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Abstract—This paper explores the application of model-based
optimal control principles in understanding stereotyped human
oculomotor behaviors. Using a realistic model of the human
eye with a six-muscle cable-driven actuation system, we tackle
the novel challenges of addressing a system with six degrees
of freedom. We apply nonlinear optimal control techniques to
optimize accuracy, energy, and duration of eye movement trajec-
tories. Employing a recurrent neural network to emulate system
dynamics, we focus on generating rapid, unconstrained saccadic
eye movements. Remarkably, our model replicates realistic three-
dimensional rotational kinematics and dynamics observed in
human saccades, with the six cables organizing themselves into
appropriate antagonistic muscle pairs, resembling the primate
oculomotor system.

Index Terms—Oculomotor system; Saccadic Eye Movements;
Biologically Inspired Robots; Recurrent neural network; List-
ing’s law; Optimization and Optimal Control; Cable-Driven
Robot; Cable pre-tension.

I. INTRODUCTION

With the increasing use of robots in our daily lives,
biorobotics1 is becoming an important topic for researchers
in the fields of robotics and biology. Both robots and humans
have sensors to perceive the environment and actuators to
perform actions. Therefore, designing a control system that
allows robots to behave as humans or animals is an important
goal in this multidisciplinary research field. In this sense,
robots can be designed to mimic the natural behavior of
humans and animals, and biologists can use the results from
the artificial models without having to face the ethical and
technical difficulties of experiments on the real model. This
interdisciplinary work helps roboticists develop better robot
designs and control systems [1], but robotics can also be used
to explain the emergence of biological behavior[2]. Several
such attempts have been published, e.g., on robotic models of
cockroaches and hexapedal robots[3], [4], and of insects (such
as ants and bees)[5], [4]. Biomimetic robotics has also been
applied to biologically equivalent body parts, such as, e.g.,
the hand [6], and the eye [7], [8]. Robot models have also
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1robots inspired by human or animal biological behavior

been used to study gaze behaviors of humans. Gaze plays an
important role in social interactions, signaling one’s attention
to external events, but also to attitudes, affects, or emotions
[9].

Optimal control is a paradigm frequently used in the study
of neuro-muskuloskeletal systems [10]. However, most of the
research focuses on the human biomechanics of the limbs
and spine [11]. Only a few studies have proposed the use
of optimal control theory in modeling human eye movements
[12], [13], [14], [15] but no one has considered the full
complexity of the 3D motion controlled by the six extraocular
muscles. In this paper, we propose a novel unconstrained
biomimetic robotic eye model to study the emergence of the
characteristics of human saccadic eye movements. Compared
to other works, our contributions in this paper are as follows:

• We designed a 6 DoF cable-driven robot with realistic
cable insertions and unconstrained movements.

• We used the model to analyze both the kinematic and
dynamic properties of saccades in 3D.

• The full dynamics of the robotic eye was extracted by
training a non-linear recursive neural network (NARX).

• We show the emergence of human-like saccades using
optimal control to drive the nonlinear robotic eye model.

The paper is organized as follows. Section II describes
the kinematic and dynamic properties of saccades found in
physiology that reflect a tightly coordinated synergy of the
extraocular muscles, for which the neuronal control mecha-
nisms are still largely unknown. In Section III we review other
existing robot eye models and show that all lack important
mechanical properties to study the emergence of human-like
saccades with similar characteristics as found in physiology. In
particular, so far no studies have presented a model with full
3D unconstrained saccadic movements actuated by 6 muscle-
like actuators. In Section IV we present our formulation for
biomimetic saccade control in robot eyes, following an optimal
control approach applied to a suitable simulator of the eye
model. In Section V we describe the mechanical design of our
biomimetic eye and its novel characteristics that allow for a
study of oculomotor control that is more complete than in other
existing models. Sections VI and VII specify the methods used
to model and control our system. The results of the simulations
are presented in Section VIII, where we show that the proposed
approach exhibits properties similar to those found in biology.
These properties are not preprogrammed in the system, but
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Fig. 1. Representation of the right human eye with its six extraocular muscles.
The muscles can rotate the eye in any three-dimensional orientation around
its fixed center of rotation. The right-handed head-fixed reference frame of
Listing (arrowheads) shows the three cardinal axes: horizontal (y), vertical
(z), and torsional (x), respectively. For example, horizontal recti rotate the
eye mainly around the z-axis: lateral rectus, rightward (negative z); medial
rectus, leftward (positive z). In Listing’s frame of reference, Listing’s plane
coincides with the yz plane, and the x-axis points in the so-called primary
direction.

emerge from the joint characteristics of our mechanical system
and the proposed optimal control laws. Finally, in Section IX
we discuss the achievements and directions for future research.

II. HUMAN OCULAR SYSTEM BACKGROUND

This section describes the anatomy and properties of the hu-
man oculomotor system that are essential to comprehend and
validate our contributions. It also introduces the mathematical
notation that will be invoked later.

A. Human-eye and Extraocular Muscles

The eye is enclosed within a conical cavity, where fat and
connective tissues restrict its translation [16][17]. Thus, the eye
can effectively only rotate with three degrees of freedom by
actuating six extraocular muscles that control its orientation
(see Fig. 1). The muscles in the horizontal plane of the
right eye, the medial (MR) and lateral (LR) recti, rotate the
eye mostly horizontally. The four muscles around the medial
plane, the superior (SR) and inferior (IR) recti, along with
the sideways pulling superior (SO) and inferior (IO) obliques,
enable vertical and cyclo-torsional rotations. It is important
to note that the pulling directions of the six muscles are not
independent of each other and depend on the orientation of
the eye [16]. As illustrated in Fig. 1, any 3D eye orientation
can be obtained by rotations around the x, y and z axes,
specifying cyclotorsion, pitch and yaw, respectively. Whereas
yaw rotation is achieved by the LR-MR antagonists, pure pitch
and cyclotorsional rotations require joint actuation of the four
vertical-torsional muscles.

Recordings from primate oculomotor neurons have indi-
cated that, with the eye at rest in the primary position,
approximately 65% of the neural population is recruited [18].
Effectively, this means that the eye is kept under continuous
pre-tension and that the neural control for eye movements
modulates the relative innervation of agonist and antagonist
muscles by changes in firing rates to enable high-precision
angular control of the eye. In addition, in a cable-driven robotic

system, cables transmit force by applying tension and therefore
must remain under tension at all times. To ensure the proper
function of a cable-driven robotic eye and to prevent actuator
backlash, the six cables must be pre-tensioned [19]. However,
the amount of cable pre-tension must be adjusted with care:
excessive pre-tension causes more friction, leading to faster
wear and tear and shorter lifetime [20]. Insufficient pre-tension
causes slack and deficiency in the control [19].

B. Saccade kinematics

Typically, humans make about 3-4 saccades per second to
scan the visual environment [21] and these are constrained
by Donders’ law, which restricts the rotational degrees-of-
freedom of the eyes from three to two [22]. Donders’ law
states that any eye orientation has a unique cyclotorsional
angle, regardless of the path followed by the eye to reach
that orientation. It has been argued that Donders’ law avoids
the problems associated with the non-commutativity of 3D
rotations, which becomes especially important when planning
sequences of eye and head movements [23][24][25]. Listing’s
law is a further specification of Donders’ law. It provides
an extra restriction on the eye’s cyclotorsion for the special
condition with the head upright and still, and the eyes looking
at infinity. To describe 3D eye orientations, the neuroscience
literature typically uses the Euler-Rodrigues rotation vector,
r ≡ tan(ρ/2) · n̂, where n̂ is the unit axis of rotation, and
ρ the rotation angle that brings the eye from the reference
orientation at r = 0 to the current orientation [23][25][26]. In
this representation, Listing’s law constrains all eye orientations
to Listing’s plane, which in the laboratory frame (where r = 0
is straight ahead) is described by rx = a · ry + b · rz . A
change of coordinates aligns Listing’s plane with the (yz)
plane, i.e., rx = 0. In Listing’s frame of reference, r = 0
is the physiologically defined primary position (Fig. 1). Note
that Listing’s law holds not only during steady eye fixations but
also during smooth-pursuit eye movements and rapid saccadic
eye movements. It does not apply to eye-head coordination,
static head tilts, vestibular and optokinetic stimulation, or for
disjunctive vergence eye movements to fixate nearby targets,
for which Donders’ law applies [27].

C. Saccade dynamics

A further important property of saccades is their nonlinear
dynamics, described by the so-called main-sequence [28]. In
humans, the peak velocity of the saccade, Vpk, saturates at
large amplitudes, A, which follows from the affine increase in
the duration of the saccade, D, with A: D = a·A+b. Because
normal velocity profiles are single-peaked, there is a linear
relation between A and Vpk ·D. Fig. 2 c-d shows schematic
diagrams of these properties. Finally, behavioral experiments
have shown that oblique saccade trajectories are approximately
straight [29]. As a consequence, the horizontal and vertical
component velocities are scaled versions of each other (i.e.,
they are synchronized), resulting in significant stretching of
the smaller component’s duration when it participates in an
oblique saccade.
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(a) (b) (c) (d) (e)

Fig. 2. Schematic illustration of human saccade kinematics (a,b) and nonlinear dynamic (c,d,e) properties. Panels (a) and (b) show the (ry , rz) and (rx, rz)
views of the thin plane formed in 3D when eye orientations during saccades are represented by rotation vectors (Listings’ law: rx = 0). Note nearly straight
trajectories in all directions (a). Panel (c) shows the affine relationship between saccade duration and amplitude. Panel (d) shows the saturation of peak eye
velocities with increasing saccade amplitudes, while panel (e) shows the linear relation between saccade amplitude and duration times peak eye velocity.

TABLE I
COMPARISON OF OUR PROPOSAL WITH SIMILAR ROBOTIC EYE SYSTEMS AND SIMULATION MODELS

Model Control DOF Muscle type Realistic muscle insertions Saccade directions Listing’s Law Main- Sequence
MACEYE[7] 4 Cables with motors 7 7 Mechanically enforced 7

Rajendran et al.[30] 4 Contractile muscles 7 7 7 7

Wang et al. [31] 6 Pneumatic muscles 7 7 7 7

Lakzadeh, M. [32] 6 Cables with motors X 1D 7 7

Wei et al.[33] 6 Simulated muscle strands X 1D 7 7

Priamikov et al.[34] 6 Simulated Hill-type muscles X 1D 7 7

Iskander et al.[35] 6 Simulated Hill-type muscles X 1D Implemented as constraint 7

John, et al. [15] 3* Cables with motors 7 2D X X

Our paper 6 Cables with motors X 2D X X

DOF: Degrees of freedom. * The robot in [15] had six muscles but were activated as pairs of hard-coupled motors.

III. RELATED ROBOTICS WORK

This section reviews those robotic eye models in the litera-
ture that have tried to replicate characteristics found in biology.
These models have focused on achieving high movement
speeds, or a human-like external appearance [36], [37], [38], or
replicating prerecorded human gaze shifts [39], [40], [41], or
hardcoding the biological control rules into the robot control
system [42]. However, none of these models studied how the
eye movements emerge and how they can be generalized to
other designs, as every new design requires a new controller.
Furthermore, typical robotic eyes are equipped with only 2
degrees of freedom (DOF), usually pan-tilt serial kinematics
to control the yaw and pitch of gaze, and cannot independently
control ocular cyclotorsion.

Some robotic eye designs made explicit links to the bio-
logical oculomotor system and its actuation [7], [43], [30],
[44], [31], [32]. Canata et al. [7] developed a mechanical
eye driven by four tendons (MAC-EYE). It complied with
Listing’s law (Section II) by implementing the appropriate
routing of the four cables through precalculated pathways.
Although a hardwired implementation of Listing’s law seems
an interesting engineering solution, it does not explain how this
property emerges in the human oculomotor system. In [43],
[30], a robotic eye is described, driven by four biologically
more realistic contractile muscles. However, the chosen muscle
attachments were not similar to those in the human eye. Wang
et al. [31] developed a system with six Pneumatic Artificial
Muscles (PAMs) with more realistic insertion points, but with
the four recti muscles symmetrically arranged, unlike the
human recti. The system developed in [32] had six cables
with realistic insertions and pulling directions. However, their
eyeball did not rotate around a fixed spherical joint but
within a nested gimbal. As the system’s inertia changes when

moving, it is ineffective for studying saccade dynamics. None
of these robotic eyes were used to study oblique saccade
trajectories, the main-sequence relationships, and underlying
muscle-control signals.

Some studies aimed to model the complete complexity of
extraocular muscles through simulation [33], [34], [35]. These
studies used inverse dynamics or neural activation patterns to
drive the simulated eye in a saccade-like way, but they were all
limited to 1D behaviors. Although this may help to understand
certain clinical deficits, the complexity of the model impedes
the application of different control strategies that could lead to
the stereotypical kinematic and dynamic properties of human
saccades.

A comparison of previous work on robotic eyes is sum-
marized in Table I. Two of these systems [7], [30] were
restricted to four muscles only, and two others [15], [31]
did not implement accurate muscle pulling directions. For a
proper understanding of the 3D oculomotor system, however,
it is important to model the coupled pulling actions of all
six muscles in 3D, and thus account for the considerable
nonlinearities in the system. Although some studies model the
human eye in high detail in a simulation environment [33],
[34], [35], or with thoroughly scaled physical features [32],
they only show saccade-like movements in the horizontal or
vertical directions, and did not employ the full 3D coordination
of the system, or saccades in oblique directions. To the best
of our knowledge, no study modeled the control of the full
3D system with six muscles to understand the emergence of
Listing’s Law, the stereotypical main-sequence behavior, and
straight oblique trajectories of fast saccades.

It has been hypothesized that the brain may optimize a cer-
tain cost function, which would lead to the saccadic properties
of Fig. 2. However, the application of optimal control theory
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to understand the emergence of human saccadic behaviors has
so far been confined to 1D [12], or decoupled 3x1D models
[13]. For example, [14] studied how open-loop optimal control,
combined with a local learning mechanism, could generate
eye-head movements in a 1D linear model.

We recently tested a feedforward open-loop optimal control
strategy [45], based on a linear approximation of a simple,
but non-linear, 3 DOF unconstrained biomimetic robotic eye,
which reproduced the 3D dynamics and kinematics of human
saccades [15]. The biomimetic eye had three independent
motors, hard coupled to agonist-antagonist cable pairs. The
linear approximation for the open-loop controller applied sys-
tem identification on a physics-based robot simulator. Despite
its realistic behaviors, the inherently fixed hard coupling
of agonist-antagonistic pairs is an unrealistic feature, which
does not explain how it actually emerges in the biological
oculomotor system, where the six muscles are independently
controlled by their own motor-neuronal nuclei[46], [47], [48],
and where agonist-antagonist pairing is a dynamic and flexible
strategy that depends on changes in 3D eye orientation[16],
[49], [50].

IV. PROBLEM DEFINITION

We here propose a novel robot design for a realistic 6
DOF biomimetic eye. To better understand its control and to
enable a full characterization of the system, we developed a
numerical simulator. Compared to the 3 DOF model in [15],
our new 6 DOF actuation system brings additional challenges.
In particular, the control has to resolve the agonist-antagonist
coupling of the muscles and set the appropriate muscle pre-
tensions, which impact on the highly redundant muscular
system. For this new system, we developed a controller that
replicates most of the kinematic and dynamic characteristics
of human saccades, including the emergence of an agonist-
antagonist organization of distinct muscle pairs according to
the basic optimality criteria.

Similarly to our previous work [15] we take a model-based
stance to the control problem, which we divided into two steps:
deriving forward models of the mechanical eye, suitable for
control design (Problem 1), and computing open-loop optimal
control trajectories for the modeled system (Problem 2).

Problem 1 (Approximating the forward dynamic model): To
obtain suitable control trajectories with reasonable computa-
tional resources, we need to create fast models that approx-
imate the dynamic equations based on nonlinear physics of
the cable-driven robotic eye system of Fig. 3. We represent
the motor angles as u ≡ [uIR, uMR, uSR, uLR, uIO, uSO]T

and the 6 DOF eye state is composed of its 3D orientation
and angular velocity: x ≡ [rx, ry, rz, ωx, ωy, ωz]

T . In [51] we
computed linearized approximations of the system equations.
However, analytic linearization methods are quite tedious and
hard to extend to future model improvements. In this work, we
trained a nonlinear neural network model to approximate the
system dynamics and used it in the optimization of the control
trajectories. The next state of the system, xt+1, is predicted
from the control input ut for the 6 motors and the current state
xt, where t indicates discrete time. Thus, the model could be

(a) (b)

Fig. 3. (a) Schematic 3D side view of our biomimetic human eye prototype,
with six motors (five spindles are visible) independently controlling the six
cables (’extraocular muscles’; four are visible) connected to the eyeball. The
eye is held in place by eight external arms to allow only 3D rotations around
its fixed center. The ball-contacts of these arms on the eye (not visible) provide
a dynamic frictional force that increases the total damping. (b) Front view of
the actual mechanical prototype showing the eye with the camera.

defined by the evolution of the state, under the action of the
command: xt+1 = f(xt,ut).

Problem 2 (Trajectory optimization): We are attempting
to generate saccades that have similar characteristics to those
of humans, across the entire 3D range, by formulating the
saccade generation process as an optimization problem with
various criteria. The optimal trajectory, u∗0:T , brings the eye
from the initial state, x0, to its final state, xT , in a finite time-
interval, t ∈ [0, T ].

If we consider u0:T = [u0,u1, · · · ,uT ] as the sequence
of input motor commands, then the problem is to find those
input motor commands that generate the optimal trajectory at
a minimum cost. This cost is typically composed of a linear
combination of partial costs on the properties of the trajectory,
e.g. duration, accuracy, energy. The optimal control problem
can thus be written as:

min
0≤T≤Tmax

(
min
u0:T

T∑
t=0

C(xt,ut, T )

)
,

subject to : xt+1 = f(xt,ut), ut ∈ U
(1)

where, C() indicates the cost of input state x and motor
command u for a given duration T , Tmax is a bound on the
possible values of T , and U is the set of feasible commands.
The optimization process is generally organized in an inner
optimization of the motor commands u for a fixed time horizon
T , and an outer loop that optimizes T in a certain range
0 ≤ T ≤ Tmax. Details about the components of the cost
function are provided in Section VII.

V. DESIGN OF THE 6 DOF CABLE-DRIVEN ROBOTIC EYE

Figure 3 shows the 3D model and the mechanical prototype
of our system. Like the human eye, the robotic eye rotates
with 3 DOF around its fixed center whenever the six elastic
cables, which represent the extraocular muscles, exert a net
torque. Cables are inserted into the globe at contact points
(Table II), which were scaled and slightly adjusted from human
measurements [52]. Each cable is controlled by its own motor
that rotates at a given speed, which pulls the cable around its
spindle to exert a torque on the eye. Because cable pulling
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Fig. 4. Visualizaton of the extraocular muscles (green) for the simulator
of the right eye, deviated to the right (red line) from straight-ahead (light
blue laboratory frame), where red and white dots indicate insertion points on
the eye and head, respectively. Note that the cable pulling directions are not
symmetric to the center of the eye, because the insertion points on the head at
the back are medially shifted in the +y direction. As a result, the MR muscle
is shorter than the LR when the eye is in the primary position.

directions vary with eye orientation and muscles can only pull
(not push), the total system (described below in more detail)
is nonlinear [15]. Thus, rotating the robotic eye in the same
way as the human eye during saccades (i.e., accurately and at
high speeds) becomes a highly nontrivial problem.

TABLE II
LOCATIONS OF CABLE INSERTIONS AT EYE AND HEAD.

Muscles IR SR MR LR IO SO
Insertion(eye)

x(mm) -2 -2 7.7 7.7 -11.2 -11.8
y(mm) -1.4 0.8 39.3 -39.3 -1.4 -1.2
z(mm) 40 -40 0 0 38.3 -38.1

Insertion(head)
x(mm) -100.1 -100.1 -100.1 -100.1 45 45
y(mm) 40.7 40.7 51.6 29.6 37.5 37.5
z(mm) 7.8 -14.9 -3.5 -3.5 62 -62

Length(mm) 111.5 108.8 108.6 127.9 72.3 72.7

To study the properties and behavior of the biomimetic eye,
we developed a simulator, in which the eye was modeled as a
sphere with a fixed center, subject to Newton-Euler’s rigid
body equation of angular motion, and actuated by the six
cable-driven actuators:

α = I−1(τnet(x,u)− ω × Iω) (2)

where α is the eye’s angular acceleration, I is the inertia tensor
of the eye, u is the motor configuration of the 6 motors, ω is
the eye angular velocity, × denotes the vector (cross) product,
and τnet is the net torque on the eye, which depends on the
dynamic friction and elasticity torques, τ d and τ k:

τnet = τ k + τ d =

6∑
m=1

τm − Dω (3)

Here, D quantifies the eye’s damping matrix, subscript m is
the motor index, and the torque exerted by each muscle is

τm = Qm × fm (4)

where Qm is each muscle’s insertion point on the eye, and fm
is the force applied by each muscle on the eye, which depends
on the current state xt, goal state, xG, and control input ut.

To simplify the modeling, the cables were approximated by
linear elastic springs. The elastic force applied to the eye by
each cable (fm) then depends on its length (lm), determined
by the sum of the length of the cable wound to the motor
spindle and the length between the fixed cable head-routing
point (white dots in Fig. 4) and the final contact point on the
eye (red dots). The length of the cable for each muscle (lm)
varies with the rotation of the motors (u) and the orientation
of the eye (in state x; we omit the time index t, for clarity),

lm(x,u) = ‖Qm(x)− Pm‖+ rsp · um (5)

with Qm and Pm the (eye and head) insertion points of cable
m, rsp the radius of the spindle, and um the rotation angle of
the spindle for cable m ∈ {IR,MR,SR,LR, IO, SO}. This
leads to a dynamic elastic force that is determined by Hooke’s
law [53]:

fm =
k

l0m
(lm(x,u)− l0m)~φm (6)

where k is a constant depending on the material and thickness
of the cables and l0m is the rest length of cable m. ~φm is the
unit vector in the direction of the force applied to the eye.

The inertia of the eye (diag(I) = [4.8, 4.3, 4.8] × 10−4

kg·m2), muscle stiffness (k = 20 N) and damping parameters
(diag(D) = [0.04,0.04,0.04] Nms), were selected to closely
replicate the biomechanics of the human eye [21]. To im-
plement the constraint that the elastic cables can only pull,
the force was set to zero as soon as it went negative. When
this happens, the cable loosens and no longer applies tension,
a phenomenon known as slack (see VII-C). Note also that
since the constant of elasticity, k, was taken identically for all
cables, the effective stiffness varies for movements in different
directions. For example, for horizontal movements, the elastic
forces are primarily delivered by LR and MR, but vertical
movements involve the interaction of SR, IR, SO, and IO.

VI. APPROXIMATIONS OF THE SYSTEM DYNAMICS

The computation of optimal commands through (1) could
ultimately be done with non-linear optimization techniques
applied to the non-linear physics simulator of the eye system.
However, running the non-linear physics simulator in the
optimization loop is too time-consuming due to the integration
of the non-linear differential equations. In a previous work,
our team explored a local derivative-based linearization of
the non-linear system dynamics, by applying an infinitesimal
perturbation method around an equilibrium point [54]. The
linear model proved to accurately approximate the nonlinear
system for small perturbations around the linearization point,
but the quality of the approximation quickly degraded for
large saccades. Furthermore, the analytic linearization method
involves nontrivial derivatives and does not scale well with
physical model complexity. Therefore, in this work, we opt to
use a nonlinear data-driven method that learns an approxima-
tion of the model from samples of input-output data. This
method is much faster to compute than the physics-based
simulation and can be adapted to variations of the system
by relearning the model after acquiring new input-output data
sequences.
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The nonlinear autoregressive network with exogenous inputs
(NARX) is a type of recurrent neural network [55], [56] that
has been applied to model the complex dynamics of nested
manipulators [57].

In discretized time, the NARX model can be written as:
xt+1 = f(xt−nx:t,ut−nu:t) where the next value of the
dependent output signal xt+1 is regressed on previous values
of the same output signal xt−nx:t and previous values of
an independent (exogenous) input signal ut−nu:t. We have
adopted the MatlabTM implementation for the NARX model,
illustrated in Fig. 5.

Fig. 5. Architecture of the fully-connected NARX model with input, hidden,
and output layers. Number of hidden units, nh = 55; input memory: nu = 1;
nx = 3; DoF of the state: sx = 6; DoF of the input: su = 6.

In summary, the NARX model takes the current and past
motor commands, ut−nu:t and the current and past state,
xt−nx:t from the nonlinear system as input to predict the state
for the next time step. The size of the network’s memories of
control commands and states is nu+1 and nx+1, respectively.
In Fig. 5, nh is the number of neurons in the hidden layer; sx
and su are the sizes of the input vectors u and x, respectively.
ut−nu:t and xt−nx:t are the (past) inputs to the network. xt+1

is the output of the network. b1,i and b2,j are the bias weights
for the hidden layer and the output layer, respectively. The
weights wumir connect the input to the hidden layer, wxjil
connect the current and past states to the hidden layer, and
woji connect the hidden layer to the output layer (i ∈ [1, nh],
j ∈ [1, sx}, m ∈ [1, su], r ∈ [1, nu], l ∈ [1, nx]).

The output of each layer is computed by applying nonlinear
(sigmoid) (f1) and linear (f2) activation functions, respec-
tively. The biases and weights of the network are adjusted
during network training using the Levenberg-Marquardt back-
propagation technique.

The output of neuron i at time t in the hidden layer, Hi(t),
is computed by:

Hi(t) = f1

 su∑
m=1

0∑
r=nu

wumiru
(m)
t−r +

sx∑
j=1

0∑
l=nx

wxjilx
(j)
t−l + bi


(7)

where the notation u(k) indicates the kth entry of vector u.
The output of the network is determined by:

x
(j)
t+1 = f2

(
nh∑
i=0

wojiHi(t) + bj

)
. (8)

VII. OPTIMAL CONTROL

A. The Cost Function

Saccades should reach the goal as fast and as accurately
as possible, while consuming the least amount of ’metabolic’
resources, i.e., energy. This leads to the inclusion of three cost
functions in the optimal control. In our previous study [15],
we did a comprehensive analysis of different combinations of
costs and found that the following costs are the most important
for generating human-like saccades.

1. Duration cost (JD): Saccade duration quantifies the
time, T , the eye needs to move from initial to final state:
the longer, the higher the cost, as saccades should reach the
goal in minimum time. The duration cost, JD(T ), is defined
by a hyperbolic discount function [15], [45], [58]:

JD(T ) = 1− 1

1 + βT
(9)

2. Accuracy cost (JA): Importantly, the eye should reach the
goal state xG at time T as accurately as possible, and at zero
velocity and acceleration if the target is not moving. We took
the accuracy cost, JA, as the Euclidean norm of the difference
between the final 3D eye state reached by the controller and the
desired goal with zero torsion, xG = (0, Gy, Gz, 0, 0, 0). Since
the primary position is not known a priori, we expressed the
3D accuracy cost in laboratory coordinates. We also included
a penalty for any state change in a window of W = 5 samples
as soon as the eye reached the goal at time T :

JA(x) =

W∑
t=1

||xG − xT+t||2. (10)

3. Energy cost (JE): We assume that the total energy
consumption by the saccade is proportional to the actuators’
angular velocities. As the time steps are uniform, angular
velocities can be approximated by differences between angular
positions. The energy cost, JE , is thus written as [45]:

JE(u) =

T∑
t=1

||ut − ut−1||2 (11)

B. Controller Design

To reduce the computation effort of the optimization, we
represent the sequence of input motor commands u0:T of a
saccade trajectory as a weighted sum of normalized Gaussian
basis functions, ϕi(t). The configurable number of basis
functions, N , can be much smaller than the number of time
steps in the trajectory. Formally,

ut =

N∑
i=1

µiϕ
i(t), ϕi(t) =

exp
[
−
(
t−ci
h

)2]
∑N
m=1 exp

[
−
(
t−cm
h

)2] (12)
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where µi are 6 × 1 coefficient vectors that will be returned
by the optimization process instead of ut. For a saccade with
duration T , we take N = γT Gaussian basis functions (with
γ < 1 for effective computational reduction), with centers ci,
that are evenly spaced (∆c = T/(γT − 1) ≈ γ−1) and with a
common standard deviation h = 2∆c to ensure good coverage
of the temporal dimension. This roughly corresponds to a fixed
partition of the duration range.

Defining a 6 × N matrix, M = [µ1 · · ·µN ], and a N ×
(T + 1) matrix, Φ =

[
ϕ1

0:T ; · · · ;ϕN0:T
]
, where ϕi0:T is the

vector with the samples of the ith normalized Gaussian taken
at the discrete times, the control trajectory can be written as:
u0:T = MΦ. Therefore, instead of finding 6× (T + 1) values
for a trajectory u0:T , we only need to compute the 6 × N
entries from M, where N < T .

The entire trajectory optimization in (1) is done as a bilevel
optimization. The duration of the saccade T is optimized in
the outer loop of (1). For a selected T , the inner optimization
problem can thus be written as

M∗ = argmin
M

J(x,u, T ) =
∑

α∈{D,A,E}

λαJα(x,u, T )

subject to: xt+1 = f(xt,ut), t = 0, 1, ..., T

u0:T = MΦ, ut ≥ 0

(13)

where each cost term, Jα, is multiplied by a fixed weight λα
and the next state, xt+1, is computed by the nonlinear NARX
model equation in Section VI. Fig. 6, shows how the trajectory
is generated by the inner optimization loop

One of the challenges in optimization is to set appropriate
values for the cost weights λα. We first estimated the range of
candidate values, after which, by trial and error, we manually
found the appropriate values for the λ’s.

Fig. 6. In the nonlinear optimal control approach, the optimizer generates µ
and thus u as input for the NARX model. From the NARX output, the cost
is calculated according to the optimization scheme (13).

The optimization procedure, including the inner and outer
optimization of (1), is summarized in Alg. 1. Initially, the
parameters λ, d (number of saccade durations to be evaluated)
and γ (ratio of the number of basis functions with respect to
the saccade duration in ms) are set. The initial and desired
orientations of the eye (x0,xG) are taken as input. Then,
for the possible d saccade durations in 0 < Tj ≤ Tmax,
it computes the optimal motor controls and the cost of that
solution. Finally, the duration with the lowest cost is the
optimal duration T ∗. We applied MATLAB’s function fmincon
with the ‘sqp’ solver to optimize (13). In our experiments, the
following values were set: d = 10, the maximum number of
iterations for the solver was set to 15, and γ = 0.24 ms−1,
which corresponds to a separation between Gaussians of about
4.2 ms and a standard deviation of 8.6 ms. These parameters

Algorithm 1: Trajectory Optimization()

param← λ, d, γ Initialize parameters
Input: x0, xG Initial and final orientation
for j = 1 to d do

1 Tj ← j ∗ Tmax/d Saccade duration
2 Nj ← γ ∗ Tj Number of basis functions.
3 Φj ← GBF (Nj , Tj) Create Φj .
4 M0

j ← CreateMuZero(Nj) Initialize Mj .
5 [costj ,Mj ]← Optimise(J(x0,xG,M

0
j ,Φj , λ)

Optimize cost with given parameters.

6 [T ∗,M∗,Φ∗]← min(costj) Find optimum values.
7 u∗ ←M∗ ·Φ∗ Optimal trajectory.

were empirically tuned for a good trade-off between compu-
tational time reduction and accuracy. We further restricted the
maximum duration of the saccade to Tmax = 210 ms and
initialized all elements of the matrix M at 2 (corresponding
to the resting position and all six motors with fixed pretension).

C. Controlling pre-tension

Because of the redundancy in controlling the 3D orientation
of the eye with 6 motors, the same orientation can be achieved
by (infinitely many) different motor-angle combinations, as the
amount of co-contraction of antagonistically acting muscles is
undetermined. Therefore, an important feature to control is the
amount of pre-tension (the set of initial motor angles), such
that the eye is able to reach any orientation in the oculomotor
range without the cables going slack during eye movements.
Therefore, we optimized the initial motor angles (u) such
that their squared norm is minimal, under the constraints that
ensure positive cable forces in equilibrium state x, while the
total elastic torque in the system is zero ((3) and (6)):

min
u
‖u‖2 f(x,u) > 0

subject to τ k(x,u) = 0

uagonist + uantagonist > 2θ

(14)

where f if the tension at each cable, τ k is the total torque
resulting from the cable tensions, and θ is a minimum bound
for the average motor angle for the three antagonistic motor
pairs (uagonist and uantagonist). These pairs are MR-LR, IR-
SR, and IO-SO. The value of θ is a user-defined parameter that
depends on the radius of the spindle around which the cables
are wound and should be chosen as the lowest value for which
the cables would not move slack throughout the trajectory.

Note that we did not control for slack explicitly at runtime.
Our strategy to prevent slack was to empirically tune the
pretension of the tendons such that we would not observe
slack in a set of large saccades. As we have not verified
the existence of slack in all other saccades tested, we cannot
theoretically ensure the absence of slack for all cases.

VIII. SIMULATION RESULTS

To evaluate our approach, we analyzed and compared
several output parameters of the system regarding the 3D
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(a) (b)

Fig. 7. (a): The 99 oblique goal directions as azimuth (rightward positive) and
elevation (upward positive) angles in the amplitude range from 5 to 30 degs,
as used for the zero-initial and continuous saccade tests in our experiments.
(b): Cost functions for a rightward horizontal saccade of 22o starting from the
origin in the trajectory optimization procedure , evaluated at 10 discrete time
steps. The large blue dot indicates the minimum total cost of the trajectory,
and is found at T = 147 ms.

kinematic (Listing’s plane) and dynamic (velocity profile)
behavior (Fig. 2), and the ’neural’ control signals from the
six motors.

A. Simulation Setup

To evaluate our controller on saccades of different am-
plitudes and directions, we created a test set of 99 random
target locations in horizontal, vertical, and oblique directions
with amplitudes between 5 and 30 degrees from straight-
ahead (Fig. 7a). We performed two saccade sequences: a zero-
initial sequence, where every saccade started from the origin
([0, 0, 0]), and a continuous sequence, where the next saccade
started from the final orientation of the previous saccade, and
so on. All simulations were performed in MATLAB 2021 on
a laptop with Windows 10 operating system, 16GB Ram and
a CPU core i7.

The weights λα of the three cost functions, Jα in our
optimization (13) were manually calibrated with the aim to
achieve human-like dynamic characteristics for the eye system:
λA = 1, λD = 0.04 and λE = 0.002. Fig. 7b shows an
example of the behavior of the three costs for a 22 deg
horizontal saccade, together with the total cost (red), executed
for ten different saccade durations between 30 and 210 ms.
The optimal saccade duration, T , is found at the minimum of
the convex total cost curve, that is, at T = 147 ms.

As for the setting of the cables’ pre-tensions discussed in
VII-C, we found by trial and error that values of θ around 2
radians (14) worked well for all saccades.

B. Model Learning

To train the NARX network, we have acquired a large
sequence of input-output data sampled at a frequency of 1 ms.
We have followed the approach of [15] and generated for in-
put data independent pseudo-random binary signal sequences
(PRBS) [59], typically used in system’s identification. PRBS is
a deterministic signal composed of rectangular pulses of fixed
amplitude but variable duration that has properties similar to
those of white noise (flat spectrum). Thus, it equally excites all
frequencies of interest in the system. The amplitude range of

(a)

(b)

(c) (d)

Fig. 8. (a): An illustrative selected section of random motor responses
over 3000 ms (out of 2 × 106 ms), which served as a training set for
the NARX network. Motor commands are within the range [0-3] radians.
(b): Eye orientation along the y-axis for a sample input signal (blue trace)
of 50,000 samples (150,000 ms) and the predicted signal (red) for the
trained NARX model. Inset: same data on an expanded scale. RMSE = 0.06
rad/2 and r2 = 0.97 between data and prediction, indicating an excellent
approximation. (c,d): Rotation vector components (in degrees) in the (xy) (c)
and (yz) (d) planes of the corresponding 3D eye orientations in the laboratory
frame (subsample of the total data set). Note that the rxry range of the system
is smaller than the rz range and that the data are slightly tilted in the xy plane.

these signals was chosen to obtain good approximations of the
model output in the range of the desired saccade amplitudes.

The total data length is 2 × 106 ms, which covers a wide
range of the workspace (Fig. 8). For computational reasons,
we reduced the data size by downsampling the signals to 3
ms time intervals.

By feeding the data set to the NARX model, the best result
was achieved after 96 training epochs with MSE = 0.0018
(rad/2)2. Figure 8 shows the result of the trained NARX
network (red line), tested on a random set of eye movements
(blue trace), which verifies how well the network learned the
forward dynamics of our non-linear robotic eye model.

C. Kinematic behavior

To study the 3D kinematics of the eye movements
resulting from our controllers, we analyzed the amount of
cyclotorsion of the 3D trajectories with respect to Listing’s
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(a) (b)

Fig. 9. (a) xy and (b) yz projections of 3D eye-movement trajectories in
Listing’s coordinates (red) from the continuous saccade sequence. Black: xy
data in the laboratory frame before applying a rightward rotation of 18.11 deg
about the z-axis into Listing’s coordinates. The blue vertical line at rx = 0
indicates Listing’s plane after rotation. Green dots in (b) correspond to the
actual ( rotated) goals of the saccade set in Listing’s frame (note different
scales for the abscissas).

Fig. 10. a) Movement trajectories in vertical and horizontal direction for the
99 saccades of the random sequence, all aligned in (0,0) (black), and after
their rotation onto the horizontal axis (red). b) The distribution of curvature
values for all 99 saccades. The far majority of saccades is straight (C<0.03).

plane. Fig. 9a shows the result of the continuous saccade test
in the laboratory xy plane (black). Note that Listing’s plane
is, typically, not aligned with the vertical axis of the head
frame. The data (red) were therefore rotated around the z-
axis (after calculating the best-fit plane) to align them with
Listing’s frame of reference (cf. Fig. 2b).

Table III presents the standard deviations of cyclotorsion
around Listing’s plane for different amplitude ranges and
saccade tests. These values correspond well with the range
reported for monkey and human eye movements (between 0.6
and 1.0 deg) [23], [25].

Figure 9b shows the eye-movement trajectories in Listing’s
yz plane. Overall, the eye-movement trajectories appear quite
straight.

To better quantify this observation, we calculated cur-
vature, C, as the maximum absolute deviation, dmax, of
the trajectory from the straight vector connecting the start-
and end points in the yz-plane, normalized by its vector
length: C ≡ dmax/|A| (e.g., for a semicircular trajectory,
C = A/(2A) = 0.5)[60]. In Fig. 10a we show the set of
continuous saccades of Fig. 9 after subtracting their starting
points such that all trajectories align with the origin. Then,
by rotating the trajectories to the horizontal axis the curvature
simply becomes

C =
max(|vt|)

|hend − hstart|

TABLE III
STANDARD AND MAXIMUM DEVIATION OF THE LISTING’S PLANE.

Saccade/
Control

Saccade
Amplitude◦

Deviation
(STD, Max)◦

Zero-initial
< 10 0.12, 0.35
< 20 & ≥10 0.24, 0.77
< 35 & ≥20 0.36, 1.35

Continuous
< 10 0.52, 1.24
< 20 & ≥10 0.54, 2.1
< 35 & ≥20 0.85, 2.8

with v and h the vertical and horizontal coordinates of the
rotated trajectory, respectively. Fig. 10b shows the distribution
of saccade curvatures, C. We divided saccades into two main
categories: straight (C < 0.03) vs. substantially curved (C >
0.1), and found that 70/99 saccades were straight, with only
6/99 substantially curved. This small group of curved saccades
was generated from eccentric initial positions with saccade
vectors not directed toward the center of the oculomotor range.

The straightness of saccade trajectories requires that the
horizontal/vertical components of their velocity profiles are
scaled: ωH(t) ∝ ωV (t). We indeed found high correlations
(for the continuous saccade set: µ = 0.80, σ = 0.29, see
Table IV). As curvature was not not explicitly included
as a cost in our algorithm, this apparent cross-coupling in
eye behavior is an emerging property of the optimal control
strategy. However, this also must indicate a considerable
amount of cross-coupling between the six motors, despite the
fact that they are physically independent of each other. £1

D. Saccade accuracy

The absolute localization error of the saccades resulted
to be independent of their amplitude, and was on average
1.47 deg (σ: 0.81 deg; see Fig. 11a; data from the nonlinear
simulator). The relative error (absolute error normalized by
amplitude) thus decreased with the saccade amplitude, in
contrast to what has been reported for results obtained from
human saccades [61] (see Discussion IX).

To analyze the source of the localization errors, we com-
pared the accuracy of the solutions for the optimal trajectories
obtained with the NARX model with those from the non-linear
simulator. As the nonlinear simulator represents the actual
physical plant, any errors in the accuracy of the end points
must be due to the trade-off between accuracy, duration, and
energy, expressed in the optimization cost function (apart from
numerical errors). The results are illustrated in Fig. 11. Panel
11b shows the oblique saccade trajectories for the zero-initial
data set in laboratory coordinates for the simulator (red) and
NARX (blue), which shows that, despite some small non-
systematic discrepancies, the trajectories are highly similar.
The green dots show the target locations. Panels 11c,d compare
the horizontal and vertical localization error components for
the two approximation methods. Both methods yielded small
errors (typically below 2 deg), and both component errors
were correlated. Overall, the NARX model provided a good
approximation for the nonlinear physics-based simulator, and
did not add systematic errors to the accuracy of the solution.
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(a) (b)

(c) (d)

Fig. 11. Accuracy. (a) The absolute localization errors (distance between
target and saccade endpoint), here shown for the continuous saccade set versus
the saccade amplitude of the nonlinear simulator. Note that errors do not
systematically increase with saccade size. Mean error: 1.47 deg (σ: 0.81 deg).
(b) yz plane of the zero-initial saccade trajectories for the nonlinear simulator
(red) and NARX model (blue). Green dots are the target points. Note the
similarity between the two approximation methods. c) Comparison of the
endpoint localization errors of the horizontal target component generated by
NARX and Simulator. d) Comparison of the localization errors for the vertical
target components. Note that the errors are small (typically < 2 deg) and quite
comparable for the two approximation methods.

E. Saccade dynamics

Figure 12a shows the vectorial velocity profiles for all
saccades of the continuous data set from the nonlinear sim-
ulator. Most velocity profiles were single-peaked, with some
exceptions for very large eye movements that were generated
from eccentric initial eye orientations. These velocity profiles,
reaching peak velocities near 500 deg/s, qualitatively resemble
those seen in human data (e.g., [29], [62]; see Section IX).

Figure 12b quantifies the main-sequence property of saccade
amplitude, A, vs. VPK ·D, for the continuous saccade set (cf.
Fig. 2e), showing a strong linear relationship, and expressing
the fact that most velocity profiles were indeed single-peaked.

Because of the affine dependence of saccade duration on
amplitude (Fig. 2c), the peak velocity is expected to saturate
for large saccade amplitudes, which is shown in Fig.12c,
where the solid red line is the predicted relation based on
the regression in panel b and the A − D relationship. It is
described by

VPK(A) =
c+ d ·A
a+ b ·A

=
−0.47 + 1.58 ·A

0.048 + 0.0031 ·A
deg/s

which asymptotes at 1.58/0.0031 ≈ 510 deg/s.
We also compared the saccade dynamics of the two approx-

imation methods by comparing the peak velocities of their
respective trajectories. Figure 12d shows that the peak veloc-
ities were strongly correlated (r2=0.993), and highly similar

(a) (b)

(c) (d)

Fig. 12. Dynamics. (a) Vectorial velocity profiles of the continuous saccade
set. (b) Amplitude, A vs. Vpk · D (in deg). Note the very tight linear
relationship (r2=0.94), with an offset of c =-0.47 deg and a slope of d =1.58.
(c) The A− VPK relation saturates for large saccades. The red line follows
from the affine A − D relation (with an offset at a=0.048 s and a slope
b =0.0031 s/deg; r2: 0.72; not shown) and the regression in panel (b). All
data in (a-c) are from the continuous set generated by the nonlinear simulator.
d) Peak eye velocity for the NARX model vs. the nonlinear simulator (zero-
initial set) indicates that both approximations yielded similar dynamics: offset:
= -1.7 deg/s, slope: 1.02, r2: 0.99.

(slope of the regression line: 1.016). Note that the main-
sequence relation of the system (Fig. 12c) shows considerable
variability in the peak velocity for a given amplitude. Part
of this variability, which is also observed in human oblique
saccades [29], is due to the strong-direction dependence of
the saccade dynamics, and the variation in initial conditions,
as these invoke different muscle synergies that significantly
influence movement speed. How these synergies are formed
is described next.

F. Analysing Muscle Forces

Figure 13 shows the changes in the instantaneous motor
control angles of the six tendons for four saccades start-
ing from the center. Several interesting observations can be
made. First, pure horizontal saccades (Fig. 13a,b) only involve
activation of the tendons mMR and mLR, while vertical
saccades require joint action of the vertical recti and obliques
(Fig. 13c). For oblique saccades (Fig. 13d), all six tendons
are activated. Second, motors act in antagonistic pairs for all
saccades, since the main activation controls of the involved
muscles are in opposite directions [16], [48], [63]. Third,
control of the eye tendons can be characterized as a pulse-step
activation for the agonists, and an anti-pulse/negative step for
the antagonists [21]. Fourth, the positive and negative pulses
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(a) (b)

(c) (d)

Fig. 13. Changes in motor-command angles (in rad) re. pre-tension for the
optimal trajectory of (a) an 11 deg left- and (b) a 22 deg rightward saccade, (c)
a 22 deg upward, and (d) a left-downward oblique saccade to [22.6, 22.6] deg,
all from straight-ahead. Note that motors form antagonistic muscle pairs with
pulse-step/anti-pulse-step behaviors. Note also the different control dynamics
for horizontal vs. vertical/torsional systems and the upward action of IO in the
vertical saccade. The six muscles contribute to the oblique saccade. Real pre-
tension values were [2.01, 1.96, 1.98, 2.03, 1.97, 2.02] rad. Lower panels:
vectorial eye position (rad/2).

of the activated agonists and antagonists exactly match the
saccade durations, whereas the agonist and antagonist post-
saccade steps attain increased and decreased values relative
to the initial pre-tensions, respectively. Finally, the pulse (and
anti-pulse) amplitudes increase with saccade amplitude. Thus,
the net force on the right eye for a rightward horizontal
saccade is delivered by the mLR, together with an equally
rapid relaxation of the mMR, while the other four tendons stay
close to their equilibrium pre-tension values; the slight change
in the obliques’ tension during larger horizontal saccades is
systematic (but note that their net effect is zero). Similarly,
an upward saccade requires joint activation of the mSR, mIO

muscles and a simultaneous inactivation of the mIR, mSO

muscles, and vice versa for a downward saccade, without
change in net tension for the horizontal recti (Fig. 13c). Note
that all these properties emerged from the optimal control
strategy. Interestingly, all have been observed in neurophys-
iological recordings from monkey oculomotor neurons [16],
[18], [48], [63], [46], [47].

TABLE IV
CORRELATIONS: MUSCLE COMMANDS AND VELOCITY COMPONENTS.

Antagonists Agonists Saccade
LR-MR SR-IR SO-IO SR-IO SO-IR ωH − ωV

µ -0.88 -0.89 -0.49 +0.73 +0.73 0.80
σ 0.12 0.22 0.42 0.24 0.33 0.29

mode -0.95 -0.99 -0.95 +0.91 +0.94 0.96

Table IV summarizes the correlation statistics between
the five different muscle pairs, grouped as antagonists and

agonists, respectively (e.g., Fig. 13d), for all oblique saccade
trajectories in the continuous paradigm with a direction at
least 20 degrees away from pure horizontal or vertical (N=57
saccades). Note that the antagonists have their correlation
modes close to -1.0, and the agonists close to +1.0. Note
also that the SO-IO muscle pair (antagonists for cyclo-torsion)
is more variable than the other four pairs, which is due to
Listing’s Law that strongly restricts the torsional range in
the saccades. The rightmost column shows the correlation
statistics of the horizontal and vertical velocity profiles of
these oblique saccades. The mode near 1.0 indicates that most
trajectories were virtually straight.

IX. DISCUSSION

1) Summary: We developed a physics-based model for a
biomimetic robotic eye with six independent motors control-
ling elastic strings, mimicking human eye movement (Fig. 1)
by rotating the eye around its fixed center with three degrees
of freedom (Fig. 8). The nonlinear system dynamics were
learned using a recurrent neural network under optimal control.
Our study shows that the control system efficiently produces
human-like 3D eye rotations with appropriate saccade char-
acteristics (Figs. 2, 9, 11, 12, 13). Further details on these
properties are discussed below.

2) Nonlinear approximations and pre-tension: Pre-tension
in tendons corresponds to a low static cocontraction of eye
muscles in the primate oculomotor system[16], [21]. Despite
low reported cocontraction, all eye-muscle neuronal pools
exhibit a net neural activity for all static eye positions[18],
[21], [48], [46]. This net activity, though not subjected to
unexpected loads or gravity, may facilitate fine control of eye
orientation by modulating firing rates and overcoming static
friction[21]. The push-pull organization with static pre-tension
thus enhances angular resolution. In the nonlinear NARX
model, only pre-tensions for the central equilibrium orientation
were set, ensuring a convex total cost function through trial and
error (Fig. 7b). The model is flexible for future complexities
and can be applied to directly control a physical robotic eye
without explicit mathematical approximations of its physics.

3) Straight trajectories: Eye-movement trajectories in the
yz plane were straight, despite distinct dynamics for horizontal
and vertical saccade components (Fig. 9) and independent
control of the six motors. Straight saccades indicate highly
correlated velocity profiles, with one component influencing
the other[29]. As a consequence, the control signals for
the six motors are strongly coupled, dependent on initial
eye orientation and target coordinates. The optimal control,
emphasizing minimum time to reach the goal (JD), leads to
single-axis rotations by organizing the six motors into a central
3D vectorial eye-velocity generator.

A subset of saccades with higher curvature and lower
synchrony likely results from system nonlinearities at large
eccentricities and a trade-off in the optimal control objec-
tive. Although curvature wasn’t explicitly considered in our
optimization, movement duration and accuracy cannot both
be optimally satisfied simultaneously. Interestingly, similar
curvature is observed in saccadic eye movements in humans
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and monkeys[62], [60]. Our study offers a quantitative and
mechanistic explanation for this observed property.

4) Nonlinear main-sequence dynamics: The main-sequence
behavior of human saccades is replicated in our biomimetic
system (Fig. 12). These non-linear dynamics primarily arise
from optimal control implementing a speed-accuracy trade-
off, rather than from plant non-linearities[15], [45], [12].
That saccade duration increases with amplitude is already
evident in matching pulse/anti-pulse durations of antagonistic
motors (Fig. 13). Observations indicate that saccade velocity
profiles are positively skewed, with skewness increasing with
amplitude[64]. Our simulations also reflect this property to
some extent (Fig. 12a), as single-peaked velocity profiles reach
their peak at approximately the same time for all amplitudes
(for zero-initial saccades: mean 50 ms, std 14 ms). Skewness in
our data (time-to-Vpk divided by saccade duration) negatively
correlates with amplitude (r=-0.4).

5) 3D kinematics: Also Listing’s law emerged from the
applied optimal control. Although the accuracy cost restricted
torsion of the final goal orientation to zero, the optimal
control resulted in a tilted plane for the full trajectories in
the laboratory frame (Fig. 9a). A minor 18-degree leftward
rotation around the z-axis aligned the data with Listing’s
frame. The slight asymmetry in our robotic eye’s muscular
geometry, such as lMR < lLR, was incompatible with Listing
coordinates at zero torsion. This asymmetry was also evident
in the xy projection of the training data (Fig. 8). Our previous
work[15] demonstrated that Listing’s law could automatically
emerge by including total fixation force as a fourth cost,
systematically tilting the plane in the xz plane after displacing
vertical/torsional muscles along the y-axis. We propose that the
orientation of Listing’s plane and primary position direction
result from the specific geometrical arrangement of muscle
insertions on the eye and head, combined with their relative
lengths and elastic properties.

6) Antagonistic organisation: The joint antagonistic acti-
vation patterns of the six muscles (Fig. 13) emerged from the
optimal control strategy in our model. A horizontal rightward
saccade involves a fast contraction (pulse) of the LR muscle
and synchronous relaxation (antipulse) of the MR muscle,
generating the movement with minimal extra co-contraction
(Fig. 13a). Similarly, a purely vertical upward saccade arises
from rapid synchronous contraction of SR/IO agonists and
relaxation of IR/SO antagonists, maintaining equilibrium pre-
tension in horizontal muscles (Fig. 13b). Oblique saccades ex-
hibit complex antagonistic interactions between all six tendons
(Fig. 13c).

These emerging synergies align with the pulling directions
of each muscle[16], embodying the known ”push-pull” orga-
nization of the oculomotor and vestibular systems, and reflect-
ing Sherrington’s principle of reciprocal innervation[65]. The
pulse-step innervations of antagonistic muscle pairs closely
resemble their neurobiological counterparts of primate oculo-
motor neurons[16], [18], [48], [63], [46], [47], reflecting the
biomimetic eye’s built-in property as an overdamped (nonlin-
ear) filter due to velocity-dependent dynamic friction[66].

7) Limitations and further study: Physics-based simula-
tions are important in advancing our understanding of how

movement is controlled. They allow fast and easy exploration
of different types of control and system characteristics. How-
ever, some aspects can only be realized with real robotic
implementations. For this purpose, we have designed and built
a robotic spherical eye actuated by six motor driven cables
with realistic pulling directions to mimic the six extraocular
muscles [67]. Despite the challenges in performing large-
scale experiments, the current prototype exhibits the ability to
perform a wide range of eye movements with the appropriate
characteristics and will be used in future work to validate the
computer simulations. Furthermore, by building mechanical
prototypes we can realize what the key characteristics are
to include in computer simulations. The simulator (Fig. 4)
produced realistic human-like saccades and neural control
signals but involved simplified approximations compared to
the actual robotic system (Fig. 4). Improvements can be made
by incorporating more neurobiological and physical realism.
First, the tendons are attached to a fixed point on the globe
and their paths may pass through the peripheral rim of the
eye. More realistically, tendons should wrap around the globe,
adjusting their paths as a function of 3D eye orientation. In
the primate eye, muscle trajectories are partially fixed to the
sclera[50], influencing effective pulling directions that may
be further modified by pulleys. Additionally, eye muscles
consist of multiple fibers, not a single tendon (Fig. 1), which
may further affect iso-innervation trajectories and 3D plant
characteristics[16], [48].

Second, our simulations lacked additive and multiplicative
noise in control, impacting velocity profile shapes (skewness)
and potentially removing the need for an energy cost[12], [45],
[68]. Including multiplicative noise may also better align error
patterns (Fig. 11a) with human behavior, where errors increase
linearly with saccade amplitude.

Finally, we imposed a 3D constraint on movement accuracy
that explicitly incorporated Listing’s law and the primary
position. In our previous work[15], a 2D accuracy cost and
a minimized total fixation force sufficed to show how List-
ing’s law related to muscular geometry. With six independent
motors, specifying pre-tension was necessary. Designing a
quadratic fixation cost, combined with the previous two points,
may allow the optimal control to generate Listing’s law, the
primary position, and specify optimal muscle pre-tension at
each eye orientation—an area for future exploration.

X. CONCLUSION

This paper has demonstrated how model-based optimal
control principles can explain stereotyped human oculomotor
behaviors, through simulations in a realistic model of the
human eye with a cable-driven actuation system that mimics
the six degrees of freedom of the extraocular muscles. Previous
work has addressed only systems with 1-3 degrees of freedom.
This article is the first study of a six-muscle system design,
which introduced novel challenges. We proposed nonlinear
optimal control techniques to optimize the accuracy, energy,
and duration of eye movement trajectories, and we used a
recurrent neural network that learned to emulate the nonlinear
system dynamics from the recorded sample trajectories. We
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showed that realistic three-dimensional rotational kinematics
and dynamics, as seen in human saccades, emerged from
our model and that the six cables organized themselves into
appropriate antagonistic muscle pairs, as in the primate oculo-
motor system. This research has demonstrated the potential of
robotic models to test theories on the behavior of humans or
animals, and to help understand many aspects of intelligence
and control in natural systems.
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