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The Auditory System and Human Sound-Localization Behavior 
 

Exercises Chapter 1 

 
Problem 1-1 Coordinates and coordinate transformations of sound locations. 

The azimuth (A) - elevation (E) system is a so-called double-pole coordinate system, 

in which the azimuth angle in the horizontal plane is specified by a rotation about a 

head-vertical rotation axis from the mid-sagittal plane to the source position, while the 

elevation angle in the vertical plane is described by a rotation about the inter-aural 

axis from the horizontal plane to the source (Figure 1.7A).  

                   
Figure 1.7 Left: double-pole azimuth-elevation coordinate system to specify sound 

locations with respect to the head of the subject. Top plots show the iso-azimuth (left) 

and iso-elevation (right) contour lines. Bottom plots show the full sphere (left) and the 

projection of (A,E) contour lines as seen from straight-ahead. Right: polar 

coordinates, showing iso-eccentricity lines (circles) and iso-direction lines (spokes).  

 

(a) Suppose a target sound is described by azimuth-elevation angles (AS, ES). You 

wish to foveate the sound with your eyes, which initially fixate at straight-

ahead, i.e., (A,E)=(0,0) deg. The sound location has to be transformed into 

oculocentric polar coordinates, expressing the rotation amplitude, given by 

eccentricity angle, R, and direction, Φ (Figure 1.7B). Do the transformation, 

that is, calculate R(AS,ES) and Φ(AS,ES). 

(b) Show that for all sound locations in the frontal hemifield: A+E ≤ π/2 
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Problem 1-2 Audiovisual integration is useful only when sound S and visual target V 

are both at the same spatial location (see Fig. 1.6)! Often, sensory coordinates may 

differ substantially, but when they emerged from a single object they should be 

integrated. From Eqn. 1.2, determine the coefficients [a,b,c,d] for adequate 

audiovisual integration. 

Often, however, the sensory coordinates of S and V may be identical 

(AS,ES)=(RV,ΦV), yet originate from different objects. In such cases the stimuli should 

not be integrated. 

Draw that situation. What happens if the coefficients that you just determined for 

integration are applied by the sensorimotor system? Give an argument as to why this 

may or may not help in the identification and localization tasks.  

 

Problem 1-3 Inverse problems are often ill-posed. A good example is given by the 

problem of perception: on the basis of a limited number of measurements (sensory 

observations, e.g. foveation of points in the visual scene through saccades), the brain 

has to make an estimate (inference) about the environment and the stimuli that caused 

the percept. Mathematically, a problem is well-posed if there exists a unique and 

stable solution to the problem. A solution is stable if it resists (small) perturbations of 

the starting values. If solutions are not stable, or unique, the problem is ill-posed.  

The latter may even happen for seemingly trivial calculations such as taking a 

derivative. As a numerical exercise we look at the following example: suppose that 

we have to determine the derivative of a function, f(x):                                                    

𝑞 𝑥 =
𝑑𝑓
𝑑𝑥 

However, it could occur that instead of f(x) we have to deal with a slightly perturbed 

measurement of this function, say:   

𝑓! 𝑥 = 𝑓 𝑥 +
sin (𝑛𝑥)

𝑛
 

Clearly, for 𝑛 → ∞ the difference between perturbed and original function, 𝑓 − 𝑓! , 

approaches zero. Show that for the derivative, however, this difference becomes 

arbitrarily high. This means that the operation is unstable, and hence calculating the 

derivative is ill-posed. 
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Problem 1-4 Figure 1.8 shows a simple two-layer (input-output) neural network 

consisting of N linear neurons in each layer. The activity of the input layer is drawn 

above the neurons. Only neurons k-2, k, k+2 and k+4 receive input strengths of 1, 3, 2 

and 1 units, respectively.  

 
Figure 1.8 A Winner-Take-All (WTA) two-layer feedforward network of linear 

neurons. The connection scheme (here highlighted for input neuron k only) is 

identical for all neurons. 

 

The neurons of the network have repetitive connection patterns; only the connections 

of input neuron k are drawn for clarity. Each neuron in the input layer excites its 

corresponding output neuron with synaptic strength +1, and inhibits all the other 

neurons of the network with synaptic strengths -1/(N-1). In this way, the total synaptic 

weight from each input neuron sums to zero. The activity of an output neuron is 

determined by: 

𝑦! = 𝑤!" ∙ 𝑥!

!

!!!

 

with wkn the synaptic connection from input neuron n to output neuron k, and xn the 

activity of input neuron n. Take N=11 and k=5. Show that the network indeed 

operates as a WTA network by calculating the activities of all N output neurons. In 

modeling saliency maps, WTA networks play an important role, as they weed out the 

contributions from all competing active neurons except from the one neuron with the 

strongest activation.  


