Figure 3.1
Figure 3.2

System

Input $x(t)$

Output $y(t)$
Figure 3.3
Figure 3.4
\[f(t) = \int_{-\infty}^{+\infty} f(\tau) \cdot \delta(t-\tau) \cdot d\tau \]
\[\delta(t-\tau) \]

\[h(t-\tau) \]

Figure 3.6
Figure 3.7
\[δ(t-τ) = \frac{H(t-τ)}{H(t-τ) + s(t-τ)} \]
Figure 3.9
Figure 3.10
Figure 3.11
The Complex s-plane

$s=+j\omega$ (imaginary)

$s=0$

$s=\sigma$ (real)

σ (large) σ (small)
Figure 3.13

The diagram shows the s-plane with a point at $-1/T$ and an arrow labeled $\exp(-t/T)$. The s-plane is defined as the complex plane with real part σ and imaginary part $j\omega$. The point $-1/T$ is marked on the real axis.
Figure 3.15
\[\frac{A}{sT + 1} \]

Figure 3.16

- \(k \) increasing
- \(\sigma \)
- \(\omega \)
- \(x \)
- \(-(1+kA)/T \)
- \(-1/T \)
Figure 3.17

Amplitude Distribution

\[p(x) = \exp\left(-\frac{x^2}{2\sigma^2}\right) \]

Power Spectrum

Autocorrelation Function

\[\phi(\tau) = \delta(\tau) \]
Figure 3-20

GWN

x(t)

R

C

y(t)

RESPONSE