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Acoustic waves interact with the human body, head and ears, before reaching 
the tympanic membranes in the ear canals. In this project we will develop an 
analytical method to calculate how these acoustic interactions occur. This is a 
highly nontrivial problem, because the acoustic wave equation (or, for 
harmonic waves, the Helmholtz equation) has to be solved on the complex 
geometry of the boundaries. Especially the human outer ear (pinna) poses a 
challenge in this respect, and so far there are no good analytical methods to 
deal with this problem. 
 
The pinna has a complex geometrical shape (Fig 1), and it is well established 
that this shape serves to enable the human auditory system to localize 
sounds in the vertical and front/back (elevation) direction (i.e. in the medial 
plane of the head). It thus serves as a natural antenna for sound. 
 

 
 
Fig. 1 The human pinna acts as a direction-dependent, asymmetric acoustic aperture. 
A Anatomical features. B Acoustic waves from a particular direction reach the ear 
canal directly, and via reflections at the rims of the cavities, here simplified by a 
single reflection from the helix. Note that the reflections have different path lengths. 
 
 
The pinna is known to perform a direction-dependent (elevation angle) 
transformation on the acoustic input that is described in the literature by the 
so-called head-related transfer functions, or HRTFs (Fig. 2).  
 



The simplest possible model that leads to a very basic understanding of these 
HRTFs is a simple reflection-delay model (Fig. 1B) in which the ear canal is 
stimulated by a direct wave as well as by a reflected wave(s). As a result of 
interference and path length differences (and associated time delays), 
frequency-dependent peaks (amplifications) and notches (attenuations) arise 
as a function of the incident angle of the sound.  

 
 
Fig. 2 Measured head-related transfer functions of a male adult human subject. Data 
are shown on log-log scale. Top: Amplitude spectra (in dB re. subject’s head absent) 
for GWN stimuli presented in the midsagittal plane at elevations between -40 to +60 
deg in 5 deg steps. Up to about 3 kHz the curves all coincide, and show no direction 
dependence. The amplification around 2-2.5 kHz is due to the first resonance in the 
ear canal. Curves start to separate at about 4 kHz. Bottom: same data, plotted in 
color scale. Note the typical elevation-dependent notch (dark blue), running from 
about 6 kHz at -40 deg, to about 12 kHz at +60 deg. 
 
In a more realistic description of the ear acoustics, the peaks and notches of 
the  human HRTF have to be understood from both diffraction and reflection, 
as well as specific resonances of sound waves within the complex shape of 
the pinna cavities and their boundaries (Taneka et al., 2012).  
 
It has been a long-standing problem in the auditory research field to 
understand and apply the physical principles that allow one to predict the 
HRTFs from a given (3D) pinna shape.  



 
Sound propagation through the air is described by the standard homogeneous 
wave equation: 
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and with harmonic solutions to this linear problem: 
𝑝 𝑟, 𝑡 = 𝑝 𝑟 ∙ exp −𝑗𝜔𝑡          (2) 

this equation transforms into the well-known Helmholtz equation: 
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The Helmholtz equation has to be solved for every point in space and time, by 
applying the appropriate boundary conditions. So far, only for simple shapes 
(free field, points, bars, plates, cylinders, spheres) this equation can be solved 
with analytical methods. Therefore, to calculate solutions for arbitrary shapes 
discrete methods are typically applied (boundary element, or finite element 
methods) that allow one to solve the Helmholtz equation on small elementary 
shapes (e.g. on the vertices of small triangles) that cover the entire shape. To 
increase precision, the minimum size of the elementary shapes is determined 
by the wavelength of the highest frequency in the signals for which solutions 
are needed. However, the smaller the elements, the longer the calculations 
will take, making the problem nearly intractable for practical use. 
For high sound frequencies (say, > 5kHz, where the HRTFs start to diverge, 
Fig. 2) the smallest elements are already in the sub-mm range, leading to 
millions of vertices for the BEM calculations. 
 
Only recently Takemoto et al. (2012) have been able to apply the finite-
difference time-domain (FDTD) method that allowed them to circumvent the 
extremely time-consuming calculations of more classical boundary element 
methods, especially for the high frequencies, even up to 24 kHz (Fig. 3). 
 

 
Fig. 3 Modeled HRTFs of a human ear, calculated over the full elevation and 
frequency domain on a MRI-generated 3D volume of head and pinna with the FDTD 
method. After Takemoto et al., 2012. 



Towards an analytical treatment of more complex geometries: 
Interestingly, Caratelli and colleagues (e.g. Caratelli et al., 2010) have 
recently developed a powerful analytical tool to solve the Helmholtz equation 
that can cope with much more complex shapes than simple spheres. The idea 
is based on a coordinate transformation from the unit sphere to the actual 
shape (e.g. a star-like shape) by so-called ‘stretched polar coordinates’, which 
can then be directly applied to the original Helmholtz equation. These 
stretched coordinates are based on the so-called Super Formula of Gielis 
(2003), which is a mathematical extension of the super-circle/ellipse equation: 
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in the following way (described in 2D polar coordinates, (r, φ), where  
 x=r cos (φ) and y=r sin (φ) ): 
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with free parameters n1, n2, n3, a, b and m. Many complex natural shapes 
(leaves, snow flocks, etc.) can be described by this formula. For example, 
ni=2 and m=4 yields the ellipse. When also a=b it becomes a circle. The 
parameter m divides the plane into m equal sectors, which can now be 
arbitrarily numerous (instead of the standard four quadrants for m=4), and 
asymmetries can be introduced by selecting different exponents for the 
different sectors. The formula can be readily extended to higher dimensions 
(Fig. 4). 
 

         
Fig. 4. 3D shapes generated with (an extended form of) the superformula. 
 
After the coordinate transformation, the Helmholtz equation can be solved 
with standard Fourier methods. (Caratelli et al., 2010) 
 
In this project we will study whether and how we can apply this method to the 
acoustics of the human head and ears.  



 
Project 
(1) As a first attempt we will apply the method to a simple human head model, 
still without the complex geometries of the pinnae (Fig. 5).  
 
               

      
Fig. 5 A simple spherical shape in an acoustic field casts an acoustic 
shadow, which depends on the sound frequency. 
 
First, the head will be a perfect sphere (radius R), where the ears will 
be modeled by two (cylindrical) ear canals, diametrically opposed to 
each other with a certain depth, D~0.2R) and diameter (d), and closed 
by a circular tympanic membrane that is elastic, e.g. with a given, 
frequency independent acoustic impedance (this impedance depends 
on the system that is attached to the tympanic membrane, and consists 
of the middle-ear bones and the water-filled cochlea; as a start we may 
make this impedance infinite, i.e. a perfect reflector).  

We aim to calculate the air pressure at the two tympanic 
membranes for planar incident sound waves of different frequencies 
and incident angles in both the horizontal (azimuth) and vertical 
(elevation) directions.  

We should be able to see the Head-Shadow-Effect (see Van 
Opstal, Ch 7) as function of frequency and incident azimuth (horizontal) 
angle for this simple system. 
 
(2) Then, we will change the shape of the obstruction to a slightly more 
realistic head shape (ellipsoid), and also include the effect of model 
shoulders and torso. Now we expect some direction sensitivity in the 
elevation direction too. 
 
(3) Finally, we will develop a suitable morphing coordinate 
transformation in order to approximate an elementary pinna shape, 
which is asymmetric with respect to the ear canal (e.g., López-Poveda 
and Meddis, 1996, approximated the pinna by a parabolic plate (the 
concha; Fig. 1A) and a reflector helix in Fig. 1A).  
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