploration ...
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statistical physics

∼1024 positions, velocities
(~x1, ~v1), (~x2, ~v2), . . .

Newton’s equations
d
dt (~x1, ~v1) = . . . , d

dt (~x2, ~v2) = . . . ← don’t try to solve these!

macroscopic description:
densities, correlation functions,
perturbation response functions,
phase transitions ...
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statistical physics statistical biology

∼1024 positions, velocities ∼104 concentr of proteins & complexes
(~x1, ~v1), (~x2, ~v2), . . . ~x1, ~x2, ~x3, . . .

Newton’s equations reaction equations
d
dt (~x1, ~v1) = ..., d

dt (~x2, ~v2) = ... d
dt
~x1 = ..., d

dt
~x2 = ..., d

dt
~x3 = ...

macroscopic theory: macroscopic theory:
densities, correlation functions,
response functions (to perturbations), ???
phase transitions ...
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numerical illustration

2 post-transl states/protein,
binary complexes,
random topologies & rates,
7 partners on average

dashed: complexes
solid: unbound proteins
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depends only on param & network statistics!
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Signalling dynamics in the proteome

from many-particle physics
to many-particle biology

notation:

i = 1 . . .N labels proteins
xαi : concentr of protein i in state α
xij : concentration of dimer i � j

events:
rate:

complex formation: (i , α) + (j , β)→ (i � j) kαβ+ij xαi xβj
complex dissociation: (i � j)→ (i , α) + (j , β) kαβ−ij xij

conformation change: (i , α)→ (i , β) λαβi xαi
protein degradation: (i , α)→ ∅ γαi xαi
protein synthesis: ∅ → (i , α) θαi
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reaction eqns:

d
dt

xαi =
∑

j

cij

complex formation & dissociation︷ ︸︸ ︷∑
β

[kαβ−ij xij−kαβ+ij xαi xβj ] +

post−transl modification︷ ︸︸ ︷∑
β

[λβαi xβi −λ
αβ
i xαi ]−

decay︷ ︸︸ ︷
γαi xαi

d
dt

xij = cij

∑
αβ

[kαβ+ij xαi xβj − kαβ−ij xij ]

tailored random PPIN (prescribed degrees)
cij = 0, 1

p(c) =

∏
i δki ,

∑
j 6=i cij

Z

∏
i

[
c0δcii ,1 + (1−c0)δcii ,0

]

draw reaction rates randomly
from realistic distributions P(k+, k−), P(λ, γ)
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generating functional analysis

calculate correlations, response functions etc ...
in heterogeneous many-variable systems
without solving microscopic equations!

after calculations ...
(path integral techniques, saddle-point integration, etc)

for N →∞: exact
macroscopic equations

W = G1[W ], D = G2[W ], G1,2 : complicated but exact formulas

macroscopic
quantities: D[{x}|{y}], W [{x}|{y}]

{x} : trajectories xα(t)

{y} : time dependent production rates yα(t)

D[{x}|{y}] describes response
to single-node perturbations
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motivation:
immune cancer therapies

Cytokine signalling in adaptive immune system

B-clones bµ
each can recognise specific antigen aµ

T-clones σi

coordinate B-clones via
cytokines ξµi = −1, 0, 1
(ξµi =−1: contract, ξµi =+1: expand)

model of
Barra and Agliari:

p(σ,b) =
e−
√
βH(σ,b)

Z
H(σ,b) =

1
2
√
β

nB∑
µ=1

b2
µ −

nB∑
µ=1

bµ

expansion force on clone µ︷ ︸︸ ︷( nT∑
i=1

ξµi σi+λµaµ
)
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‘integrate out’ the B-clones,
results in model of interacting T-clones:

p(σ) =
e−βH(σ)

ZT
H(σ) = −1

2

nT∑
i,j=1

σiσj

nB∑
µ=1

ξµi ξ
µ
j −

nT∑
i=1

σi

NB∑
µ=1

λµgµξµi

nB ∼ 108

nT ∼ 2.108

how can promiscuous T-clones coordinate an
extensive number of B-clones simultaneously?
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relevant parameters in
T−T network:

c: T -clone promiscuity
α: nB/nT

αc2 < 1 αc2 = 1 αc2 > 1
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solve model as a statistical mechanics one
(i.e. calculate asymptotic disorder-averaged free energy)

after calculation (finite connectivity replica analysis):
exact formula for clonal cross-talk transition lines

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

c = 2

c = 1

c = 3

c = 4

αc2

β−1

clonal cross-talk

parallel processing of
extensively many clones

α: nB/nT

c: T -cell promiscuity
β−1: noise in clonal dynamics
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Tools to combat overfitting
in covariate-to-outcome analysis

Pin down the problem

predict ‘safe’ ratio covariates/sample
for Cox regression?

Eliminate redundant information

improve covariates/samples ratio
latent vars (information theory), find ‘true’ dimension

Model (avoid?) overfitting effects

handle statistics of full parameter uncertainty,
while keeping computations feasible
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Tools to combat overfitting
in covariate-to-outcome analysis

Pin down the problem

predict ‘safe’ ratio covariates/samples
for Cox regression?

Eliminate redundant information

improve covariates/samples ratio
latent vars (information theory), find ‘true’ dimension

Model (avoid?) overfitting effects

handle statistics of full parameter uncertainty,
while keeping computations feasible

all based on
Bayesian principles
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overfitting in
Proportional hazards regression

associations between covariates and risk
for time-to-event outcome data,
multivariate version for outcome prediction

p-values, confidence intervals
don’t measure overfitting!
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regression
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uncorrelated covariates
o: 1000 samples & cases
•: 500 samples & cases

rule of thumb:
‘10 samples per case’
too optimistic ...

developing analytical theory,
that predicts onset of overftting
in terms of statistics of covariates
and nr of samples and cases
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Bayesian latent variable methods
for survival analysis

Assume:

(a) data Yk ∈ IRd are high-dim windows
on low dim latent variables X ∈ IRq

(b) X actually drives outcome

(c) q < d

Y
1

T, Δ

XY
2

e.g. gene expression

other
biomarkers

clinical outcome

?
nonlinear stochastic relations
Yk = fk (X ) + noise

dimension detection: optimal q?

find most probable latent variables X

use X to predict clinical outcome

Gaussian process latent variable model (GPLVM)
combined with Weibull proportional hazards model (WPHM)

ACC Coolen (KCL) Mathematics in cancer research January 2015 41 / 63



Results from METABRIC data Y : scores of 28 gene signatures
gene signature data outcome: overall survival time
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Discriminant analysis
data: D = {(x1, y1), . . . , (xN , yN)}

xi : covariates
yi : class labels

goal:
class y of new observation x

model based approaches

parametrise p(x|y ,θ),
estimate θ from data,
then use: p(y |x,θ) = p(x|y ,θ)p(y)∑

y′ p(x|y ′,θ)p(y ′)

popular method:
mclustDA (Fraley & Raftery)
MAP estimation of θ

high dim data, d∼103, 104:
optimise ∼103, 108 pars ...

serious overfitting,
CPU demands prohibitive
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Bayesian multi-class outcome prediction
for high-dimensional data

1 in view of overfitting:
full Bayesian parameter estimation,
instead of MAP (e.g. mclustDA)

MAP : p(y |x,D) = p(y |x,θMAP), θMAP = argmaxθ p(θ|D)

Bayes : p(y |x,D) =

∫
dθ p(y |x,θ)p(θ|D)

p(θ|D) =
p(θ)p(D|θ)∫

dθ′ p(θ′)p(D|θ′)

2 computational feasibility:
evaluate d-dimensional integrals analytically

3 desirable:
determine MAP-optimal hyper-pars analytically
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simplest model

����
&%
'$&%
'$

Gaussian
covariate
distribution
for each class

p(x|y ,θ) = e−
1
2 (x−µy )

2/α2
y

(αy
√

2π)d

µy : class signatures,
with Gaussian priors

generative
all data assumed
informative

p(x, x1, . . . , xn, y , y1, . . . , yn|θ) = p(x, y |θ)
n∏

i=1

p(xi , yi |θ)

discriminative
extract only link
between x and y

p(x1, . . . , xn, y |x, y1, . . . , yn,θ) = p(y |x,θ)
n∏

i=1

p(xi |yi ,θ)

1 full Bayesian parameter estimation: X
2 evaluate d-dimensional integrals analytically: X
3 determine optimal hyper-pars analytically: X
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Signature- versus variability-based classification

weak class ‘signatures’ in data:

classification still possible,
but will become variability-based:
(increasingly effective for large d)

d = 10

x2

p(x2|y)

d =100

x2

d =1000

x2
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d

ET ,V

d

LOOCV error curves, averaged over 100 data sets,
n=100 samples with identical class centres

Left: f1 f2 α1 α2

0.5 0.5 0.24 0.28

Right: f1 f2 f3 α1 α2 α3

0.33 0.33 0.34 0.24 0.26 0.28
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d

ET ,V

Error curves (100 training/100 validation), averaged over 100 data sets,
n=100 samples with identical class centres

f1 f2 α1 α2

T 0.1 0.9 0.24 0.28
V 0.9 0.1 0.24 0.28

mclustDA and method I struggle when
training and validation sets differ in class membership balance
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d

ET ,V
Triple-negative breast cancer
prediction of survival
from gene expression

y =1: BC death within 5 yrs
y =2: survived for at least 5 yrs

n=165, d =22,035
(f1, f2) = (0.25, 0.75)

performance measured via LOOCV,
genes ranked by correlation with outcome

all methods give similar results
Bayesian methods can go to much larger d
min EV ≈ 0.24 (∼ going for largest class)

either gene expression data confer no predictive information on
5 yr TNBC survival, or all methods suffer from model mismatch
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d

ET ,V
TCGA Breast cancer data
prediction of receptor status

y =1: ER-negative, HER2-negative
y =2: ER-positive, HER2-negative
y =3: ER-negative, HER2-positive
y =4: ER-positive, HER2-positive

n=500, d =17,332
(f1, f2, f3, f4) = (0.19, 0.66, 0.04, 0.11)

performance measured via LOOCV,
genes ranked by correlation with outcome

optimal predictive information in first 100 ranked genes
Bayesian methods can go to much larger d
min EV ≈ 0.14 (significant)

gene expression profiles of breast cancer patients are
reliable predictors of their ER and HER2 status
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conventional methods Kaplan-Meier estimators
Cox regression

.....cannot handle disease/host heterogeneity
beyond variability in covariates

assume different risks are uncorrelated

dangerous when many censoring events ...

primary risk only primary+secondary risk

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

time

UQ

LQ

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

time

LQ

UQ

predicted
survival
probabilities
can be
badly wrong ...
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More advanced methods

model all risks and their relations, at individual and cohort level

event times assumed uncorrelated only at the level of individuals

individuals with same covariates may have distinct risk profiles

Bayesian analysis, so reliable error bars

Latent class heterogeneity:'

&

$

%

'

&

$

%
class 1

fraction: w1

for all risks r :

hi
r (t) = λr (t)e

β10
r +β11

r z1
i +...+β

1p
r zp

i

· · · · · · · · ·

'

&

$

%
class L

fraction: wL

for all risks r :

hi
r (t) = λr (t)e

βL0
r +βL1

r z1
i +...+β

Lp
r zp

i

prop hazards within sub classes =⇒/ prop hazards at cohort level!

can account for:

association heterogeneity, non-proportional hazards,
covariate interactions, competing risks, ...
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synthetic data

Kaplan-Meier
Cox-Breslow
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synthetic data

Kaplan-Meier
Cox-Breslow
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Bayesian retrospective class identification

P(`|t , r , z) =
w` e

ˆβ
`

r ·z−
∑R

r′=1 exp( ˆβ
`

r′ ·z)
∫ t

0 ds λ̂r′ (s)∑L
`′=1 w`′ e

ˆβ
`′

r ·z−
∑R

r′=1
exp( ˆβ

`′

r′ ·z)
∫ t

0 ds λ̂r′ (s)

Data:

3 classes,
w1=w2=w3=

1
3

2 competing risks

β1
1 = (0.5, 0.5, 0.5) + (2, 0, 2)

β2
1 = (0.5, 0.5, 0.5) + (−2,−2, 0)

β3
1 = (0.5, 0.5, 0.5) + (0, 2,−2)

each individual i :
point (pi

1, p
i
2, p

i
3) in IR3

pi
` = P(`|ti , ri , zi)
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Prostate cancer study
on the ULSAM data set

N = 2047
primary events: 208
death (non-PC ): 910

hazard rates: end of trial: 929
HRj = e2βj

CLASSES PRIMARY RISK SECONDARY RISK

BMI selen phys1 phys2 smok BMI selen phys1 phys2 smok

Cox 0.14 -0.15 0.20 -0.09 -0.08

new w1=0.51 1.22 -0.41 0.73 -0.01 1.43 0.82 -0.42 -0.31 -0.14 1.35
w2=0.49 -0.07 -0.16 0.19 -0.10 -0.27 0.10 -0.07 -0.07 0.04 0.18

frailties: β1
10−β2

10=−4.61 (HR 0.010) β1
20−β2

20=−4.06 (HR 0.017)

healthy group: strong effects of covariates,
BMI and smoking important risk factors

frail group: weak effects of covariates,
BMI and smoking weakly protective
(reverse causal effect?)
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Breast cancer study
(AMORIS data base)
potential of serum lipids, measured prior
to diagnosis, to predict risk of BC death

N = 1798, all BC diagnosed

primary events (BC death): 259
secondary events (CV death): 179

tertiary events (other death): 423
censoring: 937

covariates:

triglycerides, cholesterol, glucose
age, 3 socio-economic variables

Cox regression:
no significant assoc

risk-specific KM curves:
no proportional hazards
in primary risk
(Cox invalid ...)

KM curves themselves
unreliable (competing
risks 2 and 3?)

triglycerides age
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heterogeneous model
predicts three classes,
explains non-monotonic relations

class 1, 57%:
triglycerides HR>1
age HR>1

class 2, 37%:
age HR< 1

class 3, 6%:
no significant assoc triglycerides age

correlations of class
membership probabilities
with covariates:

Class 1, older women:
triglycerides HR>1, age HR>1

Class 2, younger women:
age HR<1
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outcome:
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Bayesian latent class analysis of COIN data

hazard ratios:

FRET Her3 Her2-Her3 Her2 Cetuximab KRAS mut

Cox 0.5 1.0 1.8 1.1 0.7 1.7

new model:

class I, 40% 0.7 1.5 3.7 1.1 0.3 2.5

class II, 60% 0.6 1.2 0.7 0.9 1.1 1.4

higher overall risk in class II

two sub-cohorts, with similar base hazard rates,
but distinct overall frailties and associations.

methods provides retrospective class assignment

new tools to identify a priori the responders to Cetuximab?
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