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Data analysis in modern cancer research

predict clinical outcomes ...
(OS/PFS, treatment response, side effects)

... from observed patient data
(genome, blood, environment, images)

acid test: predict outcomes for unseen data

new problems
I complexity of patterns
I diversity of covariates
I curse of dimensionality

new ambitions
I personalised cancer medicine

– use all information available
– hence multivariate models
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Merging data sets

response rates for
treatments A and B

response to A response to B

centre 1 40/100 (40%) 150/500 (30%)
centre 2 36/200 (18%) 12/80 (15%)
combined 76/300 (25%) 162/580 (28%)

(Simpson’s paradox)

confounding factors

Missing covariate values
red herrings
or white sharks?

sophisticated imputation
not enough:

guard against
informative missingness
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Disease interactions

If we assume censoring risks
uncorrelated with primary risk:

informative censoring
can give nonsensical results ...

– harmful drugs look beneficial
– beneficial drugs look harmful
– false protectivity of covariates

ULSAM
PC dataset

would we have spotted this
if the covariate represented
expression of a specific gene?
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Latent heterogeneity
latent: not visible in covariates

say two covariates,
hazard ratios HR1 and HR2
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consequences:

I proportional hazards X
I interpreting time dependencies X

even if associations time-indep:
cohort level values time-dep

I interpreting survival curves X
(Kaplan-Meier, Cox, Fine+Gray, ...)
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Interventions

Suppose: gene X ok: low risk → few cancers
gene X mutated: high risk → more cancers

clear link, easily detected X

I but we usually don’t
observe untreated patients ...

once we know about gene X:

gene X ok: low risk → few cancers
gene X mutated: high risk → treatment → few cancers

link no longer visible ...
targeted treatment undermines patterns
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What is big data?

the hypnotizing power
of clever slogans ...

‘modernization’, ‘take back control’,
‘deep learning’, ‘big data’ ...

‘big data’ are themselves not new ... just new in medicine ...
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Types of ‘big data’

I Very many samples, relatively few variables per sample

problems mostly of a
practical nature

(solved by larger disks,
faster computers,
parallelization of
existing algorithms)

I Very many variables per sample, relatively few samples

problems of a
conceptual nature

– lack of intuition
– lack of appropriate methods

genomic data, images, ...

here conventional multi-variate methods
break down due to overfitting
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Phenomenology of overfitting

deteriorating outcome
prediction performance
on unseen data ...

multivariate
Cox regression:

predict whether event before
or after a cutoff time point
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n=155, 65 events
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validation set

so what exactly is going wrong?
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(www.tylervigen.com)
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(www.tylervigen.com)
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false positive
associations ...

n = 100

d covariates:

30 true associations
d−30 spurious ones

C: correlation
between covariate
and event time,

β: univariate Cox
parameter
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bias in inferred association parameters ...
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figures independent of base hazard rate ...
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Strategies to deal with overfitting
in multivariate regression

I ‘Back off’

find ‘safe’ ratio covariates/samples,
construct risk ‘signatures’ or ‘scores’

I Eliminate redundant information

improve covariates/samples ratio via
intelligent dimension reduction

I ‘Integrate out’ overfitting effects

fully Bayesian analysis of parameter uncertainty,
while keeping computations feasible

I Model overfitting effects

Overfitting correction theory for multivariate regression,
based on theoretical physics techniques
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Know when to ‘back off’
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iterative pipelines and optimised risk scores:
devil is very much in the detail ...

I early pipelines used covariate-outcome
correlations, reproducibility poor ...

(e.g. MammaPrint BC gene signature,
70 genes, FDA approved in 2007)

I modern pipelines
I multivariate regression
I MAP inference with adaptive Bayesian prior
I deal with informative missingness
I probabilistic predictions
I iterative covariate removal, information-theoretic criterion
I detection of overfitting transition
I many randomisations per iteration
I identification of optimal covariate set
I . . . . . .
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multivariate ‘immune-stroma-histological
risk score’ (ISH)

(prevent unnecessary chemotherapies
for LN-positive BC patients)

(Grigoriadis et al, 2018)
24 / 40



Eliminate redundant information
Bayesian latent variable methods

Assume:

(a) data Yk are high-dim windows
on q-dim latent variables X

(b) X actually drives outcome

(c) dimension of X less
than dimension of Yk

Y
1

T, Δ

XY
2

e.g. gene expression

other
biomarkers

clinical outcome

?
I nonlinear stochastic relations

Yk = fk (X ) + noise
I dimension detection: optimal q?
I find most probable latent variables X
I use X to predict clinical outcome
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Application to METABRIC data Y : scores of 28 gene signatures
BC gene signature data outcome: overall survival time
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(Barrett & Coolen, 2015)
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‘Integrate out’ overfitting effects

data: D = {(x1, y1), . . . , (xn, yn)}

x i : covariates
yi : outcome class labels

ML : p(y |x ,D) ≈ p(y |x ,θML), θML : maximize p(D|θ)

MAP : p(y |x ,D) ≈ p(y |x ,θMAP), θMAP : maximize p(θ|D)

Bayes : p(y |x ,D) =

∫
dθ p(y |x ,θ)p(θ|D)

p(θ|D) =
p(θ)p(D|θ)∫

dθ′ p(θ′)p(D|θ′)
keep track fully & precisely

of parameter uncertainty
large d :

I in view of overfitting:
full Bayesian parameter estimation

I computational feasibility:
evaluate d-dimensional integrals analytically (Shalabi et al, 2016,

Sheikh & Coolen, 2019)
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Tissue classification
during BC surgery
using handheld Terahertz device

n = 257, d = 301
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Overfitting correction
in multivariate survival analysis

can we model
what happens
in the
overfitting
regime?
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I yes, using techniques from many-particle physics
(the replica method)

I leads to correction formulae for overfitting bias
in association parameters and base hazard rates

I can be rolled out to arbitrary generalized linear models
(logistic regression, frailty models, latent class models, ...)

(Coolen et al, 2017,
Sheikh & Coolen, 2019)
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What is new?
I faster and bigger computers
I more data
I intense marketing
I inflation of terminology:

data + computers = AI

history of machine learning:
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AI and Deep Learning

fancy names,
fancy pictures ...

let’s open the box:
1980s architectures, 1980s learning rules ...
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I suitable problems for standard ML approaches

– many data of the type (question,answer)
– we can trust the answers
– we’re not interested in knowing the underlying rules

e.g. speech recognition, detection of anomalies in images

I limitations of standard ML approaches
– ‘black box’ decision making
– often no reliable error bars
– cannot handle complexities of cancer data, such as

confounders, informative missingness, disease interactions, ...
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Watson Oncology,
the dangers of hyping ...

IBM are now turning
towards Bayesian

statistical modelling ...
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back to the false positive
associations ...
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multivariate regression with more covariates
than samples in principle possible
if n large enough

I n ↑: prob of false positive associations ↓
I d ↑: prob of false positive associations ↑

uncorrelated covariates:

prob of finding one or more spurious univariate
associations of strength ≥|β| is less than 5% if n > nc
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synthetic
survival data,
with d = n

(30 true
associations)
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Future of big data analytics in cancer research

short term, 1-5 years
I refinement of ML methods for anomaly detection in images

and natural language processing (patient records)
I outcome prediction: ‘purge’ of black-box ML approaches,

leaving algorithms with transparent statistical interpretations
I increased parallelization of algorithms,

to run on dedicated hardware
I reliable statistical regression in overfitting regime

longer term, 5-10 yrs
I longitudinal survival analysis:

rigorous methods/standards for handling
time-dependent covariates and
observation-triggered clinical interventions

I from association to causality:
further development of general theory of
causal inference, and application
in (cancer) medicine
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