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Instituto Superior Técnico, Lisboa, Portugal

December 2021

Abstract

The application of reinforcement learning algorithms to robotics has been increasing over the
last decades, specially in the implementation of non-trivial tasks where the control of robots with
a high number of degrees of freedom is very difficult using classic control techniques. The human
body can be seen a system composed of very complex subsystems, and the ORIENT project study
and learn the control of a robotic version of one of these subsystems – the human eye. Using the
soft actor-critic algorithm, this work aims to link reinforcement learning to this control problem, and
create a framework that will learn the open-loop control of the movement of the eye. The base for
the type of control implemented is inspired on the human eye control signal, where a pulse signal is
generated, integrated and sent through the nervous system to the muscles required to perform the
wanted movements (saccades). The metric that evaluates the saccades produced is also inspired by the
human system and is used to lead the learning algorithm to the desired results. This methodology was
applied on a very simplified version of the human eye as a proof of concept. The algorithm managed
to learn the optimal saccadic control strategy, for three different versions of pulse functions. The
trajectories obtained, have non-linear properties similar to the ones registered in humans.
Keywords: Soft Actor-Critic, Open-Loop Control, Biomimetic Eye, Saccades

1. Introduction

Over the past decades, the speed of technological
developments has increased tremendously. Part of
these developments aim at alleviating everyone’s
daily burdens in life, for example, through design-
ing machines, including robotic systems, which may
eventually automate our daily routines. One of the
major conceptual advances that is guiding these de-
velopments is the statistical technique called “ma-
chine learning”, which is defined “as the study of
statistical computer algorithms that improve auto-
matically through experience” [14], and which man-
age to perform tasks that would otherwise be ex-
tremely difficult, if not impossible, to be carried
out by humans. At the same time, these develop-
ments run into the risk to causing distress to people
who fear to lose control over their lives, or lose hu-
man connection. It is with this in mind that the
development of humanoid robots may be thought
to better connect this complex technology with hu-
mans. Humanoid robots could be employed to per-
form tasks in ways that resemble humans. How-
ever, the human body is a highly complex system
that is shaped by an evolutionary process during
many millions of years. Mimicking such systems in

a humanoid robotic system with traditional control
techniques is therefore not a trivial task. One ex-
ample of a complex subsystem of the human body is
the eye. Within the ORIENT project (a EU Hori-
zon 2020 ERC advanced grant) our group learns and
studies how to control a humanoid robotic version
of the human eye through the application of dif-
ferent control techniques [10, 13, 19, 4, 6]. So far,
the group has worked on different robotic models,
and used classical control techniques to generate the
desired movements of the robotic eye. This thesis
follows up on previous work done under the ORI-
ENT project, and aims to develop a framework with
a new methodology to study how the eye moves.
Unlike the other works, this will follow a machine-
learning approach for the control of the eye, where
the algorithm will be put in situations where a cer-
tain movement is desired and by trial and error the
algorithm will learn how to perform desired mo-
tions. Due to lack of time this will only be done for
one dimension of the eye orientation, on a simplified
model.
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2. Background
2.1. Saccades
The two main types of conjugate eye movements of
the human oculomotor system are smooth pursuit,
where the retinal slip [3] is kept to a minimum in
order to track and maintain moving objects on the
fovea, and saccades, which are described by a quick
change of the line of sight to allow for a quick re-
orientation of the fixation point. Since the brain
cannot perceive clear images during fast motions
[5], it is imperative to keep the duration of saccadic
movements to a minimum, allowing for swift scans
of the environment.

2.2. Neural Control
The model of the eye-plant (extra-ocular muscles,
the eye ball, and surrounding tissues) has been ap-
proximated by a second-order linear over-damped
system with a long time constant of about T1 ∼
200 ms. The fatty tissues around the eye are the
major cause of this slow over damped property, far
exceeding the average saccade duration raging be-
tween 20 to 100 ms [15]. As a consequence, the
brain has to employ a non-linear pulse-step control
strategy to overcome this overdamped system for
fast and accurate saccades. David A. Robinson [16]
proposed a model (Figure 1) for the control of the
eye which has a solid conceptual framework to study
and understand the eye control system. Based on
the dynamic error between the desired , s0, and the
current eye orientation, e(t), a high-frequency pulse
signal, ė, is sent to the motor neurons to make the
saccadic movement, and which overcomes the eye’s
frictional forces, e. In parallel, this pulse signal is
neurally integrated to let the motor neurons pro-
duce the required elastic force that keeps the eye at
the desired orientation. So, the saccadic movement
of the eye is caused by a pulse-step control signal,
where the appropriate pulse is programmed by the
brain, which is also neurally integrated.

Figure 1: Robinson’s model of the saccadic system
[16]. s0 represents the position of the target in the
retina, eh is the head-centered desired position, e0
is the initial position of the eye, e(t) is the current
eye position, m(t) represents the motor error and ė
is the pulse signal.

2.3. Non-linear Dynamics
A saccade “main sequence” is a term that describes
relationships between duration, peak velocity and

amplitude. Skewness is another important property
of saccades describes the ratio between the time of
deceleration of a saccade and its duration. These
properties have been proven to be an important tool
to investigate the motion of the eye, both for, the
design and test of various models of saccadic con-
trol and for diagnosing the integrity of the human
saccadic system [1].

Figure 2: Non-linear properties of saccades [15]

In Figure 2, it’s illustrated the stereotyped main
sequence properties. The non-linear dynamics of
the saccades can be seen in all four 4 graphs. The
relationship between amplitude and duration in a
linear system would result in constant saccadic du-
ration, thus the increase in duration with amplitude
represents the non-linear behaviour. Similarly for
larger amplitudes, larger peak velocities would have
to be reached to achieve constant saccade durations,
however in the non-linear system this peak velocity
saturates. Skewness increases with duration so that
the velocity profiles are not scaled version of each
other, idenpendently of amplitude. These dynamics
will be key in the work to understand and evaluate
whether or not the saccadic control is approximates
to that of the human eye.

2.4. Reinforcement Learning Framework
Reinforcement learning is a field of artificial intel-
ligence that aims to solve problems through a sys-
tem of punishment and reward. Generally speaking
there will be an entity that is aimed to train, the
agent, that interacts with an environment, applying
an action that induces a change of state and receives
a reward. The agent knows nothing about the en-
vironment but has the goal of maximizing the re-
ward obtained. Depending on the application there
are various ways that the agent can make decisions.
The agent could use a value-based algorithm, where
the agent tries to predict the rewards obtained from
applying an action to a state - from a set of ac-
tions the agent would apply the one that outputs
the highest predicted reward. The agent could use
a model-based approach, where it creates a simu-
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lation of the environment, predicting the follow up
state from applying an action to the environment
- the action applied would be obtained from simu-
lated trajectories. Lastly, the agent could adopt a
policy based learning methodology where it imme-
diately maps a state to an action - it generates a
sequence of actions that lead the agent to the final
objective. The algorithm that is going to be used
in this project, the soft actor-critic, will have both
a policy approach and a value approach; as it does
not aim to know anything about the environment
this will be a model-free based approach. Before de-
tailing the structure of the algorithm, there is the
need to introduce some key concepts that will help
give insight to how the algorithm works.

Figure 3: Diagram portraying the general idea be-
hind reinforcement learning algorithms

2.4.1 Markov Decision Process

A Markov decision process is the mathematical
framework that will serve as a basis for the learning
algorithm. This is going to be defined as a tuple
(S,A, p, r), where S and A correspond to a con-
tinuous state space and continuous action space re-
spectively, p is the probability density of the next
state st+1 ∈ S given the current state st ∈ S and
the current action at ∈ A, and r is the reward is-
sued by the environment on each transition. Using
this notation it is now possible to generalize the re-
inforcement learning problem: at each time step,
t = 0, 1, ..., the agent will receive a representation
of the state of the environment st ∈ S and apply an
action at ∈ A. The environment will then provide
a reward r from taking the action at at a state st
- r(st, at). As the objective, the agent will want to
maximize the cumulative reward from taking each
action at each state. Then it will have to learn a
policy π∗ that maximizes the sum of expected re-
wards:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ
[r(st, at)] (1)

where π(at|st) is a probability distribution that rep-
resents the probability of taking the action at at
a state st, and ρπ(st, at) denotes the state-action
marginals of the trajectory distribution induced by
a policy π(at|st):

ρπ(st, at) = p(s0)
∏
t=0

π(at|st)p(st+1|st, at) (2)

or in other words, the probability of (st, at) inde-
pendently of the succession of states and actions
(trajectory) taken to get there [9]. Equation (1) de-
fines the standard objective of reinforcement learn-
ing.

2.4.2 Value function and Q-function

The value function is something that’s used on the
value based approach; it will evaluate the benefit
of being in a certain state based off a policy π [9].
Since the objective is to maximize the cumulative
sum of the expected reward, there is a need to rep-
resent this:

Gt = rt+1+γrt+2+γ2rt+3+ ... =

∞∑
j=0

γjrt+j+1 (3)

where rt+1 represents the reward obtained at time
t+ 1 and γ represents a discount factor which is in
the expression to account for future uncertainty. As
such Gt is the total discounted reward from time-
step t, and so as the value function of a state st
through the use of a policy π, Vπ(st) is the expected
sum of future rewards from state st:

Vπ(st) = Eπ[Gt|st] = Eπ[

∞∑
j=0

γjrt+j+1|st] (4)

Similar to the value function, the Q-function,
Qπ(st, at), is defined as the expected reward ob-
tained from applying the action at to a state st,
through a policy π:

Qπ(s, a) = Eπ[Gt|st, at] = Eπ[

∞∑
j=0

γjrt+j+1|st, at]

(5)

2.4.3 Bellman Equation

The Bellman equation is a key element in reinforce-
ment. Its use simplifies the computation of the
value function, by breaking down the problem into
simpler recursive subproblems [20]. As such, the
expressions for Value function can be rewritten as:

Vπ(st) = Eπ[rt+1 + γGt+1|st] =
Eπ[rt+1 + γVπ(st+1)|st]

= r(·|st) + γ
∑
st+1

ρπ(st+1|st)Vπ(st+1)
(6)

As the reward of rt+1 is simply the the reward
at state st, this is expressed as r(·|st) and the
sum is just the definition of expected value, where
ρπ(st+1|st) is the probability of being at a given
state st+1 from a state st through a policy π.
Similarly the Q-function can be rewritten:

Qπ(st, at) = Eπ[rt+1 + γGt+1|st, at] =
Eπ[rt+1 + γQπ(st+1, at+1)|st, at]

(7)
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As the sum of the probabilities of taking all the
possible actions of a policy π at state st equal to 1,∑

at
π(at|st) = 1, the value function can be rewrit-

ten in terms of the Q function and the policy π:

Vπ(st) =
∑
at

π(at|st)Qπ(st, at) (8)

Similarly, it is possible to rewrite the Q-function in
terms of the value function:

Qπ(st, at) = r(st, at)+γ
∑
st+1

ρπ(st+1|st, at)Vπ(st+1)

(9)
By substituting equation 8 into 9:

Qπ(st, at) = r(st, at)+

γ
∑
st+1

p(st+1|st, at)
∑
at

π(at+1|st+1)Qπ(st+1, at+1)

(10)

And vice-versa:

Vπ(st) =
∑
at

π(at|st) (r(st, at)+

γ
∑
st+1

p(st+1|st, at)Vπ(st+1)
(11)

And so there are now two recursive expressions to
obtain the value for the Q-function and value func-
tion.

2.4.4 Entropy

Entropy is defined as ’lack order or predictability’
[18], and this idea will be present in the soft ac-
tor critic algorithm. For example, winning the coin
game of heads or tails is much less predictable than
winning the lottery. Since the probability of the
first one is 50% the outcome is uncertain, whereas
on the latter case the outcome of a loss is mostly
certain. So, the game of heads or tails has higher
entropy than the lottery. Formally speaking the en-
tropy H(X) is defined as:

H(X) = −
∑
x

pd(x) log(pd(x)) (12)

where pd(X) is the probability distribution of a ran-
dom variable X, and the base of the logarithm can
vary from application to application; here it will
be kept as the standard natural logarithm for con-
sistency reasons. This concepts is used in reinforce-
ment learning to promote exploration on the agents,
making their actions less predictable, which is usu-
ally useful to avoid the agents getting stuck in sub-
optimal solutions.

2.5. Soft Actor Critic
This section is critical to understand the algorithm
that is going to be used in chapter 4 to train the
model of the eye. The explanation of this algo-
rithm will be based on [7, 8], where it was firstly
introduced and developed. This section will give a
brief overview of its properties and also provide the
key equations necessary for its understanding and
implementation.

2.5.1 Overview

The soft actor-critic algorithm is an efficient de-
sign for a continuous state and action space using
the maximum entropy framework which has been
proven to be stable and robust [21]. The addition
of this framework aims to reward exploration be-
sides just learning the best policy, and although the
objective is altogether modified, a temperature pa-
rameter, α, is used to regularize this entropy factor,
ultimately making it possible to recover the original
objective.
All-in-all, the soft actor-critic is an algorithm that
maximizes reward and exploration, making use of
replay buffer, from a off-policy formulation, to im-
prove sample efficiency and a maximum entropy to
enhance stability and promote exploration. The
agent will start with a random policy that will use it
to apply a random actions to the environment and
retrieve information about it. Once it has enough
samples, it will be able to distinguish better actions
from worse. Then it will improve itself in a way that
it will start taking better and better actions as time
goes on, until a point where it is always applying
the best actions to environment.

2.5.2 Framework

Putting together the standard objective of rein-
forcement learning (1) and the maximum entropy
objective [21]:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ
[r(st, at)+αH(π(·|st))]

(13)
where α is the temperature parameter mentioned
above, which will control stochasticity of the opti-
mal policy. As α tends to 0, the traditional objec-
tive (1) is recuperated. It is important to mention
that the soft actor-critic models actions for a con-
tinuous space, so the policy will output actions that
have some kind of continuous distribution. On our
case this action will be modelled by a gaussian dis-
tribution. So, the policy will output a mean and a
standard deviation, and a random sample of these
values would be the action applied to the environ-
ment. Moreover, for simplification, since the distri-
bution is known to be gaussian now, the entropy of
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the policy will be H(π(at|st)) = − log(π(at|st)).
With this all in mind, the characteristics and
implementation of the algorithm can be intro-
duced. To model the soft value function, Vπ(st) =
Eat∼π[Q(st, at) − α log(π(st|at))], the soft Q-
function (Q(st, at) = r(st, at)+γEst+1∼ρπ

[V (st+1)])
and the policy, there will be used 3 neural net-
works. The soft Q-functions will be parameterized
by θ and specified by Qθ(st, at) and the policy net-
works will be parameterized by ϕ, and designated
by πϕ(at, |st). Also, these two neural networks can
be identified as the critic and the actor respectively.
The value function V will be parametrized by θ.
The soft Q-function parameters can be trained by
minimizing the soft Bellman residual:

JQ(θ) = E(st,at)∼D[
1

2
(Qθ(st, at)−

(r(st, at) + γEst+1∼p[Vθ(st+1)]))
2]

(14)

where D represents the replay pool where the val-
ues of the state (st), the action applied to the state
(at), the reward obtained r(st, at), and following
state (st+1) are stored. As such this function can
be optimized through stochastic gradient descent.
For the update of the parameters of the value func-
tion, θ, it is done through an exponentiated moving
average of the parameter θ.
The policy parameters are learned through the min-
imization of the Kullback-Leibler divergence, an op-
erator that measures the the difference of two prob-
ability distributions [12, 11]. The new policy will
be updated towards the exponential of the new new
soft Q-function since this will guarantee an improve-
ment in the soft policy in terms of the soft value [8],
leading to a soft bellman residual of π of:

Jπ(ϕ) = Est∼D[Eat∼πϕ
[α log(πϕ(at|st))−Qθ(st, at)]]

(15)

To update the parameters ϕ a trick is used, which
results in a lower variance estimator. The value of
the policy neural network is reparameterized using
the transformation at = fϕ(ϵt; st) where ϵt is an in-
put noise vector from some fixed distribution. From
here equation 15 can be rewritten as:

Jπ(ϕ) = Est∼D,ϵt∼N [α log(πϕ(fϕ(ϵt; st)|st))−
Qθ(st, fϕ(ϵt; st))]

(16)

which can also be optimized through stochastic gra-
dient descent. Lastly the term that needs to be
trained is α. Again this parameter affects how much
the algorithm will explore, and for some tasks it is
better to explore than others; not only that, even
within tasks, it is better to explore in certain situ-
ations than others - so keeping this value fixed can

be ill-advised and non-trivial task to regulate man-
ually.Instead, this parameter will be automatically
adjusted by the algorithm, and the problem is for-
mulated such that the average entropy of the policy
is constrained. The residual for the update of this
parameter is derived in [8]:

J(α) = Eat∼πt [−α log(πt(at|st))− αH] (17)

where πt is the policy applied at time t. This
result was derived to obtain higher value in regions
where the optimal policy is uncertain, promoting
exploration, and lower value when the algorithm
is able to make distinction between good and bad
solutions.

3. Model
We have developed a simulator using physics equa-
tions to simulate the movement of the eye. Actua-
tion is provided by three motors with rods, which
would have elastics attached to their tips, connected
to a spherical joint, simulating an eye, that rotates
freely. Depending on the differential in tension be-
tween the elastics, due to the motor position, this
induces a torque on the eye.

Figure 4: Visual representation of the simulator
built using Pyglet

However, for a better understanding of the be-
haviour of the learning mechanisms, we started with
the study of only horizontal saccades (1D) and a
linear first order approximation to the eye dynamic
model.

3.1. Low Pass Filter
The model of the eye will then be approached by
a Low-Pass Filter (LPF), H(s),with a cutoff fre-
quency of ω0 and a gain, K:

H(s) = K
ω0

s+ ω0
(18)

These 2 parameters can be obtained by doing a sys-
tem identification to the simulator, applying step
commands to the motor with different amplitudes
and using a Least Square Estimator, it was possible
to determine K and ω0 with respect amplitude (see
Figure 5).
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(a) Value of K vs. Step
Amplitude

(b) Value of ω0 vs. Step
Amplitude

Figure 5: The values ob ofK (left) and ω0 (right) as
a function of the step amplitude applied as inputs
to the motor

As it can be seen in Figure5, it is possible to
recognize the non-linearity of the system in both
graphs. If the system was linear the both graphs
would present horizontal lines - from the value of
K, the final orientation of the eye would be propor-
tional to the steady state position of the motor, and
from the value of ω0, the duration of the movement
would be the same independently of the step am-
plitude.
To select a value of K for the LPF it was decided to
simply pick a value that would minimize the least
square error from all the values for each step size,
giving a value of K = 1.4758. The value of ω0

was picked to be 17.5, representing a maximum mo-
tor speed of 10000s−1, on the simulator - simula-
tions won’t be expected to have the motors move
fasted than 10000s−1 and so the plant won’t have
a value lower than 17.5. In the end though, re-
gardless of what this value is, some strategy will
be employed to account for this value of the plant,
such that when, there’s the need to implement the
algorithm in a non-linear model, the non-linearity
of the plant will be taken into account - same thing
for the value of K. This will be furthered explained
in Section 4. In figure 6 there is the step response

Figure 6: Validation of the first order linear approx-
imation

comparison between the physical simulator and its

first order linear approximation. As it can be seen,
the approximation can be considered valid since for
the same sized inputs both saccades trajectories are
very close to each other.

4. Implementation

In this section it will be given a description of the
implementation of the Soft Actor Critic algorithm.
Key components will be defined in order to link the
algorithm to the model based on the task at hand.
These components, state, action, and rewards are
stored in a replay pool and are used to train the
neural networks.

Figure 7: Simplified diagram of the soft actor-critic
implementation

4.1. State

Since the control will be done in open loop, the state
fed into the policy network will just be the initial eye
orientation, and the desired eye orientation. The
state vector is represented by a tuple of quaternions
parameters, (qi0 , qix , qiy , qiz , qd0 , qdx , qdy , qdz ),
where the initial eye orientation quaternion qi =
qi0 + (qix , qiy , qiz ) · I, where I is a complex vector
of i, j and k, and the final desired orientation is
qd = qd0

+(qdx
, qdy

, qdz
). qi is a value retrieved from

the plant, and qd is a value generated randomly
from episode to episode .

4.2. Action

The action applied to the system is what will change
the orientation of the eye. In the real model, this
would represent a change in the position of the mo-
tor. Since the control will be done in open-loop it
is necessary for the output of the policy network
to define a movement of the motor from an initial
time until infinity. The approach taken is to define
a function of time t τ(t) presenting a trajectory of
the motor with a pulse+step shape configured by
a set of parameters. This is inspired by the model
of saccades established by David A. Robinson [16],
(Section 2.2). When a saccade is programmed, a
pulse is generated that, with the addition of a neu-
ral integrator, will output a pulse-step command
that will drive the plant and direct the gaze to the
desired position:

τ(s) = pm(s)(1 +
k0
s
) = pm(s)

s+ k0

s
(19)
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The relationship between the motor command τ ap-
plied and the pulse generated pm in the Laplace do-
main and when such commands are applied to the
plant, H(s), it results in the following horizontal
angular position of the eye, denoted yaw θy:

θy(s) = τ(s)H(s) = pm(s)Kω0
s+ k0

s(s+ ω0)
(20)

As it can be seen, if k0 = ω0, the zero that comes
from the integrator and the pole that comes from
the plant cancel each other. This will give a saccade

with θy(s) = Kω0
pm(s)

s which will produce a step-
like function based on the pulse properties and the
plant static gain - the plant time constant will have
no influence. However, pure impulse signals are im-
possible to generate in practice. We propose three
different variants that are going to be used. Figure
8 demonstrates a visual representation of the three
pulse variants, corresponding pulse+step functions,
and responses with k0 = ω0 and k0 < ω0. A step
response is present as well to show that pulse+step
responses are faster. The first pulse variant is:

pm(t) = Ae−Btt (21)

which will produce a saccade with the following
function:

θy(s) = AKω0
s+ k0

s(s+B)2(s+ ω0)
(22)

In Figure 8 this corresponds to the red line, and
so,to learn the open-loop control, three parameters
must be trained: A, B and k0. k0 is the gain of the
integrator, B is the decay of the pulse, and A is the
amplitude of the pulse. However, this last param-
eter was found to be unreliable search wise, due to
the lack of correlation between it a real world con-
cept, so instead of training it, we train a parameter
D that represents the final position of the motor
and is related to A using the Final Value Theorem:

lim
s→0

sτ(s) ⇒ D =
Ak0
B2

+ F (23)

where F is the initial position of the motor. The
second proposed pulse variant is:

pm(t) = Ae−Bt(1− e−Ct) (24)

which will produce the saccade (blue line in Figure
8):

θy(s) = ACKω0
s+ k0

s(s+B)(s+B + C)(s+ ω0)
(25)

Now, the final motor position D is given by:

lim
s→0

sτ(s) ⇒ D =
ACk0

B(B + C)
+ F (26)

The new parameter C is set such that the maximum
velocity V of the motor is limited:

AC ≤ V (27)

obtained through first and second order derivatives
of τ(t). This can be used in a real life scenario
where the motor speed cannot go over a certain
threshold. This parameter will be fixed and as a
consequence the motor will output higher peak ve-
locities for higher saccade amplitudes.
The third variant of the pulse is:

pm(t) = Ae−Bt(1− e−Ct − Cte−Ct) (28)

which will produce a saccade with the following
function (green line in Figure 8):

θy(s) = AC2Kω0
s+ k0

s(s+B)(s+B + C)2(s+ ω0)
(29)

with a value of D:

τ(t) = lim
s→0

sτ(s) ⇒ D =
AC2k0

B(B + C)2
+ F (30)

and C is constrained by:

AC

e
+

Ak0C
2

(B + C)2
≤ V (31)

4.3. Reward
The reward function takes into account costs
(penalties) on lack of accuracy, energy spent and
saccade duration, as in previous works [10, 13, 19, 4,
6], to which we add overshoot introduced by param-
eter k0, which is an undesired and atypical property
(Figure 8(d)). In reinforcement learning, it is in-
tended to maximize the value of the reward, and so
the negative of these 4 costs will define the reward:

Rtotal = λaRa + λeRe + λdRd + λoRo (32)

where Rtotal corresponds to the total reward, Ra

corresponds to the accuracy reward, Re corresponds
to the energy reward, Rd corresponds to the dura-
tion reward and finally Ro is the overshoot reward.
The λs are weights that control the relevance of
each of the rewards - depending on the values of
these parameters, the optimal solutions obtained af-
ter training are different.
The energy term is the integral of the squared ve-
locity of the motor:

Re = −
∫ (

dτ

dt

)2

dt (33)

The expression for duration reward will be based
on the work of Shadmehr [17], where he found the
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(a) Pulse function (b) Pulse+Step function (c) Response with k0 = ω0 (d) Response with k0 < ω0

Figure 8: Pulse function, pulse+step function, and corresponding responses of the three pulse variants
with k0 = ω0 and k0 < ω0, as well as a pure step response

duration cost of a saccade in humans follows a hy-
perbolic function:

Rd = −
(
1− 1

1 + βtd

)
(34)

where td corresponds to the duration of a saccade
and β is the temporal discount rate. The accuracy
cost is the squared difference between the target
saccade direction and the the final saccade orien-
tation. In quaternions, the representation of the
reward of this expression is [2]:

Ra = −(1− (qd · qf )2) (35)

Where qd corresponds to the desired/ target quater-
nion orientation, qf corresponds to the final quater-
nion orientation of the eye and · correponds to the
inner product of the two quaternions.
The overshoot reward penalizes the existence of
overshoot, which is undesired in saccade move-
ments:

Ro = −
(
θpeak − θ0
θf − θ0

− 1

)
(36)

where θ0 is the initial yaw, θf is the a final yaw
and θpeak is the maximum value of the yaw for the
saccade.

5. Results

The soft actor-critic algorithm is used to train the
policy network to learn the optimal policy to drive
the system to the desired orientation. We present in
Figure 9 the average output of the policy network
- B, k0 and D − F (the accuracy error) as func-
tions of saccade amplitude, compared to the opti-
mal values computed through exhaustive search, for
each defined pulse of the variants. Figure 10 shows
the saccades obtained from applying the policy net-
work for a 10, 20 and 30 desired amplitude and their
equivalent pure step response. Plots about the main
sequence properties and skewness are shown in Fig-
ure 11 to evaluate the dynamics of the saccades ob-
tained.

(a) Variant 1

(b) Variant 2

(c) Variant 3

Figure 9: Policy output of the parameters against
the desired saccade size of the three variants. The
blue line represents the policy output and the or-
ange line the estimated optimal value. The graph
on the left is parameter B, the one on the center is
D − F , and k0 is the graph on the right.

5.1. Discussion
On all variants there is definitely overlap between
the learned policy output and the estimated out-
put, which means conclusively that the algorithm
does work. The range of values in which B does not
match the desired values is due to a search limit that
had to be set before training (algorithm limitation),
and this value was set to 80 as the upper bound, so
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(a) Variant 1 (b) Variant 2 (c) Variant 3

Figure 10: Comparison of the response between a pulse+step signal to a pure step signal for all variants

(a) Variant 1

(b) Variant 2

(c) Variant 3

Figure 11: Main sequence and skewness of the sac-
cades obtained for all variants. It follows the same
scheme as figure 2

what happens is just a saturation of the value of
B. As it can be seen, the the desired value of B
tends to infinity, so even if the upper bound of B
is increased there would always be saturation. This
is also reflected on the results obtained for low val-
ues of amplitude on the main sequence properties,
which seem to have the same non-linear properties
as the ones found in human data. The same can be
said about skewness, although it is slightly incon-
clusive on variant 1, because upon close inspection
the data is very noisy.
Nonetheless, from the results obtained it can be
concluded that variant 3 is the best one. Although,
all variants output faster response than one from a
pure step (Figure 10), variant 3 has the best per-
formance, as not only it performs saccades with the
lowest duration, consequence of higher saccade peak
a velocities, it has also been found that it spends the
least amount of energy (33) to execute a saccade.
Moreover, this variant has also the peculiarity of
performing a motion that is differentiable at time 0
- it is a realistic movement.

6. Conclusions

In this work it has been designed a framework
that uses the machine learning algorithm soft actor-
critic to learn a open-loop saccadic control of a
biomimetic eye. Due to time constraints, we fo-
cused on horizontal saccades, and approximated
the system dynamics to a first model. Nonethe-
less, since the actor-critic method does not assume
any particular form of model, the algorithm would
also work, in principle, in the full 3D non-linear
model. of a human eye. The soft actor-critic learns
by maximizing the rewards obtained from apply-
ing the control to the model. These rewards were
calculated using metrics of accuracy, energy, dura-
tion and overshoot of a saccade. The results of the
training done were found to be overall successful,
the algorithm managed learn the optimal policy for
all the variants, and these policies reflected non-
linear control properties similar to human records.
Variant 1, despite being the one with easiest im-
plementation, performed the slowest. Variant 2,
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with the introduction of parameter C, to account
for real life limitation, performed better in terms of
time, but spent much more energy; factor further
corrected by variant 3, conclusively with the best
results and with the extra advantage of portraying
a realistic motion. Since this work only focused on
the movement of the eye in one dimension, using a
single motor, for future work, the expansion of the
number of motors and number of dimensions for the
eye orientation are an option. Other options could
be maybe apply this algorithm in closed-loop using
inputs with noise.
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