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Networks and graphs

nodes (vertices): i,je {1,...,N}
links (edges): cj€{0,1}
no self-links: ci=0forallj
graph: c = {¢;}
ij:1 .
l N J

nondirected:  V(i,j): cj = Gj
directed: (i, f) : cj # G

if we model real-world systems by random graphs
we want these graphs to be realistic ...

i.e. to have appropriate domain-specific statistical characteristics



Quantify topology of nondirected graphs

> degrees,
degree sequence: ki(e) = > Cijs k(c) = (ki(c),. .., kn(c))
degree distribution: ~ p(k|e) = Z Ok k(e

> joint degree statistics
of connected nodes

1
Wk, K'[€) = —— S 6k ek &
(k. Klo) = iy 2 Cuduseord st ko k7 = K2

normalisation > W(k,K'|e) =1
kK'>0

assortativity / dissortativity : C = (kk"Y\w — (K)w{k")w



» marginals of W carry no info beyond degree statistics,
W(kle) = > W(k,K'|c) = p(k|e)k/ (k)
k/
so focus on:

W(k, K'|c)

N(k,k'|c) = W(k|c)W(k'|c)

if 3(k, k") with N(k, k'|c) # 1:
structural information in degree correlations

p(k)

human PIN
N = 9306
(k) =7.53




Quantify topology of directed graphs

links become arrows

> degrees, ) ; i i
degree sequences:  kI"(c) =X, ¢;  K"(€) = (KI(c), .., ki (c))
kiout(c) — Zj Ci, kout(c) — (k10ut(c)’ ceey kl(\)lut(c))

degree distribution:

ki — k= (K" k") pkle) = > oz

> joint in-out degree statistics
of connected nodes

W(k,K'|c) = Zc,,kk ki = k? k=k?



Graph classification / IN(N—1) \
via increasingly detailed G={0,1}2

feature prescription

/

Tailoring
random graphs

maximum entropy random graph ensembles,
p(c) with prescribed values for (k), p(k), W(k, k'), ...

— proxies for real networks in stat mech models
— complexity: how many graphs have same features as ¢? counting
— hypothesis testing: graphs as null models generation

N=1000: 2zNMN-1)10'%0:34 graphg
(universe has ~ 108 atoms ...)



Tailored random graph ensembles

(i) set G of allowed graphs,
(ii) probability measure p(c) on G

» Tailoring via hard constraints
impose values for observables: Q,(c)=Q,forp=1...p

59(c),§2
N(Q)

p(c|Q) = N(Q) = Z 5Q ), Q (# graphs in ensemble)
[+

with @ = (Q1,...,Qp)
note:

maximises Shannon entropy S
on G[Q] = {¢| Q(c) = Q} ZP )logp(e

s
e VOR Y -
eN(k)S[Q] —e e N (|Og 59(0),9 IOQN(Q)) :N(Q)



> Tailoring via soft constraints

impose averages for observables: Q,(¢c) =Q,forp=1...p
p(c): maximum entropy, subject to constraints

p(e|Q) = Z7' () eXon (), Z(Q) = eXnnu®
c
parameters w, :
to be solved fﬁom Vu: > p(el)Qu(e) = Q,
c

now all graphs ¢ can emerge,
but those with Q(c) ~ Q are most likely

effective # graphs N'(Q) defined via entropy:

N(Q) = eN<k>S[Q]7 S[Q] = _ﬁ Zp(c|§2) log p(c|?)
ceG



Example

nondirected graphs, ¢; = 0 for all /,
impose average connectivity via hard constraint,

Qe) =2 ¢
> demand }_; c; = N(k)

0504,
(el (k) = Xy

» calculate N((k)):

use dom = (2m)~ fﬂ dw el(n—mw

M) = [0 oo e (

_. 2T

c

I [ log(N/ <k>)+1] +O(log N)

sN(N=1)
2N(K)

k) =D 05,000
[

)



Example

nondirected graphs, ¢; = 0 for all /,
impose average connectivity via soft constraint,

Qe) =22 ¢
> demand (_; ¢j) = N(k)
1 ) )
Plelik) = e ™, Z(w) =Y e
Z(w) .
solved from: (k) = L 1 1og Z(w)
“ ' T dwN 9
> calculate Z(w) and w:
eZw
(k) = (N=1) 5
> rewrite probabilities:
e 1
plel () = [T [ 001 + g dar]

i<j

Erdds-Rényi ensemble
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Counting tailored random graphs

how many graphs
in each family? > G= {0, 1}%N(N—1) \
(k) = ...
pk)=...
Note:

solving models of interacting particle systems on tailored random graphs
(via replica method or generating functional analysis, for N — co):

feasible if we can compute the entropy of the graph ensemble!



entropy and complexity

» effective nr of graphs in ensemble p(c|Q):
(S2: values of imposed observables)

_ NS _ 1
ceG
> S(Q): proportional to average nr of bits we need to specify
to identify a graph ¢ in the ensemble
» complexity of graphs in ensemble p(c|R2):

3 many graphs with feature Q: graphs with Q have low complexity
3 few graphs with feature : graphs with Q have high complexity

C(Q) = S(0) — S(Q)
?: no constraints
nondirected, ¢; = 0 Vi:

o= LN(N—1) _ 1 —inn—1) _ N—1
p(clp)y =272 ., S(0) = G log2~2 =20 log 2



Nondirected graphs

IL; 0k k(e ki i, Ki
o) =3[ TTak k) Zcy | [<Wp(k()p(k))5°” o+ (- ey

1 N 1 p(k). 1 , W(k, k')
= —[1+log(—=)] -1 —~ k) log[= = W(k,k')log | "1~
—— )
Erdos—Renyi entropy degree complexity wiring complexity
+ en

Iim,\Hoo EN = 0
pe) = e~ (k) /01
degree distr of Erdés-Renyi graphs

(path integrals, integral representations,
steepest descent, ...)



Directed graphs

ki= (K" k)

c)—ZH[ ]H’ék"()H[(k)W500’1+(1_<KI>M)5%0]

Z(k, W) i " N p(k)p(k) p(ki)p(K;
_ p(k) z W(k, k')
S= 1+Iog { Zp )log[= Bk p(ko) 1+ W(k,k')log {W(E)W(E’)] }
__,—z K,k
drected ER entropy degree complexity wiring complexity
+ en

IimNHoo en=0
p(e) = e~ (k)" /0!
P(K™p(k°"): degree distr of directed Erdds-Renyi graphs

(path integrals, integral representations,
steepest descent, ...)
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Generating tailored random graphs

G: all nondirected N-node graphs
G[k] C G: all nondirected N-node graphs with degrees k

typical questions:

how to generate numerically
» random c € G, with specified p(c)
» random c € G[k], with uniform p(c)
» random c € G[k], with specified p(c)

similar for directed graphs ...



Common algorithms and their problems

soft constraints only:
standard Glauber/Gibbs/MCMC dynamics

objective: generate random nondirected ¢ € {0,1}2MV=1

with specified probabilities p(c)

strategy: start from any graph ¢
propose random moves ¢; — 1—c¢; (giving ¢ — Fjc),

define acceptance probabilities A(Fjc|c)
via detailed balance condition

A(Ficlo)p(e) = AlelFielp(Fie) —  A(cle) = [1+ ple)/p(e)]

stochastic process is ergodic, and converges to p(c)

practicalities:
equilibration can take a very long time,
so monitor Hamming distances similar for directed graphs ...



The problem of phase transitions

example: 1

_ a Y, ki(e)+B X kE(c) _ _
c) = e* i i) N=300, a=4
Pl) = Z(a, B)

£=0.03

1000 1000

3=0.01

1000

10000 100000 16406  1e+07

100 1000 10000 100000 1e+06  1es07 100 1000 10000 100000 1e+06  1es07 100 1000

t t t

> phase transitions sometimes prevent us from
controlling observables in soft-constrained ensembles

» need hard constrained ensembiles ...
but these are harder to sample via MCMC ...



Matching algorithm
(Bender and Canfield, 1978)

objective: generate random nondirected graph ¢ € {0, 1}2MN-"
with specified degree sequence k = (ki, ..., kn)

strategy: stochastic growth dynamics,
starting from graph with no links

> initialisation: ¢; = 0 for all (i, )

Ry

> pick at random two nodes (i, )
> if >, ce<kiand Y, ce < ki: g ? %
connect j and j . \.

C,‘jIO—)C,‘jZ" kv
]

terminate if 3°; c; = k; for all /

(trivially generalised
to directed graphs)



Matching algorithm

limitations and problems ... Y 4\ /
[ ] [ )

> major limitation:

aims to generate random ¢ € G[k], < ? >

but cannot control graph probabilities ...
° \o

> inconvenience: convergence not guaranteed k\/

process can ‘hang’ before 3, c; = k; for all i
if a remaining ‘stub’ requires self-loops

— monitor evolving degrees, to test for this
— if process ‘hangs’: reject and start again from empty graph

» sampling bias:

if process ‘hangs’, users often don'’t reject the graph
but do ‘backtracking’ (for CPU reasons),
this creates correlations between graph realisations

even if we reject rather than backtrack:
no proof published yet that sampling measure p(c) is flat ...



MCMC with hard constraints

need to think more carefully about
elementary moves in space of graphs

MOVE SET INVARIANTS ACTION

Link flips none iI o ( ¥
{Fi} j Y
Hinge flips average degree /X’k o /‘/‘k
{Fir} kie)= L cs : '
Edge swaps all individual degrees J k jo—ek

F . . 0
{Fike} ki(€)=3>cp i=1...N i , io—er




Edge switching algorithm
(Seidel, 1976)

objective: generate random nondirected graph ¢ € {0, 1}2MN-"
with specified degree sequence k = (ki, ..., kn)

strategy: degree-preserving randomisation (‘shuffling’) process,
starting from any graph k = (ki, ..., kn)

> initialisation: ¢; = ¢} for all (i, ),
¢°: any graph
with the correct degrees

repeat:

» pick at random four nodes (i, j, k, ¢) / ¢ Iy . ¢
that are pairwise connected I I N

> carry out an ‘edge swap’ ; K i e . K

(or ‘Seidel switch), see diagram
(preserves all degrees!)

terminate if stochastic process has equilibrated



Edge switching algorithm
limitations and problems ...

*—a

> major limitation: I -
aims to generate random ¢ € GK], k
but cannot control graph probabilities ...

> inconvenience: need for a ‘seed graph’
with the correct degrees k = (K1, ..., kn)
» sampling bias:

edge swaps are ergodic on G[K] (Taylor, 1981),
but sampling is not uniform!

many possible moves few moves ...

nr of possible moves
depends on state ¢!

Y

N\

A
f
[Z

N

4‘

L.

N
Vi

result:
stationary state of Markov chain
favours high-mobility graphs

\

AW
&Y g

dangerous for scale-free graphs ...



target:
uniform measure p(c)
on GLK]

n(c) : nr of possible moves

for flat measure:

n(c) =
N =100:
n(c)/N? ~ 0.0195
‘accept all’
edge swapping:

1 graph
n(c) = (N-2)(N-3)

(N-2)(N-3)[1 +2(N-3)]

14+ (N-2)(N-3)

(N—2)(N—3) graphs
n(c) =2(N-3)

A

v.o.¢

7
AL
s

NS,

I

DA
R

n(e)/N? | *

002 |

et * e s «simulation
.

001

1<theory

executed moves



why is the generation of graphs
with hard constraints nontrivial?

» many users underestimate/misjudge what the real problem is:

sampling space of all graphs with given features: usually easy ...

sampling them with specified probabilities: nontrivial!

> many ad-hoc graph generation algorithms appear sensible,
but lack analysis of which measure they converge to

random graphs are often used as ‘null models’,
against which to test hypotheses on real networks

if null model is biased,
hypothesis test is fundamentally flawed ...



MCMC processes for hard-constrained graphs

> hard constraints:
G[x] C G: all ce€ G that satisfy constraints x

» stochastic graph dynamics as a Markov chain,
transition probabilities W(c|c’) for move ¢’ — ¢

veeGl:  pui(e)= Y Wlele)p(e)
¢/ €G[*]
> allowed moves (exclude identity):

d: set of allowed moves F : Ge[x] — G[«]
Gr[*]: those ¢ € G[*] on which F can act

all moves are auto-invertible: (VF € ®): F2 =1
¢ is ergodic on G[#]

objective

construct transition probs on G[x], based on move set ¢,
such that process converges to p(c) = Z~'e=H®



standard form:
W(ele') = 3~ q(Fle") [de e ACFE/|) + 8o 11 — A(FE'IC)]
Feo
g(F|c): move proposal probability
A(c|e’) :  move acceptance probability
detailed balance:

(VFed)(veeGl+])):  q(Fle)A(Fele)e "™ = q(F|Fe)A(c|Fe)e "

move proposal

0 if F cannot act on ¢
probability: (Fle) = { !

1/n(c) if F canactonc
graph mobility n(c):

n(c) = Z Ie(c), le(c) = { (1) :){g Z gim

Feo



canonical Markov chain
ergodic auto-invertible moves F € o,

convergence to p(c) = Z~'e~"(® on G[+]
for acceptance probabilities

n(c’)e HHEO-HE]

A(clc) =
(cle) n(c’)e~2HE—HENT 4 n(c)edlHE)—HE )]

naive edge-swapping?
(ve,c¢’): A(clc’) =1

A(Fcle)e "©  A(c|Fe)eHFO) e HE)  g—H(Fe)
VF . = . —
Fe) T e G IR O N
corresponds to
H(c)zf lOQ n(c), . . n(c)
so would give sampling bias:  p(c) =

e cap N(C’)




picking moves randomly ...

correct sampling: g(F|c) = 1/n(c)
for all possible moves

PROTOCOL 1: ‘ , ‘ .
(i) pick a site j with kj(A) > 0 /o J J L
(i) pick a site i € &(A) — \. — .\.
(iii) pick a site k ¢ 9;(A)uU{i} i i

PROTOCOL 2: ,

(i) pick two disconnected sites ok /X o)
(i, k) with ki(A) > 0 o

(i) pick a site j € 0;(A) i i

PROTOCOL 3: .

(i) pick two connected sites (i, f) IX Ok
and a third site k

(i) while Ak = 1 return to (i) i




N=3000, (k)=7

dashed:
dotted:
solid:

start graph
p(k) of target p(A)
MCMC result

0.0s

0.0s

0.0s

PRroTOCOL 1

PRoOTOCOL 2

PRroTOCOL 3
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Bookkeeping of moves

> constraints: imposed degrees k

ergodic set ¢ of admissible moves:
edge swaps F : Gr[K] — G[K]

{(i,j,k,£) € {1,...,N}*| i<j< k< (}, ordered node quadruplets

P P | P [ AV LV VI
| | | / /
—e

L k ¢ k ¢ k l { k ¢ k

» group into pairs (L,IV), (I1,V), and (lIl,VI)
auto-invertible swaps: Fjs.o, With i<j<k<?¢and ac{1,2,3}

like.o(€) = 1:
e, (€) Fike.a(C)gr = 1—Cqr for (q,r) € Sjke.a

Fijké;a (c)qr = Cqr for (q7 f) ¢ Sijklza

Sijkl;1 = {(I:/)v (kv E)v (Iv 6)7 (ja k)}7 Sijkl;2:{(i7j)7 (k7‘€)7 (Ia k)7 (j? K)}
S"I'kz;fi:{(i’ k)v (j,€)7 (i7 K)v (/7 k)}



Mobility of nondirected graphs

to implement the Markov chain,
need analytical formula for the graph mobility

n(€) = 3% cker ooy likea(C)

like:1(€) = Cicke(1—Cie)(1—Ci) + (1—Cj)(1 —Cke) Cie Cik
like:2(€) = Cijcke(1—Cik)(1—Cje) + (1—Cj) (1 —Cke) Cik Cie
like:s(€) = ciCie(1—Cie)(1—c) + (1 —cik)(1—Cje) Cie Cix

+
+

work out combinatorics:

n(e) = %N2<k>2 +%N(k>— %N<k2> + %Tr( ¢+ 5 Imie Qch,/ :

invariant

state dependent

» state-dependent part can be ignored if (k?)kmax/ (k)2 < N
> avoid calculating n(c) at each iteration step:

(i) calculate n(c) at time t =0
(i) update dynamically, compute Ak n(c) for executed move Fiks.q



Example:

target =

uniform measure on G[K]
N =100

naive versus correct
acceptance probabilities
predictions:

p(c) = constant:

n(c)/N?~ 0.0195

p(c) = n(c)/Z:
n(c)/N?~ 0.0242

many possible moves

A

AR

.. ..-.. .. ...h....
R At R LI
. 0
s e e

few moves

==
7NN
ISLHA

7

NS

Acle’) = 1

1 A(ele’) =1+

n(c)

n(c’)

]71



Example

target = o
degree-correlated
measure on G[K]

P(K) -

k

MN(k, k') (target)

K

(k—K')?
[81 — Bk + Bak?][B1 — B2k’ + P3k’?]

N = 4000, Nk, k') =
(k) =5



Directed graphs

bookkeeping of elementary moves
> constraints: imposed in-out degrees, so graph set is G[k™ k°"f]

set ® of admissible moves:
directed edge swaps F : Ge[k™ k°"'] — Gk k°"']

ix jx ix jX
*—0

- X
*—0
by by y

for nondirected graphs:
edge swaps are ergodic set of moves
(Taylor, 1981 — proof based on Lyapunov function)

Rao, 1996:

unless self-interactions are allowed,
edge swaps not ergodic for directed graphs



further move type required

Iy Iy
to restore ergodicity: P
3-loop reversal

to implement the Markov chain,
need to calculate graph mobility analytically:

ng(c)
1 2 in out A 1 M. AT T r in out
SN (k Zk ki n( )+§lr(cccc) + Tr(c Zk ciki
invariant state dependent
1 R A 1 o
na(c) = é'l‘r(c3) — Tr(éc?) + Tr(e%c) — é,n(cg)

state dependent

with: (c'); = ¢i, &; = cjGi
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Motivation

is our ‘tailoring’ adequate?

e.g. do we recover phase transitions of
Ising models on tailored random graphs?

10

» ¢* = d-dim cubic lattice Te(d)
P(K) = 0y pa

» c¢* = ‘small world’ lattice Te(q) 5|
p(k>2) = e 99" %/(k—2)! J

Qa: correct (k)
Qp: correct p(k)
Q¢: correct p(k) and W(k, k')

8l

To(4) ~6.687

{ T6(3)~4.512

Te(2) =2/log(1++/2)

\ | Te(1)=0

QA hB S-)C

o] To(3)=2/l0g(2 + §V/7)
b :TC(Z):Z/IOQ(%+%\/W)
.\.,4 { Te(1)=2/log(1++/2)

Tc(0)=0



It is all about short loops ...

critical temperatures T¢(d)

degrees 4-loops | d=1 d=2 d=3 d=4
random, (k) =2d 1.820 3.915 5.944 7.958
random, p(k) = dk,2q v 0 2.885 4.933 6.952
hypercubic Bethe v v 0 2771 4.839 6.879
true cubic lattice v v 0 2.269 4.511 6.680

hypercubic Bethe lattice:
‘tree of hypercubes’

— correct local degrees
— geometric (non-random)
— finite nr of short loops per site




> maximum entropy random graphs with
prescribed p(k), W(k, k'): locally tree-like ...

clustering coefficient C
network n z | measured random graph
Internet (autonomous systems)?® 6374 3.8 |0.24 0.00060
World-Wide Web (sit%)b 153127 35.2 | 0.11 0.00023
power grid® 4941 2.7 | 0.080 0.00054
biology collaborations® 1520251  15.5 | 0.081 0.000010
mathematics collaborations® 253339 3.9 |1 0.15 0.000015
film actor collaborations’ 449913 113.4 | 0.20 0.00025
company directors’ 7673 144 | 0.59 0.0019
word co-occurrence® 460902  70.1 | 0.44 0.00015
neural network® 282 14.0 | 0.28 0.049
metabolic network! 315 283 | 0.59 0.090
food web! 134 8.7 | 0.22 0.065

> more realistic graph tailoring:
constrain nr of short loops

problem: most analysis methods, e.g. exceptions:
replicas, GFA, cavity method, belief prop, etc cubic lattices d < 3
require locally tree-like graphs spherical models

(modulo loop corrections) recent immune models



Spectrally constrained ensembles

» control closed paths 1
of all lengths p(c) = 26k,k(c) e

217.23 e ZH ..ig Ciyip Cigig +++Cigiy

generating function:

. = L{Tr(cH)) =

¢ = l log Z Ok k(c) o2e>3 apTr(c’) (me) N< it )> 0¢/deue
N c s:¢*zzz3 Vg<mg>

> Tr(e’) = N [du p‘o(ule),
S0 we control spectrum p(p):

1 L0 0
p(c) = 25k7k(c) N Jdu é(n)e(ule)

o) =Y aen'

£>3

generating function:
o(p) = d¢/50(k)

1 N fdu a(n)e(nle)
¢:—|ng5k7k(c)e Jdn alu)els
N S=o— [dud(p)o(n)



Some relevant questions

» Q1: How informative are spectra of finitely connected graphs?

» Q2: How many non-isomorphic graphs are there with
given degrees (ki, ..., ky) and a given spectrum o(u)?

> Q3: How similar are processes running on non-isomorphic graphs with
the same degrees (ki, ..., ky) and the same spectrum o(u)?

(spherical spins: free energies identicall)

how to compute
1 § N fdp 8(pn)o(p|c)
¢ - N IOg 5k,k(c) (§] f e ol



Analytical

1
route forward p(c) = =

Z 5k,k(c) eNfdﬂ o(n)e(plc)

» Edwards-Jones:

2 . _lichle—
olule) = o i log Z(uvicle),  Z(ule) = g e ilesnd

> insert, integrate by parts,
discretize u-integral:

¢ _ 1N|09 Z 5k.,k(c) eNfdp, o) 1% limz o Im% log Z(p+ie|e)
Cc

o —2TIm log Z(p+iele). 2 L 5(x)

I

> 6_2 Imlogz _ Zi.f —i

. 1 . iS5 o
¢:E!.Anlm|og§c:5k,k(c)1‘[[2(u+la\c) Z(uticlc) ]

o



_ o 1 () ST M)
= Ity 100 3 S L1200 Z0etiley™ ) T

> replica method:
factorization over entries {c;}
(products of Gaussian integrals)

> steepest descent for N— oo,
continuation to imaginary dimensions,
limits ¢/ 0 and A |0

> replica symmetry, bifurcation analysis,
phase transitions and entropy

> elegant order parameter equations,

interpretation in terms of ‘loopy’ message passing with a twist,
treelike results (entropy, spectrum, ...) all recovered for g(u) — 0

but still wrong ... 1?



Solvable toy model

simplest member of the familiy:

Zz 1 apTr(c

K
k=(2..2) 00n) =D am' s pO) =z H5z,c,,
£=3

control nr of closed paths up to length K in 2-regular graphs ...

> all 2-regular graphs c: collections of rings,
combinatorics solvable:

(a[ iw)e N 71w£

A}me on = I|m extr,, [1w+ Z 5N Z

£=3

)

densities m, of length ¢ < K closed paths
always vanish for N — ~ ...

» Canonical parameter scaling: o = &, + £~ ' log(N)

(ocz iw)l N —iwl

~ e
A = e 325 52 )

£=3




o L (e 1|ogN+w) 4 N

p(c) = H 52, cj2

> finite densities m, of closed paths

> two phases, critical manifold: 1 = J >, e
disconnected (large &): no extensively large rings, only small loops
connected (small &): extensively large rings exist

K=3
08| simulations: N = 1000, 5000
solid line: theory
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lesson for spectrally constrained ensembles:

1 5 N _ -
p(c) = > Sick(ey €™ eele) 5y 5 () log N + (1)
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