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The Auditory System and Human Sound-Localization Behavior 
 

Exercises Chapter 3 
 

Problem 3-1: linear! 

Verify the following important corollary of the superposition principle, Eqn. 3.8: 

suppose a linear system is stimulated with step inputs of different amplitudes, i.e.: 

𝑥 𝑡 = 𝐴 ∙ 𝑈 𝑡   with  𝐴 ∈ ℝ 

and that the unit-step response of the system (to A=1) is given by s(t). After a finite 

time (defined as the response duration, D) the step response becomes (and remains) 

constant (i.e., ds/dt = 0, ∀t>D). Then for any linear system: 

(i) D is independent of input amplitude A. 

(ii) The peak velocity of the step response increases linearly with A.  

 

 

Problem 3-2: linear? 

A ball, dropped at t=0 from height h0 to the earth, obeys the following linear 

differential equation:  

𝐹 = 𝑚 ∙ 𝑔 = 𝑚 ∙
𝑑!𝑦
𝑑𝑡!  

Verify that the solution for this problem is: 

𝑦 𝑡 = ℎ! + 𝑣! ∙ 𝑡 −
!
!
𝑔 ∙ 𝑡! 

The duration of the fall towards the earth’s surface is then determined by (suppose 

that the initial velocity v0=0): 

𝐷 =
2ℎ!
𝑔  

So, although the system is described by a linear differential equation, the response 

duration depends on the input amplitude, initial height h0. Thus, in line with what we 

just have seen in Problem 3-1, we have to consider the system to be nonlinear! Do 

you agree with this statement? Why (not)? 
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Problem 3-3: HP filter 

Analogous to the analysis of the low-pass filter, described in section 3.4, we here 

consider the first-order High-Pass (HP) filter. This system can simply be modeled  

by taking the voltage across the resistor as output of the RC-circuit of Fig. 3.10A.  

(a) Show that its impulse response is given by: 

ℎ!" 𝜏 = 𝛿 𝜏 −
1
𝑇!"

exp −
𝜏
𝑇!"

   with 𝑇!" = 𝑅𝐶, and 𝜏 ≥ 0 

Give also the HP step response. 

(b) Show that its Gain and Phase characteristics are given by: 

𝐺!" 𝜔 =
𝜔 ∙ 𝑇!"
1+ 𝜔!𝑇!"!

    and  Φ 𝜔 = arctan
1

𝜔𝑇!"
      

(c) Also note from Fig. 3.10A that HighPass = AllPass – LowPass (from 

Kirchhoff’s law) which provides a shortcut to obtain the results of (a) and (b). 

(d) The slow-phase eye-movement response of the Vestibular Ocular Reflex 

(VOR) is well approximated by such a filter. The time constant of the VOR is 

about TV~20 s. Plot the characteristics (as a Bode plot) and verify its High-

Pass properties. 
 

Problem 3-4: Integrator 

Without having to use advanced mathematics and Fourier analysis it is sometimes 

straightforward to compute the transfer characteristic of linear systems. Try the 

following example, which is the pure integrator: 

𝑦 𝑡 = 𝑥 𝜏 𝑑𝜏
!

!

 

(a) Show that this is indeed a linear system. 

(b) What is its impulse response? 

(c) What is the step response? 

(d) Determine amplitude and phase characteristic of this system (no need for FT!) 

(e) Compare to the first-order LP system. Why is the LP system of Fig. 310A also  

      called a 'leaky integrator'? 
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Problem 3-5: Differentiator 

      Consider the differentiator:  

𝑦 𝑡 =
𝑑𝑥
𝑑𝑡  

      Answer the same questions (a) – (d) as in Problem 3-4. 

(e) Compare the differentiator with the HP system of Problem 3-3. 

 

Problem 3-6: Band pass and band stop 

(a) Investigate how to create either a Bandpass (BP) or a Bandstop (BS) second 

order filter by combining a first-order LP filter (time constant TLP) with a first-

order HP filter (time constant THP). How would you create an Allpass filter 

with the LP and HP filters? 

(b) Determine the gain and phase characteristics for the BP, BS and AP filters. 
 

Problem 3-7: Series concatenation 

(a) Calculate the impulse response function by using convolution for the series 

concatenation of two first-order LP filters, described by: 

ℎ! 𝜏 =
exp (− 𝜏

𝑇!
)

𝑇!
    and  ℎ! 𝜏 =

exp (− 𝜏
𝑇!
)

𝑇!
   with  𝑇! > 𝑇! 

            Plot this impulse response function. 

      (b) Determine (and plot) the transfer characteristic of this system. 

 

Problem 3-8: Series 

        Calculate the impulse response, step response, amplitude- and phase 

characteristic of the series concatenation of a pure integrator, followed by a scalar 

gain, G, and a pure time delay of T s. 

 

Problem 3-9: Feedback 

Consider the circuit in Fig. 3.18. Each of the four subsystems is linear, and their 

transfer characteristics are given by H1(ω), H2(ω), H3(ω), and H4(ω), respectively. 

Suppose that H2(ω) is a pure integrator. 

(a) Determine the transfer characteristic of the total system. Your answer may 

only contain the characteristics of the three subsystems. Express also the 
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amplitude and phase characteristics of the total transfer as function of the 

amplitude and phase characteristics of the three subsystems. 

(b) When will the system become unstable? 

(c) Suppose that H3(ω) is a constant gain, G. Which requirements should hold for  

system H4(ω) to keep the total system unstable? 

(d) Suppose that also H4(ω) is a constant gain, A. For which frequency will the 

system be unstable? 

 
Figure 3.18 A positive feedback scheme consisting of four linear subsystems. 

 

Problem 3-10: Difference differentiation algorithm 

In a computer, you would approximate the ideal differentiator of Problem 3-5 by the 

difference algorithm:  

𝑦 (𝑡) ≈
𝑦 𝑡 + ∆𝑇 − 𝑦 𝑡

∆𝑇  

(a) By doing so, however, you filter the original signal. Show this by computing 

the transfer characteristic of this operation.  

(b) To reduce noise in an analog signal we add a LP filter (time constant T) in 

series with a pure differentiator (from Problem 3-5). Determine the transfer 

characteristic of the total system; give the Bode plot, and analyze how the 

results depend on T. 

Problem 3-11: Feedback 

Here we analyze the influence of a delay on the transfer characteristic of a linear 

system with feedback (Fig. 3.19).  

(a) Determine the Laplace transform of a pure delay: y(t) = x(t−∆T), and from 

that the transfer characteristic (in the frequency domain) of the delay.  
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(b) Take the system in Fig. 3.19. Determine the total transfer function and the 

loop gain. The system will spontaneously oscillate, and become unstable, 

when the loop-gain exceeds the value of 1, and at the same time has a phase 

shift of −180o. Make a Bode analysis of the system and estimate the frequency 

ω0 where instability kicks in. 

(c)  What happens to the system if A is increased/lowered? What if the time 

constant T is increased/lowered?  

 
Figure 3.19 Negative feedback system of a first-order low-pass filter with a delay. 

 

*Problem 3.12: Echoes 

Consider the situation of the free field with a sound source and a microphone. 

Without reflectors in the environment the microphone will record the sound pressure 

signal p(t). Suppose the presence of a reflector, which produces an echo of the sound 

source. Assume that the echo is a filtered (impulse response a(τ)) and delayed (delay 

∆T) version of the original sound, p(t). 

(a) Write a time-domain expression for the signal p*(t) that is picked up by the 

microphone.  

(b) Determine the transfer characteristic that relates the original input sound 

spectrum, P(ω), to the measured spectrum with echo P*( ω):  

                           T(ω) ≡ P*(ω)/P(ω)  

(e) The same as in (a) and (b) for the situation of N different reflectors, each with 

their own impulse response, ak(τ) and delay, ∆Tk. 

(f) For N = 1, how can the distance to the reflector be determined from the power 

spectrum of the transfer characteristic, |T (ω)|
2 
?  

(g) Draw the power spectrum of white noise with an echo having a 1 ms delay.  
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Problem 3.13: Autocorrelation 

Calculate the auto-correlation functions for the following examples: 

(a) 𝑥 𝑡 = 𝑃  for  − 𝑇 ≤ 𝑡 ≤ +𝑇  and 𝑥 𝑡 = 0 elsewhere 

(b) 𝑥 𝑡 = 𝐴 ∙ cos𝜔𝑡 

(c) 𝑥 𝑡 = 𝐴 ∙ exp − !
!

  for  𝑡 ≥ 0  and 𝑥 𝑡 = 0 elsewhere 

(d) 𝑥 𝑡 = 𝐴 ∙ sgn(𝑡) ∙ 1− !
!

 for − 𝑇 ≤ 𝑡 ≤ +𝑇
0   elsewhere

 

 

*Problem 3.14: Auto- and cross-correlation functions 

For the simple LP filter of Fig. 3.20 we have seen that the relation between the input 

(x(t)=GWN) and output, y(t), is given by: 

𝑦 𝑡 =
1
𝑅𝐶 exp −

𝜏
𝑅𝐶

!

!

∙ 𝑥 𝑡 − 𝜏 𝑑𝜏 

(a) Determine the cross-correlation function 𝜙!"(𝜎) 

(b) Determine the auto-correlation function of the output 𝜙!!(𝜎) 

(c) Determine the response, y(t), if x(t) = the pulse from Problem 3-13a 

(d) Determine the cross-correlation function 𝜙!"(𝜎) for the pulse input. 

 

 
Figure 3.20 First-order low-pass filter with GWN as input. 

 


