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Abstract—The brain is a pivotal organ in animal systems.
However, it is not yet fully understood how it controls all the
other subsystems that compose the full organism. One of these
subsystems, the oculomotor system, will be the main focus of
this work. It is our objective to study the properties of the
eye movement when redirecting our line of sight. We expanded
the existing simulator and optimal control strategies in order
to mimic human saccades (rapid eye movements). However, in
the real system muscles can only exert force in one direction,
meaning they only pull the eye, never push. We can see this as
some sort of rubber band: if it is not stretched, it goes slack. The
previous developed system did not incorporate this limitation,
and, therefore, here, we attempted to eliminate this phenomenon.

Since we are dealing with a non-linear system, in order to
apply control strategies, the model had to be linearized. This is
not a trivial task given the complexity of the dynamical equations
and eye-direction dependent force computation. Furthermore, the
eye kinematics are known to be determined by two degrees of
orientational freedom (Listings’ Law). Given that it is controlled
by six independent muscles, this constraint to two degrees of
freedom makes it an interesting problem to investigate. Although
many studies have modeled the oculomotor system, most of them
only do it on one dimension, and often only study either the
kinematics or dynamics. We also use the relation between peak
velocity, duration and amplitude, known as Main Sequence as a
metric for evaluating our system emulation of the human eye.

Furthermore, we worked towards having accurate results re-
garding the kinematics and dynamics of this system, considering
all degrees of freedom. So, all aspects of shifting our gaze
(eye orientation with respect to the world) will be analysed:
eye orientations, velocity profiles, torsion and optimal motor
commands.

Index Terms—Gaze, Listing’s law, Saccadic movement, Main
Sequence, Slack

I. INTRODUCTION

For this work, our model was based on a more recently
developed prototype (one with six independent motors), and,
as such, we separated each individual muscle, giving the eye
3 extra degrees of freedom. Contrary to the model developed
before, this new model is closer to the actual human eye
anatomy, where muscles have different length, making it an
asymmetrical model [1]. Another problem is that the eye
muscles can not push, which means it can only exert force in
one direction. This requires the muscles to be tense to move
the eye. So we wish to eliminate the possibility of the muscles
going slack (having a smaller length than the initial one).

Additionally, in this work, the dynamics of the system can be
linearized at any equilibrium point in the eye’s visual range,
allowing the control to be better suited for saccades not starting
from the origin. Finally, we extended the dynamical analysis of
our simulator to a coupled eye-head orienting system, which
will allow future studies to also include combined eye-head
movements in three dimensions.

Our main goals are to separately control all 6 extraocular
muscles (EOM), similar to the actual system, model the head
dynamics, linearize the system (so that we can have an ap-
proximation of the dynamics of the system at any equilibrium
point), and implement a control strategy that provides accurate
results even with the asymmetry of the extraocular muscles.
The last objective of this work, is to eliminate slack of the
muscles, in an attempt to be even closer to human behavior.

II. BACKGROUND

A. Eye mechanical and dynamical properties

Donders’ law states that, for any single direction, the
eye will always have the same unique orientation in three
dimensions. Let’s consider this example: if the target is in a
downward and left direction, the eyes’ orientation will be the
same no matter the path they take: whether they go down first
and then left or left first and then down, or direct along some
oblique or curved path. There are different explanations for the
origin of this law: either it is imposed entirely by the ocular
muscle mechanics, or it is the result of a neural strategy that
aims to optimize certain perceptual and/or motor performance
criteria [2].

Listing’s law for the eye may be regarded as a specification
of Donders’ law. While Donders stated that the orientation of
the eye for a specific gaze direction was fixed, Listing went
one step further, by realizing that any orientation of a rigid
body can be achieved by a hypothetical single-axis rotation
from some fixed origin, so-called primary position.

Listing’s law then states that the torsional component of the
rotation axes for all eye orientations is zero.

The main sequence is a well-known relationship between
duration, velocity and amplitude of head-fixed saccadic move-
ments. It has been shown that for a given amplitude, there
is an optimal eye trajectory, with an optimal duration and a
generic velocity profile [3]. The duration of a saccade increases



linearly with amplitude, and with increasing amplitude the
peak velocity increases as well, until it saturates.

B. State of the art

A recent study on physical modeling of the eye [4], de-
veloped a robotic prototype of the eye with three degrees of
rotational freedom that obeys Listing’s law. The authors were
able to build a tendon driven prototype (but only with 4 ten-
dons, ) focusing on showing that the compliance with Listing’s
law can be achieved using particular geometry (functionally
incorporating the EOM pulley system, in order to mechanically
fix Listing’s plane) and placement of four extraocular muscles.
However, they did not study the dynamics nor the control.
Also, it has been shown that the actual eye can move out
of Listing’s plane, so mechanically constraining it to follow
Listing’s law seems limiting, considering the objectives of this
thesis.

An anatomically accurate model of the oculomotor system
was described in [5]. This work was based on the work from
the founder of this field, DA Robinson in 1975 [6]. From
MRI scans, they were able to build 3D non-linear geometric
models of the EOM and investigate how they influence eye
movement. They studied different computational models of the
muscles in order to generate correct eye kinematics, fitting it
to experimental data without emphasis on understanding the
underlying control or the Listing’s law compliance.

III. METHODS

In this work we build an eye-head simulator but will concen-
trate our efforts in the eye saccadic control. Thus, we create
a biologically inspired model for eye kinematics, dynamics
and actuator, considering possible robotics implementation.
Furthermore, we design a simplified head model, to be further
developed in future work. The eye was designed as a ball
joint, subject to the Newton’s rigid body equations, and Euler’s
equation of motion with six tendon-driven actuators mimicking
the human eye muscle kinematics. We also define the system
parameters of inertia, stiffness and damping to replicate closely
the time constants and overdamped characteristics of the
human eye.

A. Eye model

The model in this work is not the exact dimension of the
human eye. Actually, our model is developed after a robotic
prototype developed to study biomimetic eye movements. Our
robot model is around three times bigger than a real eyeball.
Furthermore, relative to the eye’s inertia tensor, ours is around
1000 times higher than the approximate inertia tensor built
to represent the human eye, calculated using its mass and
dimensions. Also, the head inertia was scaled to match the
eye’s proportions. Although our artificial eye’s parameters
are different from the human eye, they are configured to
roughly replicate its main dynamics characteristics in terms
of time constants and damping. These are important features
to develop controllers that can give us insights on human
oculomotor control.

The eye and head are connected through six extraocular
muscles. Thus, one point of each muscle is attached to the
head and the other end to the eye (fig 1). The extraocular
muscles are roughly arranged according to the anatomy of the
human eye [1] (their geometric display is shown in figure 1).
In reality, these muscles are not actually completely straight.

Fig. 1. Insertions points on the right eye and head of the extraocular muscles
(left and rear view). The head is not shown, but it would encompass the eye
and EOM. It has the same center of rotation as the eye.

It happens that in the human eye, the contact locus between
the muscle and the eye is not really a point, but a curve. For
now, we are simplifying this fact by considering it a mere
point (the last point of contact). In the real system, the elastic
component of the muscles make them go stiffer or relax by
a certain amount, rotating the eye. Since it’s very difficult to
develop a prototype of a spring that changes stiffness, our
robot artificial eye implements this by making the change in
length of the muscle (making it exert a different amount of
force), move the eye. In our model, the cables are wrapped
around a spindle attached to a motor.

Eye dynamics can be described according to
eαh,e = eIe

−1(eτ eye −
eωh,e × eIe

eωh,e) (1)

In order to ease the understanding of the system, a real
time graphical simulator was built to show the behavior of the
numerical simulator. It can be seen in figure 2. This tool was
done resorting to ROS graphical capabilities, namely RVIZ.

B. Head model

Since the focus of this work is the eye saccadic control,
we simplify the head model as a sphere that rotates arbitrarily
around the same point as the eye. This sphere is coupled in the
neck through elastic springs and generalized friction. In order
to rotate said sphere, generic torques can be directly applied.
Head dynamics can be described by

hαw,h = hIh−1(hτhead − hωw,h × hIh hωw,h) (2)

C. Linearization

In order to control the system, a linear approximation of the
kinematics is convenient, since a highly non-linear system like
the one modeled is not trivial to control. These non-linearities
(e.g. force computation, rotation matrices) also proved hard to



Fig. 2. Developed eye graphical simulator

differentiate, needing a fair amount of mathematical research
and understanding. The linearization performed was based on
an analytical perturbation, in which an infinitesimal perturba-
tion was applied to the system around an equilibrium point to
get a response from the linearized system that approximates
the non-linear response [7]. In order to do this, first it is
required to define a state-space model. The first step is to
define the differential equations that represent the system’s
dynamics.

˙wRe = wRe
e
ω∧w,e (3)

˙wRh = wRh
h
ω∧w,h (4)

eω̇w,e = eIe
−1(eτ eye −

eωw,e × eIe
eωw,e) (5)

hω̇w,h = hIh
−1(hτhead − hωw,h × hIh

hωw,h) (6)

we represent an equilibrium point by

x̄ =
{
wR̄e,wR̄h, eω̄w,e, hω̄w,h

}
(7)

which satisfies the condition

f(x̄, ū) = 0 (8)

where ū is the input command that makes the dynamic
equation be zero. According to equations (3-6) this happens
when

τ eye = 0

τhead = 0
eω̄w,e = 0
hω̄w,h = 0

Let us define a local state around the equilibrium point x̄
as

x̃ =
{
wR̃e,wR̃h, eω̃w,e, hω̃w,h

}
(9)

with
wR̃e = wR̄Te

wRe (10)
wR̃h = wR̄Th

wRh (11)
eω̃w,e = eωw,e − eω̄w,e (12)
hω̃w,h = hωw,h − eω̄w,h (13)

where R̃ is the rotation between equilibrium orientation R̄ and
the actual orientation R. Using exponential notation, we can
represent R̃ with a rotational perturbation η as

R̃(t) = exp(η∧) (14)

At this point, let’s consider the following simplification in
the notation

xωw,x ≡ ωx (15)
xω̃w,x ≡ δωx (16)

Adapted from [7], an infinitesimal variation, with respect to
a reference R̄(t) ∈ SO(3) is given by

δR(t) =
d

dε

∣∣∣∣
ε=0

R̄(t) exp(εη∧) = R̄(t)η∧(t) (17)

where ε is a small rotation around an axis .
From [8], the corresponding infinitesimal change in body

angular velocities can be given as:

δω(t) = ω∧(t)η(t) + η̇(t) (18)

Let’s also consider the following exponential coordinates

ηe = log(wR̃e)∨ (19)

ηh = log(wR̃h)∨ (20)

These two equalities allow for elements of our local state
to be mapped into the Lie group of the global state and vice-
versa.

Our local state can thus, be represented in local coordinates,
as :

ξ =


ηe
ηh
δωe
δωh

 (21)

This state is a vector in the tangent space, as represented
in figure 3, of the Lie group S (containing our global state),
considered at some point x ∈ S, represented by

TxS := R3 × R3 × R3 × R3 (22)

From (18), we can write our first two local state equations
as:

η̇e = −ω∧e ηe + δωe (23)
η̇h = −ω∧hηh + δωh (24)

and the complete equations (in matrix form) in the following
way:



Fig. 3. Lie group transfer between the group and the tangent plane. Here, g1
corresponds to x̄. a symbolizes ξ and can be mapped from the tangent space
to the group, using exponential mapping, resulting in g2 = x (7).

ξ̇ =
d

dt


ηe
ηh
δωe
δωh

 =


−ω∧e ηe + δωe
−ω∧hηh + δωh

eI
−1
e (eτ e − ωe × eIeωe)

hI
−1
h (hτh − ωh × hIhωh)

 (25)

Knowing that in equilibrium, angular velocities are zero, we
can show ξ̇ as a function of the local state ξ and command
inputs u.

ξ̇ = f(ξ,u) (26)

D. Jacobians

In order to have a linear state space model, a Jacobian
linearization is performed. This is computed around an equilib-
rium point. The objective is to get a linear approximation of the
non-linear state, which should be valid for small perturbations.

Dynamics of a general variation (δx(t) = f(x, u)) may be
defined as

δ̇x(t) = f (x̄ + δx(t), ū + δu(t)) (27)

Doing a Taylor’s expansion on the right side, we have

δ̇x(t) ≈ f(x̄, ū) +
∂f

∂x

∣∣∣∣ x=x̄
u=ū

δx(t) +
∂f

∂u

∣∣∣∣ x=x̄
u=ū

δu(t)+ (28)

ε(
∥∥∥δx,u(t)− δx,u(t)| x=x̄

u=ū

∥∥∥2) (29)

If it is linearized around an equilibrium point (f(x̄, ū) = 0),
and neglecting higher order terms, we get

δ̇x(t) ≈ ∂f

∂x

∣∣∣∣ x=x̄
u=ū

δx(t) +
∂f

∂u

∣∣∣∣ x=x̄
u=ū

δu(t) (30)

Adapting (28) to our case where f depends on our local
state ξ and input u. The Taylor series around a fixed point
(ξ̄, ū), can be written as

f(ξ,u) = f(ξ̄, ū) + J(ξ̄)(ξ − ξ̄) + G(ū)(u− ū) (31)

where J(ξ̄) and G(ū) are the Jacobian matrices and the higher
order terms of the Taylor Series expansion are neglected.
Since ξ̄ is our state evaluated at an equilibrium point and at
equilibrium, our local state is zero (ξ̄ = 0), we can write

f(ξ,u) = J(ξ̄)ξ + G(ū)(u− ū) (32)

Instead of explicitly computing the partial derivatives of f
with respect to each component of ξ and u, an alternate way to
compute the Jacobian matrix is to write f in the form of (32)
and identify the term where the unit power of ξ appears to the
right of a multiplication with a matrix. This matrix, evaluated
at the equilibrium point, is the desired Jacobian (J). The same
logic applies to G, but with a term where the unit power of u
appears on the right.

From (30) we get a state in the form of

ξ̇ = Aξ + Bδu (33)

where ξ is the local state, δu = u− ū, is the control signal
increment with respect to the equilibrium value.

E. Optimal Control

We wish to develop a controller for the dynamical system,
over a time interval, so that the system’s behavior is optimal
according to some constraints. These constraints are usually
modeled through a cost function.

Cost functions are functions that depend on the state vari-
ables, and the input commands. Optimal control tries to min-
imize a cost function to get the ideal duration of the saccade
and control inputs, and therefore, an optimal performance from
the system. In order to attain said input for each saccade, we
apply the optimal control to the linear system (local state).

Summarizing, we wish to

minimize
u,p

J(u, p, goal) =

t∑
λtJt(u, p, goal)

subject to
xi+1 = Axi + Bui
yi = Cxi, i = 0, 1, ..., p

u ≥ 0

where Jt represents each cost term and λt is the weight
associated with each individual cost term. p is the optimal
saccade time. For each p we compute the costs and decide on
the optimal time that has the minimum total cost for a specific
saccade.

It’s convenient to discretize the system in order to apply the
optimal control, resulting in the system in the form of

ξ(k+1) = Aξ(k) + Bδu(k), k = 0, ..., p (34)



1) Accuracy Cost: The accuracy term seeks to penalize eye
movements that deviate from the goal orientation. This makes
the system strive to get as close to the objective as possible.
Our cost is taken as

Jx = λx(y(p)− g)2 (35)

where λx specifies the relative cost for inaccuracies, y(p) is
the final position (at time p) of the eye and g is the goal
position. The position of the eye is the first component of our
global state,wRe.

2) Duration Cost: This cost term aims to toll the time it
takes to perform a saccade. We know that duration increases
almost linearly with goal amplitude. However, our cost term
does not rely on amplitude explicitly, since we want that
the underlying dynamics of the eye satisfy Main Sequence
relationships without forcing them directly. Our duration cost
is given by

Jp = λp(1−
1

1 + βp
) (36)

where λp is the relative weight of this cost term, β is the rate
of discount parameter (temporal reward decay) and p is the
saccade duration.

3) Energy cost: Here, we aim to toll the energy expendi-
ture. Since we assume the energy to be proportional to the
actuator’s rotation (angular velocity), and the timesteps to be
uniform, we can simplify this term as the difference between
angular positions at each timestep. This can simply be written
as the difference between consecutive u(i)’s.

Je(u) = λe‖∆u‖2 (37)

where Je is the effort cost, λe is the weight of this cost term
and ∆u is the difference between the current vector of motor
commands and the previous.

In matrix form, this can be written as

Je(u) = λe‖


u0

u1 − u0
...

up − up−1

 ‖2 (38)

4) Equilibrium Cost: This term is taken with the purpose of
penalizing the change in state when the eye reaches the goal.
With this cost it is possible to toll the change in orientation
and velocity, when compared to the state reached by the
optimal control. The function that translates this objective into
a mathematical context is:

Jeq = λeq(x(p)− x(p+ 1))2 (39)

where λeq is the weight given to this cost, x(p) is the final
state and the other term symbolizes the subsequent states.

5) Last command cost: Equilibrium and accuracy cost
terms are computed using the approximated linear model, so
they don’t stabilize at the actual required goal. In order to
make sure that the system stabilizes at the goal orientation,
we calculate a desired final input from equilibrium conditions
and toll the deviation from that set of commands. Putting this
in equation form, we get

Juacc = λuacc(u(p)− udes)2 (40)

where λuacc is the relative weight of this cost, u(p) is the
set of optimal commands at the final time step for a specific
goal, given by the optimal control solver and udes is the set
of commands that ideally would lead to goal orientation given
by the solution of the equilibrium equations (8). These ideal
commands are gotten from a ”lookup” table.

6) Total cost: The complete cost function is the sum of the
previous functions

J = Jp + Jx + Jc + Jeq + Juacc (41)

F. Lookup Table

This approach consists of a search for equilibrium points
around the oculomotor range. For each point obtained, the
associated last commands that led the eye there were stored
in a ”lookup” table. A condition had to be satisfied in order
for the equilibrium point to be stored: the final force for each
muscle had to be higher than a given threshold in order not to
have slack. So, after a random saccade goal is generated, we
search the closest equilibrium point in the table and consider
that the final ideal input is the one associated with that
orientation in the table. More details on this approach are
explained in section IV.

IV. RESULTS

A. Step Responses

The calibration of the damping and stiffness parameters for
the eye were iterated knowing that the system’s slowest time
constant is around 200 ms [9]. It is also known that the eye
can be well represented by a second order overdamped system,
which means the step response does not oscillate and has a
somewhat slow stabilization process. Given these properties,
the eye simulator is true to the real system, since it respects
the above characteristics, as can be seen in figure 4.

Head inertia is modelled to be around 1000 times bigger
than the eye’s. The human head, without neural control is
thought to be well approximated by an underdamped system
[10]. This behavior can be seen in figure 5. The settling
time is also around 10 times bigger than the eye’s, even for
small rotations. The head, like the eye, is modelled as an
isotropic system, not privileging the dynamics in any direction.
However, the neck has a higher stiffness in the torsional
dimension, not allowing the head to rotate as much in this
direction. The step response for the coupled system was also
tested. In order to check this, two tests were made: make the
head move and check the eye’s passive motion, and make the
eye move and check the head’s resulting motion. Since the



Fig. 4. Step response for the eye, when the inputs are motor controls that
lead the system to perform a 30 degree purely horizontal rotation. In order to
achieve this behavior damping and elasticity matrices are isotropic and have
values of 0.04 Nms and 20 N, respectively. Regarding the inertia, Ixx = 0.48
Iyy = 0.43 Izz = 0.39.

Fig. 5. Step response for the head, when the inputs are motor controls that
lead the system to perform a saccade of 20 degrees purely horizontal rotation.
The values for elasticity and damping matrices are 1 and 35, respectively. The
inertia was Ixx = 181 Iyy = 215 Izz = 142.

head is a lot heavier than the eye, it is expected that the eye’s
passive motion is largely motion by the head. On the other
hand, it is expected that the eye’s motion barely influences
the head, given their inertia differences. The results can be
seen in figures 6 and 7.

Fig. 6. It can be seen that an input on the head to make it move, drags the
eye with it, i.e., the eye passively has the exact same behavior as the head,
with a few milliseconds of delay.

As expected it was observed that the eye’s passive move-
ment when the head rotates is quite accentuated, but the head’s
motion when the eye rotates is negligible.

B. Lookup Table

This approach was thought to be a biologically plausible
strategy, and it consists on learning combinations of muscle

Fig. 7. When an input is applied only to the eye in order to check the head’s
passive movement, it can be seen that while the eye move’s with it’s usual
overdamped behavior, the head is almost still (it actually moves around 0.0007
degrees, which is very small compared to the eye movement).

extensions associated with specific eye orientations.
1) Equilibrium Points: In order to gather equilibrium

points, random step input combinations were given to the
all motors in a range of ± 85 degrees, with the aim to find
equilibrium orientations all around the eye’s oculomotor range.
If the combination of commands provided resulted in a stable
equilibrium orientation, that set of inputs and resulting rotation
vector was saved.

Figure 8 shows the distribution of the points stored in three
dimensions. A skewness in equilibrium points can be observed,
having less points on the right side of the plot. This is due
to the asymmetry of the extraocular muscles, mainly between
the horizontal pair.

Fig. 8. Equilibrium points in the eye’s visual range. There is a skewness
in their distribution due to the asymmetry of the horizontal muscles. Around
20000 points were obtained and are shown here.

C. Listing’s plane

250 random saccades were generated (with amplitudes from
5 to 40 degrees), using the optimal controller and their obedi-
ence to Listing’s plane was evaluated, along with the verifica-
tion of slack. The results from this experiment can be seen in
figure 9. As it is noticeable, the biggest difference between the
results from the previous approach is the mitigation of slack.
Pre-tension had an important role in this task, by not letting the
negative commands make the cables relaxed. Additionally, by
identifying equilibrium orientations and storing them it was
possible for the system to reach the goal orientation with



almost zero velocity. The major limitation that arises from
this approach is the possibility of having a relevant accuracy
error, since the goals are generated randomly and that specific
orientation might not be an equilibrium position. However,
from the tests performed it was observed that the error was
almost always lower than 5 degrees. However, the maximum
error was 7 degrees because the saccade goals implied a
rotation to the right side, where we have fewer equilibrium
points (figure 8). This is not optimal, but it is a trade-off so that
it would be possible to eliminate slack. The standard deviation
from Listing’s plane was 1.17 degrees. For primates, studies
have shown that this values is around 0.6 to 1.2 degrees. Even
though our result is closer to the maximum value, proves the
model and this approach are valid, and quite accurate.

The trajectories for these saccades can also be observed,
to analyse if they also obey Listing’s law. They can be seen
in figure 10. During the trajectories there was no slack, and
during the eye’s movement until the goal, all orientations were
in Listing’s plane, and all trajectories were mainly straight,
having low to null curvature. This shows that the controller
makes the eye move in the optimal way, i.e., through the
shortest path to the goal.

D. Main Sequence

As it can be observed in figure 11, the expected Main
Sequence relations apply. Duration increases almost linearly
with saccade amplitude due to the trade-off between duration
and energy. The values of duration are also in agreement with
neurological studies, having a value of around 200 ms for large
saccades. Regarding the relation between peak velocity and
amplitude, if one inspects the right plot from this figure, it is
possible to notice that there is a linear increase on maximum
angular velocity until around 400 deg/s. However, after this
value, peak velocity saturates since the optimal controller does
not allow the eye to reach greater speeds.

Another metric used to evaluate the functioning of this
system is the skewness of saccades. In humans, peak velocity
saturates at some point, but bigger saccades take longer to be
executed. Furthermore, the acceleration velocity is similar for
all amplitudes, which means that the difference of duration is
due to the deceleration phase. This is the skewness of saccades.
So, higher amplitude saccades have the same peak velocity,
but take longer to reach equilibrium. The controlled simulator
respects this behavior, as seen in figure 12. Leftward horizontal
saccades with increasing amplitude were performed in order
to test the skewness of saccades.

E. Muscle Responses

In the actual system, it has been shown that the neural
signals that make the eye perform saccades are a combination
between a pulse and a step signal. This means the muscle force
should have a similar behavior. The results of this test can be
observed in figure 13.

The initial forces are due to the pre-tension applied to the
system so that the saccades would not have slack. The saccades
performed for this test were negative horizontal rotations,

Fig. 9. 250 saccades’ final eye orientations shown in 3 different planes. The
standard deviation was of 1.17 degrees.

which make the Medial Rectus act as the antagonist and the
Lateral Rectus act as the agonist. It is obvious that since the
right graphic is for a bigger saccade, it takes more time to
stabilize, and its force has a bigger magnitude. Regarding the
shape of the muscle response, it can be seen that there is a
pulse form, followed by a step shape. This is in accordance
to what is thought to be the shape of the neural input signals.

It’s interesting to see that during the saccade, the antagonist
muscle (MR) relaxes, exerting less force, but during the
fixation time, it actually has to apply more force on the eye



Fig. 10. Trajectories of the eye to reach the final orientations seen in figure
9. Maximum deviation from Listing’s plane is 4.9 degrees.

so that it fixates on the target (rightwards orientation).

V. CONCLUSIONS

One of the objectives of this work was to study the con-
ditions that led the system to have slack. In order to do this
several approaches were analysed. The one that mitigated this
phenomenon was a memory-based approach, which might be
a biologically valid approach, since it is reasonable to assume
that it is easier for the brain to learn from experience an inverse
kinematic map of the eye, than solving a non-linear system
of equations at every single eye movement. The storage of
optimal commands that lead to a specific eye orientation is a
more realistic assumption.

The approaches tested resulted in a thin Listing’s plane.
However, slack tended to thicken said plane. Therefore, by
erasing slack, we were able to reduce Listing’s plane thickness,
making the model more biomimetic. The non-linear properties

Fig. 11. Main Sequence behavior tested on the controlled simulator.

Fig. 12. Skewness of velocity profiles of saccades with increasing amplitudes.
The rotations were all horizontal, starting from straight ahead orientation, and
their magnitudes were, respectively 5, 10, 20, 30, 40, 50 and 55 degrees.



Fig. 13. Medial and Lateral rectus response in N to the commands that lead
to rightwards horizontal saccades of 10 degres (left) and 55 degrees (right).
Time axis is in ms.

that the human eye follows were also obtained using this
approach, mainly due to the minimization of the energy and
duration for each saccade.
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