
Supplementary Material to:
Realistic 3D Human Saccades Generated by a 6-DOF
Biomimetic Robotic Eye Under Optimal Control

1 SUPPLEMENTARY DATA

This Supplementary Material provides a brief account of the physics background of the robotic prototype
and its numerical implementation. More specific details can be found in Javanmard Alitappeh et al. (2023).
We here also present the results of the Zero-Initial Paradigm described in the paper, and the results of a
simulation for a direct superior-oblique electrical stimulation experiment. The formats of the figures are
similar as the associated ones in the manuscript for the continuous saccade paradigm.

2 PHYSICS MODEL, COSTS FOR OPTIMAL CONTROL, AND NARX MODEL

2.1 The Model and its Simulator

We define u0:D as a 6D sequence of input motor commands for a saccade trajectory, where u ≡
[uIR, uMR, uSR, uLR, uIO, uSO]T , and x is the system’s 6D state vector representing the 3D orientation,
r, and angular velocity, ω, of the eye: x ≡ [r,ω] = [rx, ry, rz, ωx, ωy, ωz]

T .

In the physical model, the spherical eye was subjected to Newton-Euler’s rigid body equation of angular
motion, resulting from the torques generated by the six tendons:

Iα = τnet(x,u)− ω × Iω (S1)

Here, α is the eye’s angular acceleration, diag(I) = [4.8, 4.3, 4.8]× 10−4 kg·m2 is its tensor of inertia, ω
the eye’s angular velocity; × is the vector cross product, and τnet the total torque on the eye. The latter is
generated by dynamic friction, τ fr, and and by elasticity, τ el:

τnet = τ el + τ fr =
6∑

m=1

τm − Dω (S2)

with diag(D) = [0.04,0.04,0.04] Nms the eye’s damping matrix, subscript m ∈ [IR,MR,SR,LR,IO,SO],
and each muscle’s torque is

τm = Qm × fm (S3)

Here, Qm is the muscle’s insertion point on the eye, and fm is the force applied by the muscle on the eye
that depends on the state x and on the control input u.

Tendons were modeled as linear elastic strings, all with elasticity k = 20 N. The (dynamic) elastic force,
fm, then depends on the instantaneous cable length, lm, which varies with the rotation of the motors (u)
and the current orientation of the eye (in state x), by:

lm(r,u) = ‖Qm(r)− Pm‖+ rsp · um (S4)
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with Qm and Pm the (eye- and head-)insertion points of tendon m (Table S1), rsp the radius of the spindle,
and um the rotation angle (in radians) of the spindle for cable m. The resulting dynamic elastic force is
determined by Hooke’s law:

fm =
k

l0m
(lm(r,u) + rsp · um,0 − l0m)φ̂m (S5)

with l0m the tendon’s rest length (Table S1), and φ̂m the unit vector in the direction of the force. The term
rsp · um,0 sets the pretension, which prevents the muscle from going slack. We found that um,0 ∼ 2 rad
yielded satisfactory results.

2.1.1 Cable insertions

Table S1 provides the coordinates of the eye-centered and head-centered insertion points of the six
tendons. These insertion points were appropriately scaled from the anatomical data provided by Miller and
Robinson (1984); John et al. (2023). The eye’s diameter was 80 mm.

Muscles IR SR MR LR IO SO
Insertion(eye)

Qx -2 -2 7.7 7.7 -11.2 -11.8
Qy -1.4 0.8 39.3 -39.3 -1.4 -1.2
Qz 40 -40 0 0 38.3 -38.1

Insertion(head)
Px -100.1 -100.1 -100.1 -100.1 45 45
Py 40.7 40.7 51.6 29.6 37.5 37.5
Pz 7.8 -14.9 -3.5 -3.5 62 -62

Rest Length 111.5 108.8 108.6 127.9 72.3 72.7

Table S1. Locations of the cable insertion points at the eye surface and at the head with the eye in the
equilibrium position. All measures are in mm. In the right-handed Cartesian reference frame, the
center of the eye is at (0, 0, 0) mm. Four muscles (IR, SR, LR, MR) have their head-insertions at the
annulus of Zinn (with x ∼ −100 mm, and y ∼ +30− 50 mm); the SO and IO are guided through
pulleys. Muscle lengths are l0m. Note that the LR muscle is longer than the MR muscle.

2.2 Optimal control

The optimization function J(x,u, D) for a selected goal xG ≡ [0, Gy, Gz, 0, 0, 0], and movement
duration, D, can be written as follows:

U∗ = argmin
u

J(x,u, D) =
∑

α∈{D,A,E}
λαJα(x,u, D)

subject to: xt+1 = f(xt,ut), t = 0, 1, ..., D

(S6)

where f(xt,ut) describes the dynamics of the eye-plant (the simulation function; (S1-S5). In this
formulation, Jα, indicates each of three costs: Duration (JD), Accuracy (JA), and Energy (JE), defined
hereafter. Further, xt+1 is the next state of the eye, which is estimated by the NARX approximator (see
below).
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1. Duration cost (JD)

The shorter the duration of the saccade, the better. The duration cost is defined by the hyperbolic
discount-of-reward function (Shadmehr et al. (2010)):

JD(D) = 1− 1

1 + βD
(S7)

with β a fixed parameter. The shorter duration D, the lower JD(D).

2. Accuracy cost (JA)

An ideal eye movement should reach to the goal state xG at time D as accurately as possible. Therefore,
in this cost (JA) we compute the Euclidean norm of the difference between the eye final state and the
desired one.

JA(x) =
W∑
t=1

||xG − xD+t||2. (S8)

where, W is a time window to penalize any change before the goal state (W = 5).

3. Energy cost (JE)

During a saccadic eye movement, one other cost is the energy consumption by the muscles, so that JE
indicates the total energy of the motors, which follows Shadmehr and Mussa-Ivaldi (2012):

JE(u) =
D∑
t=1

||ut − ut−1||2 (S9)

Because an analytical solution for the minimization problem (S6) does not exist, we obtained suitable
weighting coefficients λD,A,E = [1, 25, 0.05] by trial and error, by demanding that

JTOT (D) =
∑
α

λαJα(x,uopt(D), D) is a convex function of D (S10)

with uopt(D) the optimal command found with the NARX network for a given saccade duration D ∈ [30 :
20 : 210] ms.

2.3 The NARX approximator

To learn the nonlinear dynamics of the biomimetic eye in a model-free and computationally efficient
way, we approximated the system by training a nonlinear autoregressive network with exogenous inputs
(NARX) to a long sequence of pseudo-random input-output data (Fig. 3A in the paper). Here we applied
this procedure to the nonlinear simulator of the eye described above, but note that it can also be applied to
the input-output relations measured from the real physical robotic prototype.

The network’s operation can be written in discretized time as:

xt+1 = f̃(xt−nx:t,ut−nu:t) (S11)

where the next (predicted) state of the eye, xt+1, depends in a nonlinear way, f̃(·), on the inputs from a
sequence of nx = 3 previous samples of the 6DOF state, xt−nx:t, and of nu = 1 samples of the 6DOF

Frontiers 3



Supplementary Material

motor commands ut−nu:t (these had a three times lower sampling rate than the state). After training,
f̃(xt−nx:t,ut−nu:t) approximates the nonlinear plant dynamics, f(xt,ut).

In the network, the input arrays were fed to a hidden layer of nh = 55 units (with sigmoid input-output
characteristics), and their outputs were in turn forwarded to the output layer, consisting of 6 linear units
representing the 6D vector of the predicted output state of the eye. The 1711 weights (6x3x55 + 6x55 +
55x6 and 61 biases) that connected the layers were trained by the Levenberg-Marquardt backpropagation
algorithm.

We used the trained NARX network to find the optimal control for the eye. Once the optimal control was
obtained, it was fed to the actual nonlinear physical simulator for further study of the eye-movements as
described in the paper. The full procedure is schematically illustrated in Figure 3 of the manuscript.
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3 SUPPLEMENTARY FIGURES

3.1 Accuracy and 3D kinematics

Figure S1 illustrates the endpoint accuracies of the 199 saccade vectors.

Figure S1. Accuracy of the zero-initial saccades: (A) target locations vs. saccade endpoints, (B) regression
of the stimulus-response relations, and (C) signed errors for the horizontal and vertical components.

In Figure S2 it is shown that the saccade trajectories are well described by Listing’s law and that the
parameters of the best-fit plane correspond well to those of the continuous paradigm. The plane is tilted
in the xy projection of the laboratory frame. The Listing coordinates (and hence the primary position)
are found by a rightward rotation of arctan(−0.117) = 6.7 deg around the z-axis. The variability of the
trajectories in the continuous paradigm is larger than for the zero-initial paradigm: the width of LP in the
zero-initial paradigm is only 0.3 deg vs. 0.8 deg for the continuous paradigm.

Figure S2. Listing’s Law describes the 3D rotational kinematics well.
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3.2 Main-sequence dynamics

The zero-initial saccades obey the nonlinear main-sequence dynamics, as can be seen in Fig. S3.
Especially the shape relation of VPK · D = k · R is very tight, with r2 = 0.945. Note, that in the
zero-initial paradigm there is no variability caused by changes in initial eye orientation, and also that the
amplitude range is smaller (about 30 deg) when compared to the continuous paradigm (about 50 deg). The
asymptotic peak velocity for the saccade population is estimated at VPK(∞) = 1.448/0.0035 = 413 deg/s.

Figure S3. Main-sequence behaviors for the 199 saccades from the zero-initial paradigm.

3.3 Straight trajectories

Figure S4. Correlation histograms between the horizontal and vertical velocity profiles of oblique saccades
(green; more than 20 deg away from the cardinal axes) and near-cardinal saccades (gray). Inset: the
relation between curvature and the velocity-profile correlations is not significant.
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In Figure S4 it is shown that the horizontal and vertical velocity profiles of the oblique saccades of the
zero-initial paradigm (with their vector directions at least 20 deg away from the cardinal axes) correlate
well, with most correlation coefficients close to 1.0 and all curvatures smaller than 0.15 (inset; see also Fig.
8C of the manuscript).

Figure S5. Component stretching in oblique saccades. (A) Fixed horizontal component, (B) Fixed vertical
component.

Figure S5 illustrates how the peak velocity of a given fixed horizontal (a) (mean ∆H = -3.3 deg) or
vertical (b) (mean ∆V = +4.9 deg) component depends on the size of the orthogonal component, and how
this relates to the saccade direction. The lower-left panels show that the velocity profiles vary considerably
for the different selected responses, indicating that the independent model is unable to explain the behavior
of the system. The solid curves in the lower-right panels show the predictions of the common-source
model under the simplifying assumption that the vectorial amplitude-peak velocity relation is direction
independent (see, however, Fig. 11 of the manuscript).
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3.4 Muscle controls

Figure S6 shows the muscle-control signals for the saccades elicited by the zero-initial paradigm.
Figure S6A provides the details of a single example saccade to the right and upward, and clearly
demonstrates the grouping of the six muscles into agonists and antagonists. It also shows the pulse-
step nature of the three agonists (LR, SR and IO) and the reverse behavior for the antagonists (MR, IR and
SO). Figure S6B shows the LR/MR responses for near-horizontal saccades, whereas Fig. S6C provides the
data of IO/SO/IR/SR for near-vertical saccades.

Figure S6. Muscle control signals for the zero-initial paradigm. (A) Controls for a right- and upward
saccade with [R,Φ] = [16.3, 35.3] deg. Top: control signals of the six muscles. Bottom: vectorial position
(black) and velocity (red). (B) LR and MR control signals for near-horizontal saccades. (C) SR,IR, SO and
IO controls for near-vertical saccades. Note that SR/IO and SO/IR function as agonists.

Figure S7. Muscle synergies for all saccades in the zero-initial paradigm, grouped as (A) antagonists and
(B) agonists.
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Figure S7 shows the correlations between antagonist pairs and agonist pairs for the zero-initial saccades.
The correlations for the agonists cluster near the optimal value of +1.0, whereas the LR/MR and SR/IR
antagonists cluster near the optimal value of -1.0. Note that the SO/IO antagonistic behavior is more
variable, which is due to Listing’s Law, allowing the eye only a very small range of cyclotorsion.

3.5 Direct stimulation of the SO muscle.

Figure S8. (A) Eye-movement trajectories with respect to Listing’s Plane (LP) after stimulating the SO
muscle with a Gaussian pulse of 21 ms width from different initial horizontal eye orientations. The control
data without stimulation (grey) have been shifted by 0.01 rads/2 for visual purposes. (B,C) The stimulation
yields a vertical downward movement with a counterclockwise torsional component, whereby the size of
the latter varies linearly with the initial horizontal position (D).

Figure S8 describes the resulting saccade trajectories when stimulating the SO muscle after a horizontal
saccade. Figure S8A depicts the experimental paradigm: an eye movement is made from straight ahead to a
horizontal target location, after which the SO muscle (red traces) is stimulated by a Gaussian pulse with a
width of 21 ms (the same pulse as in Fig. 15 of the paper). The stimulation elicits a downward (top-left) and
in-torsional eye movement from 10 different positions (cf. Hepp et al. (1989)). The right-hand panels show
an (rx, ry) view of the traces in the laboratory frame (cf. with Fig. S2B). The vertical-torsional movements
elicited by the stimulation produced a coordinate velocity, ṙ, that clearly deviated from Listing’s plane, as
shown in Figure S8B,C. The light-grey traces are the horizontal eye movements before the stimulation, and
they define Listing’s Plane (dashed black lines, LP). Figure S8D shows that the cumulative deviation from
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LP, ∆rx, depends on the initial horizontal eye orientation. Note that the obtained relationship is remarkably
linear:

∆rSOx (rz) = −0.04 + 0.15 · rz (r2 = 0.992)

3.6 Half-angle behavior

Figure S9. (A,B) Horizontal left (blue)/right (red) eye-movement trajectories of 15 deg amplitude elicited
from different vertical initial eye orientations. The black traces are the horizontal saccades from the
zero-initial paradigm. (A) zy plane. (B) xy plane. Dashed line, LP = Listing’s Plane. (C,D) Net muscle
controls for the four vertical-torsional muscles during the horizontal saccades: (C) Left (trajectories in
inset upper-left); (D) Right (trajectories in inset upper-left). Note the substantially larger range for the
vertical-torsional pulse signals, especially for the SR/IR muscles, when compared to the saccades starting
at (0,0,0) (black).

In Figures S9 and S10 we illustrate how the vertical-torsional muscles are recruited for horizontal
saccades that start at different vertical initial eye orientations. These saccades were generated by a separate
continuous paradigm, in which the first saccade brought the eye from (0,0,0) to (0,-0.25,0), the second was
the first rightward saccade to (0, -0.25, -0.15), the third an oblique one to (0,-0.20, 0), etc., working its way
up to (0, +0.25, -0.15). Then the reverse sequence continued with leftward saccades, from (0.0.25,0.15)
down to (0,-0.25,0.15). Figures S9A,B show the resulting 24 left/right saccade trajectories of approximately
equal amplitude from the 12 vertical eye orientations between -28 and +28 deg, as well as the horizontal
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saccades taken from the zero-initial paradigm (black traces). In Fig. S9C,D the saccadic pulse activities of
the four vertical/torsional muscles are shown for the leftward (C) and rightward (D) saccades from both
paradigms. Clearly, the pulses for the saccades from different initial vertical positions span a much larger
range than the vertical/torsional pulses for the zero-initial saccades (black).

Figure S10. (A) Signed pulse-peak amplitude of the net control signal of the four vertical-torsional
muscles (legend) as function of the initial vertical eye orientation. Same data as in Fig. S9. Grey symbols:
the horizontal zero-initial saccades. Three of the muscles are systematically, and nearly linearly, recruited
as function of rony . Despite the considerable trial-to-trial variability, the r2 values for the linear fits
are high, except for the IO muscle, the activity of which better reflects differences in right- (circles) vs.
leftward (squares) saccades. (B) The torsional component of the resulting angular velocity vector for
these horizontal saccades varies (nearly) linearly with the initial vertical eye orientation according to the
half-angle rule.

Figure S10A quantifies the qualitative observations of Fig. S9 by plotting the (signed) maximum pulse
activity of the four muscles as a function of the initial eye orientation. Each muscle is identified by a
different color. The zero-initial saccades are identified by the gray symbols. Squares denote leftward
saccades, circles are rightward. Note that the pulses for three of the four muscles (SR, IR and SO) show a
strong linear relationship with vertical initial eye orientation (r2 > 0.7), with the IO muscle showing more
variability, mainly related to left- vs. rightward saccades. The linear regression lines for the four muscles
are parameterized by:

PSR(ry) = +0.039 + 1.645 · ry (r = 0.91)

PIR(ry) = −0.017− 1.548 · ry (r = 0.88)

PSO(ry) = +0.055 + 1.536 · ry (r = 0.84)

PIO(ry) = +0.057− 1.080 · ry (r = 0.56)

These four relations nicely show the antagonistic nature of the vertical-torsional system. These results also
indicate that the half-angle rule (at least a correlate of the rule) is encoded in large part by the motor control.
This half-angle behavior is illustrated for the horizontal saccades in Fig. S10B, which shows that the peak
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torsional component of the angular velocity axis for the leftward and rightward saccades is well described
by linear regressions:

ωxPK(∆H > 0) = +0.099− 7.626 · ry (r2 = 0.99)

ωxPK(∆H < 0) = −0.095 + 3.416 · ry (r2 = 0.88)

The relationship between the muscle-activation patterns and the resulting half-angle behavior, however,
results to be distributed across the four muscles in a non-trivial way because of the nonlinear transformations
between motor angles and resulting eye orientation (S1-S5).
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