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Regression for time-to-event data

I Data D = {(z1, t1, r1), . . . , (zN , tN , rN)}

z i = (zi1, . . . , zid ) : d covariates (measured at t = 0)

ti > 0 : first failure time (death, onset of disease, ...)

ri ∈ {0, 1, . . . ,R} : failure type (or ‘risk ′)

• -x i =1
• -x
• -x
• -x i =N

t =0

I Heterogeneity

visible: variability in the available covariates

latent: variability in host or disease, not visible in the covariates
(individuals with same covariates z are not clones ...)
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Competing risks, identifiability
and interpretation

I Competing risks

Informative censoring, i.e. event times of risks
are statistically dependent: p(t1, . . . , tR |z) 6=

∏R
r=1 p(tr |z)

reported time: t = min{t1, . . . , tR}

I Interpretation of crude hazard rates

Eliminating one risk can change hazard rate of others ...

if hazard rate for risk 1 is low:
(i) event 1 is intrinsically unlikely?
(ii) or it is often preceded by event 2?

to disentangle risks: need p(t1, . . . , tR |z)

I Tsiatis’ identifiability problem (1975)

Joint event time distribution p(t1, . . . , tR |z)
cannot be inferred from survival data alone ...
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Conventional methods
for analysing time-to-event data Kaplan-Meier estimators

Cox regression
.....I not designed to handle disease/host

heterogeneity, beyond variability in covariates

I to allow interpretation:
have to assume different risks are uncorrelated,
dangerous when many censoring events ...
(older populations!)

random effects models, frailty models,
latent class models

I usually constructed for primary risk only,
so still cannot handle correlated risks

I do not exploit the link between latent heterogeneity
and competing risks ...
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Consequences and fingerprints
of latent heterogeneity

I Violation of proportional hazards assumption

I Interpretation of time dependencies tricky

even if all individual hazard rates hi

are time-independent, cohort hazard
rate will be time-dependent:

h(t) =

∑n
i=1 hi e−hi t∑n

i=1 e−hi t

I Interpreting cause-specific survival curves
(KM, Cox) no longer possible ...
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If in interpreting our data we assume
censoring risks uncorrelated with primary risk

censoring by competing risks
can give nonsensical results ...

– harmful drugs look beneficial
– beneficial drugs look harmful

– false protectivity of covariates
– false aetiology of covariates

(ULSAM prostate cancer data)

would we have spotted this
if the covariate represented
the expression of a specific gene?
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Link between cohort
heterogeneity
and informative censoring

Say 1000 people,
two risks, hazard rates hA and hB

I homogeneous cohort:
all individuals have (hA, hB)
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Heterogeneity and
informative censoring

Say 1000 people,
two risks, hazard rates hA and hB

I homogeneous cohort:
all individuals have (hA, hB)
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Heterogeneity and
informative censoring

Say 28 people,
binary covariate: z =0,1

association risk A: βA

association risk B: βB

(B: competing risk, strong)
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00000001111111as many A deaths with

z =0 as for z =1,

overall association βA =0
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Bayesian latent class methods:
rationale and definition

I model all risks simultaneously

I individuals with same covariates can have
distinct associations and distinct base hazard rates

I risks are assumed independent only at the level of individuals
(this removes Tsiatis’ identifiability problem)

I competing risks, informative censoring:
reflect correlated association parameters of different risks'
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fraction: wL

for all risks r :

hi
r (t) = λL

r (t)eβ
L1
r z1

i +...+βLd
r zd

i

proportional hazards within classes =⇒/ proportional hazards at cohort level
independent risks within classes =⇒/ independent risks at cohort level



I Bayesian analysis and model selection:
reliable error bars, and multiple classes only if data demand it

I reduces to standard Cox regression if no heterogeneity
(Occam’s Razor action of Bayesian model selection)

I non-primary events all contribute to latent class inference

I fully transparent interpretation,
unlike some other competing risk approaches ...

I formulae for survival curves decontaminated for informative censoring,
and retrospective class allocation of individuals
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Technicalities ...

I censoring
modelled as ‘risk’ r =0 with no associations

I data likelihood

p(t ,r |z) =
L∑
`=1

w` p(t , r |z, `), p(t ,r |z,`) = λ`r (t)eβ
`
r ·z−Λ0(t)−

∑R
r′=1 exp(β`

r ·z )Λ`
r′ (t)

I base rates
spline construction for {λ`r (t)}, with K spline points

I Bayesian model selection
K : baserate complexity
L: number of latent classes
M: heterogeneity complexity

I numerical implementation
curvature estimation near parameter boundaries ...
avoiding local minima in high-dim searches ...
CPU efficiency ...
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Upon determining parameters and hyper-parameters
explicit formulae for e.g.

I covariate-conditioned survival curves
and hazard rates:

crude : hr (t |z) =

∑
` w` λ`r (t)eβ

`
r ·z−

∑R
r′=1 exp(β`

r′ ·z )Λ`
r′ (t)∑

` w` e−
∑R

r′=1
exp(β`

r′ ·z )Λ`
r′ (t)

,

decontaminated : h̃r (t |z) =

∑
` w` λ`r (t)eβ

`
r ·z−exp(

ˆβ
`

r ·z )Λ`
r (t)∑

` w` e− exp(β`
r ·z )Λ`

r (t)
.

I cause-specific
cumulative incidence function:

Fr (t |z) =

∫ t

0
dt ′ e−Λ0(t′)

∑
`

w` λ`r (t ′)eβ
`
r ·z−

∑R
r′=1 exp(β`

r′ ·z )Λ`
r′ (t′).

I class membership
probabilities: p(`|t , r , z) =

w`p(t , r |z, `)∑L
`′=1 w`′p(t , r |z, `′)
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Tests on synthetic data 3 classes:
inference of classes and parameters red, blue, green



Tests on synthetic data
decontaminating survival curves for informative censoring
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Prostate cancer data
(ULSAM data base, n = 2047)

Cox regression:
smoking is protective against PC

negative association with smoking only in
extremely frail subgroup of patients

red class: high overall frailty
green class: low overall frailty



Breast cancer data
(AMORIS data base, N = 1798)

Cox regression finds no significant associations
(proportional hazards violated)

solid: BC
BC death CV death dashed: CV

red class: predominantly younger women
green class: predominantly older women



Applications to
failed cancer trials

I failed clinical trials
often some drug benefit, but not enough in view of costs ...
(in the absence of a biomarker to select patients)

I two possibilities

1. there exist measurable differences between individuals that
explain response variation, we just don’t know what they are ...
subgroups with distinct quantitative characteristics,
cohort is in principle stratifiable

2. there are no measurable differences between individuals
to explain response variation: cohort not stratifiable

I Bayesian Latent class analysis

– rational method for determining whether cohort is stratifiable
– retrospective class assignment: tool for identifying latent classes



Applications to
failed cancer trials

I failed clinical trials
often some drug benefit, but not enough in view of costs ...
(in the absence of a biomarker to select patients)

I two possibilities

1. there exist measurable differences between individuals that
explain response variation, we just don’t know what they are ...
subgroups with distinct quantitative characteristics,
cohort is in principle stratifiable

2. there are no measurable differences between individuals
to explain response variation: cohort not stratifiable

I Bayesian Latent class analysis

– rational method for determining whether cohort is stratifiable
– retrospective class assignment: tool for identifying latent classes



Applications to
failed cancer trials

I failed clinical trials
often some drug benefit, but not enough in view of costs ...
(in the absence of a biomarker to select patients)

I two possibilities

1. there exist measurable differences between individuals that
explain response variation, we just don’t know what they are ...
subgroups with distinct quantitative characteristics,
cohort is in principle stratifiable

2. there are no measurable differences between individuals
to explain response variation: cohort not stratifiable

I Bayesian Latent class analysis

– rational method for determining whether cohort is stratifiable
– retrospective class assignment: tool for identifying latent classes



outcome:



The COIN trial (colorectal cancer)
first analysis: n=398
validation: n=1630

—————

—————

—————

I two sub-cohorts, with similar base hazard rates,
but distinct overall frailties and associations.

I method provides retrospective class assignment
I new tools to identify a priori the responders to Cetuximab?



PFS

OS



The TOPICAL trial (lung cancer)
n = 580

9.7% 14.0% 45.5% 30.7%

survival curves: green=erlotinib, red=placebo
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Prospective latent class prediction

If any of the covariates
correlate with retrospective
class membership:
(e.g. Amoris) age

replace

p(t ,r |z) =
L∑
`=1

w` p(t , r |z, `) → p(t ,r |z) =
L∑
`=1

w`(z) p(t , r |z, `)

I suitable parametrisation w`(z)

I prospective class prediction,
i.e. objective data-driven stratification to rescue failed trials

increasingly complex models,
many parameters,

danger of overfitting ...
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overfitting in
Cox regression

ML method ...

p-values, z-scores,
confidence intervals,
don’t measure overfitting!
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d (nr of covariates)

fraction correct
N = 155, 65 events

↑
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training set

validation setrule of thumb: dmax =events/10

I too optimistic ...
I must depend on β ...
I covariate correlations ...

What happens in overfitting regime?
Can we predict the optimal point?
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N = 500,
predicted versus true regression coefficients
(synthetic data, no censoring)

d/N = 0.002
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N = 500,
predicted versus true regression coefficients
(synthetic data, no censoring)

d/N = 0.10
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N = 500,
predicted versus true regression coefficients
(synthetic data, no censoring)

d/N = 0.20
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N = 500,
predicted versus true regression coefficients
(synthetic data, no censoring)

d/N = 0.30
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N = 500,
predicted versus true regression coefficients
(synthetic data, no censoring)

d/N = 0.40
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λ(t) = 1 λ(t) = 1/
√

t

t t

Λ̂(t) Λ̂(t)

Base hazard rates underestimated for short times,
and over-estimated for large times ...

d/N = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55
(lower to upper curves)

Gaussian association pars, 〈β2
µ〉 = 0.25, N = 400
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Bad news
Overfitting more dangerous
than finite sample noise ...

we always inflate associations
(whether positive or negative)

Good news
Unlike pure noise,
deterministic bias may be predictable ...

Roadmap for research ...

I Predict asymptotic impact of overfitting, in terms of
– ratio d/N
– correlations among covariates
– true association strengths β

I Based on information theory and replica analysis
(in spirit of Gardner theory of binary classifiers)

I Overfitting correction of Cox parameters
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Overfitting correction for
multivariate Cox regression

regression up to d/N ∼ 0.5,
compared to d/N ∼ 0.1
(variational replica theory)
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from ML to MAP inference,
prior: p(β) ∝ exp(− 1

2ηpβ2)

regression up to d/N ∼ 2 or more ...,
compared to d/N ∼ 0.1
(variational replica theory)
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