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Abstract— The application of reinforcement learning algo-
rithms to robotics has increased over the last decade, especially
for the control of robots with non-linear dynamics and a
redundant number of degrees of freedom using classic con-
trol techniques. Here we study the control of a biomimetic
robotic eye with three extraocular muscle pairs as a prime
example. Using an actor-critic algorithm, this paper aims
to link reinforcement learning to this control problem, and
create a framework that will learn the open-loop control of
saccadic movements of the robotic eye. The basis for the
implemented control is inspired by the primate physiological
pulsed control signal, which is generated, integrated and sent
to the appropriate muscles to perform the saccade. The metric
that evaluates the saccadic output is also inspired by the primate
oculomotor system and is used to shape the reward function.
This methodology was applied to a simplified 3D physical model
of the human eye as a proof of concept. The algorithm managed
to learn a saccadic control strategy in 3D. The trajectories
obtained, have similar non-linear dynamics as those recorded
in humans and their 3D rotational kinematics are constrained
by Listing’s law.

I. INTRODUCTION

The past decades have yielded significant technological
developments in the field of robotics, which may to a large
extent be attributed to the use of novel machine-learning
techniques. As a result, modern humanoid robots can perform
complex tasks in ways that more and more resemble those
of humans. However, because of the high complexity of bio-
logical systems, mimicking human behaviors in a humanoid
robotic system with traditional control techniques is still far
from trivial.

One example of a complex subsystem of the human body
is the eye. Although the human eye has three rotational
degrees of freedom, the brain controls ocular movements
in highly stereotyped ways. In this paper, we focus on a
particular type of eye movement called “saccade”. Saccades
are fast eye movements that change the gaze direction in
a ballistic fashion (open loop). Human saccadic behavior
has been studied extensively in neuroscience, and several
methods have been proposed to model the saccadic system
and develop controllers for robotic eyes. In a previous work
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[1], we adopted a model-based approach, based on a physical
3D model of the eye plant (eyeball, six extraocular muscles,
and surrounding tissues). It used feedforward optimal-control
principles to replicate human saccadic behavior. However, as
a model-based approach, it required complex modeling of the
eye-muscle system that is hard to generalize to other systems,
or to variations of the same system. In the current work, we
adopt a model-free stance to the problem and evaluate the
ability of the actor-critic algorithm to learn control policies
without relying on accurate knowledge of a physical model
of the system.

So far, most studies of robotic eyes have predominantly
focused on the mechanics or controllers that constrain by
design the artificial eye movements to be similar to biological
ones [2]–[7]. For example, in [5] the authors implemented
the constraints of the eye’s 3D rotational kinematics on a
purely mechanical basis.

To our knowledge, only two studies have applied rein-
forcement learning to control a robotic eye with muscle-
based actuation [8], [9]. In [8], a 2 degree-of-freedom (DOF)
robotic eye with four contractile muscles was controlled
using deep deterministic policy gradient (DDPG) to smoothly
track or fixate a target, while maximizing reward based
on tracking error and control effort. The muscles were not
capable of producing fast movements. In [9], the authors
developed a nonlinear neuromuscular model of the six
muscles for both eyes in a simulation environment. They
too used DDPG to perform fast eye movements to target
positions by maximizing a reward based on tracking errors
and coordination of the left and right eye. However, both
papers’ control strategies were not designed to produce
the stereotypical 3D kinematics and dynamics of human
saccades, or realistic agonist/antagonist neural commands.
Also, they ignored the effects of cyclotorsion of the eye
(rotation about gaze direction). To the best of our knowledge,
there is no study of the 3D oculomotor system that applies
model-free reinforcement learning control techniques that
result in the emergence of human-like saccades.

The present paper develops a novel methodology to study
how the eye moves. We will follow a machine-learning
approach (reinforcement learning) for the control of the eye,
in which the algorithm will have to learn by trial and error
how to generate an optimal movement trajectory from an
initial to a desired eye orientation. Here, we trained an agent
to perform saccades with an actor-critic algorithm adapted
from [10].



Briefly, the algorithm maximizes the expected rewards
over time. The agent is composed of (i) an actor network
that learns the command to drive the eye from the initial to
the desired orientation, and (ii) a critic network that learns to
predict the reward for that command. Both networks interact
in the learning process, as the actor learns to maximize
the output of the critic. We validated this approach in
a computational simulation of a robotic eye performing
fully unconstrained 3D eye movements, using biologically
inspired pulse-step inputs. Results show that the pulse-step
parameters that lead to saccadic behaviors resemble human
performance and can be learned with high precision in a few
tens of thousands of iterations.

Our paper is organized as follows: In Section II we provide
some background information on the neurophysiology of eye
movements to provide the context of our approach. In Section
III we explain how the reinforcement learning framework fits
with the training of a controller for a 3D human eye model,
and in Section IV we formulate the key components of the
algorithm that allow it to produce human-like saccades. The
results of the reinforcement learning are presented in Section
V along with a comparison with human data. Our results are
discussed in Section VI and we propose improvements for
future work in Section VII.

II. BACKGROUND

In this section we provide some relevant information
on the neurophysiology of the human oculomotor control
system that inspired and constrained our design choices in
developing and evaluating the proposed approach to the
problem.

A. Neural control of saccades

The eye-plant is typically modelled by a second-order,
linear and over-damped system with a long time constant
of about T ∼200 ms. The fatty tissues around the eye and
the drag from the optic nerve are the major causes for this
overdamped property, making the plant’s step response far
exceed typical saccade durations, which range between 20-
100 ms [11], [12]. As a consequence, the brain employs
a non-linear pulse-step control strategy that overcomes the
overdamped nature of the system and allows for fast and
accurate saccades. Robinson [13] proposed a saccadic eye-
movement model (Fig. 1) that provides a solid conceptual
framework to study and understand oculomotor control.
Central to this concept is a nonlinear pulse generator that
sends a high-frequency pulse, ė, to the motor neurons to
overcome the eye’s frictional forces. In parallel, the pulse is
time-integrated to produce the required elastic forces that
keep the eye at the desired orientation after the saccade.
For accurate saccades without over- or undershoots, pulse
and step have to match precisely (e.g., k1 = k3 = 1, and
k2 = T ).

In this work, we extend this approach to 3D and to a
nonlinear physics-based model of the ocular plant, while em-
ploying similar pulse-step parameterizations for the motor-
primitives to drive saccades.

Fig. 1. Robinson’s model for horizontal saccades [13]. me(t) represents
the current motor error, and ė is the fast eye velocity-related signal from
the nonlinear pulse generator, which overcomes the high viscosity of the
plant. The neural integrator provides the step input, e(t), to the oculomotor
neurons at the summing junction. k1, k2, k3 are gains, and T ∼ 200 ms is
the plant’s time constant.

B. Properties of human saccades.

Normal saccades have stereotyped, skewed, velocity pro-
files that do not scale with the saccade amplitude (Fig. 2A).
They obey a so-called ‘main sequence’ [14], which describes
the nonlinear relationship between the saccade amplitude
and its peak velocity (Fig. 2B). This latter property is
due to the nonlinear saturation in the pulse generator of
Robinson’s model (Fig. 1). Oblique saccade trajectories are
approximately straight, which means that the horizontal and
vertical components of their velocity profiles are scaled
versions of each other (Fig. 2C). As a consequence, the peak
velocities of the components are not constant but have a
nearly cosine (horizontal) or sine (vertical) dependence on
the saccade direction. This effect is known as ‘component
stretching’ (panel B, gray curves) [15].

Fig. 2. Main properties of saccades. (A) Skewed saccade velocity profiles.
(B) Main sequence for the horizontal components of oblique saccades. Φ
is the saccade direction, with Φ = 0 rightward, Φ = 90 upward, etc.
Note that peak horizontal velocity depends on saccade direction. Similar
relations hold for the vertical components. (C) Oblique saccade trajectories
are approximately straight. (D) Listing’s law specifies that the amount of
cyclo-torsion for 3D eye orientations (rx) is zero. [11].

Finally, when analyzing saccade trajectories in 3D, the
instantaneous orientation of the eye is constrained to two
degrees of freedom, which is known as ’Listing’s Law’
(Fig. 2C,D). Mathematically, one can describe any eye ori-
entation as a virtual rotation from the primary position about
a fixed axis, parameterized by the Euler-Rodrigues rotation
vector, r = (rx, ry, rz). Here, rx represents the eye’s cyclo-
torsion (rotation about the line of sight), ry is the horizontal
axis for vertical eye orientations, and rz is the vertical axis
for horizontal eye orientations. Listing’s Law then holds that
all rotation axes lie in the (ry, rz) plane, and that, therefore,
rx = 0. Current ideas hold that the properties shown in Fig. 2
are the result of a neural optimal control strategy, which
aims to generate saccades with the smallest possible errors,
shortest durations, and the least amount of effort [1], [16].



Here, we will use the main sequence, component cross-
coupling, and Listing’s law properties of human saccades to
evaluate the quality of our methods.

III. METHODOLOGY

The aim of this work is to use Reinforcement Learning to
control a 3D biomimetic eye. In this framework, the agent
learns by receiving rewards for the results of its actions and
adjusts its behavior accordingly. Its ultimate goal is to find
the optimal policy that maximizes the cumulative reward over
time. Figure 3 illustrates the general concept of the algorithm.

Fig. 3. Diagram illustrating the general idea behind the reinforcement
learning algorithm, by highlighting the key elements that are relevant for
this paper. The agent’s action is sent to the Environment. The latter consists
of the 3D pulse-step generators that provide the motor commands, u, for
the 3D eye plant. The resulting state of the eye (its 3D orientation) and the
associated reward are provided to the agent, which then updates its policy.

Briefly, the agent receives input about the state of the eye
(its 3D orientation) and the goal (desired gaze direction). Its
output is an action that shapes the 3D pulse-step generator
to produce motor commands (u) that control the eye plant.
The resulting eye movement is evaluated, leading to a reward
that is used to improve the policy of the agent. In the next
sections, we describe the key components of this architecture
in more detail.

A. Environment

1) Eye Plant: We developed a simulator of our
biomimetic robotic eye, using the nonlinear Newton-
Euler equations for a rotating rigid body to calculate its
rotational movements in response to three motor commands,
u(t) = (uH , uR, uL)

T . For details, see [1]. Briefly, actuation
was supplied by three independent rotatory motors, each
connected to a rod with two elastic strings at its tips
that connected to anatomically fixed points on a freely
rotating sphere with moment of inertia tensor, I . Each
pair of strings represented an antagonistic pair of eye
muscles (indicated by H, R, and L, respectively, see Fig. 4)
that applied a torque on the eye. The changes in eye
orientation are fully determined by the total torque exerted
on the eye by the three antagonistic pairs. Nonlinearities
arise because of (i) the trigonometric relations between
motor rotations and forces exerted by the strings, (ii)
the orientation dependence of I and the strings’ pulling
directions, and (iii) the non-commutativity of finite rotations.

Fig. 4. Visual representation of the simulator. Motor H connects to the
medial-and lateral rectus strings for horizontal eye rotations; L to superior
rectus/inferior oblique, and R to the superior oblique/inferior rectus strings.
Note that L and R generate joint vertical-torsional rotations. Adapted from
[1].

2) Pulse-Step Generator: The three motors receive their
input control signals from three independent pulse-step con-
trollers that are configured according to Robinson’s proposal
in Fig. 1. The pulse-step generators (with integrator gains
kH , kR, kL) each receive a pulse, pH(t), pR(t), pL(t), as ac-
tions from the agent, each parameterized by their amplitude
Am and duration, B−1

m (see below, for details). The agent
programs its action on the basis of the initial state of the
motors, u0, the initial state of the eye (rotation vector, r0),
the desired 2D goal for the saccade, rD, and the reward, R
(see Fig. 5).

Fig. 5. Representation of the 3D environment, comprising the pulse-step
generators and 3D nonlinear eye plant model. The agent sends three pulses,
pm to the environment, which are transformed into three motor commands,
um, that drive the plant. The initial motor and eye orientations (the ’state’,
u0, r0) are fed back to the agent, and are used to determine the reward
associated with the action, which relies on r(t). The goal of the system is
to maximize the total reward.

B. Agent

The agent specifies the actions to apply to the environ-
ment. We implemented an actor-critic algorithm [17] adapted
from [10] to the open-loop eye-movement control system
described above. The algorithm used two distinct neural
networks to learn the optimal actions, or policy. The Q-
Network is the critic, which estimates the reward, R, for
a given action on the environment, as illustrated in Figure 6.
As in [10], this is implemented with two parallel Q-Networks
from which the one issuing the lowest reward estimate is used



at each step to update the agent’s policy. This implementation
facilitates the convergence of the method [10].

Fig. 6. Structure of the agent within the actor-critic algorithm, which
operates within the reinforcement learning framework to optimally act on the
environment. The Q-network effectively consists of two parallel networks
to mitigate positive bias in the policy improvement step that is known to
degrade performance of value-based methods [10]

The actor, or policy π-Network, determines the actions to
be applied to the environment. The actor is guided by the
reward estimate from the Q-Network to improve its policy.

The π and Q networks were fully connected nets with Rec-
tified Linear Unit activation functions. The π network had
32 neurons in each of its 3 hidden layers. We implemented
two Q Networks as in [10] to avoid overestimation of the
policy network (see Fig.6). Each had 3 hidden layers with
128-64-32 units, and 128-128-16 units, respectively, which
were randomly initialized.

IV. IMPLEMENTATION

We here specify the key components (state, action and
reward) for the reinforcement learning algorithm, and how
these are linked to the training of the oculomotor model.

A. State

The state, s, that is fed into the policy network is a tuple
composed of the initial orientation of the eye, r0, and its
motors, u0, as well as the desired coordinates of the 2D
goal, rDy and rDz , of the eye:

s = (r0x, r
0
y, r

0
z , u

0
L, u

0
H , u0

R, r
D
y , rDz ) (1)

Note that the amount of cyclo-torsion of the desired eye
orientation, rDx , is not specified as we what to leave it as
unconstrained as possible. For the task of directing the fovea
towards the target, only the y and z components are required.

B. Action

The agent’s action will change the orientation of the
eye (Fig. 5). Since the control is open-loop, the actions,
pm(t), and the resulting motor commands, um(t), need to
be specified as functions of time. Our proposed actions are
inspired by the pulsed control of Robinson’s model in Fig. 1.
The pulse function pm(t), then relates to um(t) through (see
Fig. 5):

um(t) = pm(t) + km

∫ t

0

pm(x)dx+ u0
m (2)

where km is the integrator gain of control component m,
and u0

m is the initial position of motor m ∈ [H,R,L]. As a

simple approximation for the pulses, we used the following
parameterization:

pm(t) = Amt2e−Bmt (3)

where Am and Bm are parameters that define the amplitude
and exponential decay of pulse pm(t).

Substituting (3) into (2) yields for the motor profile:

um(t) = u0
m + 2

Am

Bm

km
B2

m

(1− e−Bmt)−

2
Am

Bm

(
km
Bm

t+
km −Bm

2
t2
)
e−Bmt (4)

For each motor, um, three free parameters needed to be
optimized by the actor-critic algorithm: Am, Bm and km.
For ease of interpretation, we substituted parameter Am by
Dm ≡ um(∞), the final position of the motor (4). The values
of Am and Dm are related by:

Am =
(Dm − u0

m)B3
m

2km
(5)

Taken together, the action a is specified by parameters

a = (BL, DL, kL, BH , DH , kH , BR, DR, kR) (6)

C. Reward

The reward function follows from an optimal control
strategy, which simultaneously accounts for the following
five costs (penalties): lack of saccade accuracy, Cacc, total
energy spent by the motors, Cen, saccade duration, Cdur,
and total force applied on the eye at steady fixation, Cfor,
as in our previous work [1]. We here added an additional
cost for unwanted overshoots, potentially due to pulse-step
mismatch, Cover. In reinforcement learning, the reward is
calculated as the negative of the total cost (Ri = −Ci):

Rtot = λaRacc+λeRen+λdRdur+λfRfor+λoRover (7)

Weight λi specifies the relevance of each reward. Note that
the optimal solutions obtained after training will vary with
changes of these weights. As no analytical solution can be
found, we set the λi through a coarse trial and error search
over the parameter space, resulting in λa = 100, λe = 10−6,
λd = 1, λo = 1 and λf = 2. We tuned these parameters
so the saccades resulting from the optimized models would
have a natural look in duration and amplitude, but we did not
impose any constraints on their properties related to Listing’s
Law or main sequence.

The accuracy cost is the squared difference between the
desired goal and the final (2D) saccade orientation:

Racc = −((rdy − rfy )
2 + (rdz − rfz )

2) (8)

Note that there is no penalty for the torsional component rx.
The (kinetic) energy cost is quantified by the integrated

squared velocities of the motors during the saccade:

Ren = −
∫ td

0

(
u̇2
H + u̇2

R + u̇2
L

)
dt (9)



Fig. 7. Amplitude responses for three different goals, [10o, 10o], [20o, 20o] and [30o, 30o], respectively, during the different stages of the training
(legend).

The movement duration cost is specified by a hyperbolic
discount function [16], [18]:

Rdur = −
(
1− 1

1 + βtd

)
(10)

with td the saccade duration, which is taken at a settling
time of 95%, and β = 0.6 s−1 the temporal discount rate.

The force cost penalizes large differences in force applied
by each agonist/antagonist pair of muscles at the eye’s final
orientation. It aims to minimize the amount of muscle co-
contraction during fixation at peripheral gaze directions:

Rfor = −
∑

i∈{L,H,R}

(F ag
i − F ant

i )2 (11)

with F ag/ant the agonist/antagonist muscle force.
Finally, the overshoot cost was calculated as:

Rover = −
(
|r|max

|r|f
− 1

)
(12)

where |r|max/f are the maximum and final vectorial eye
displacements from the initial eye orientation.

V. RESULTS

Stable results were obtained after training the agent for
300,000 episodes. Figure 7 illustrates the evolution of the
agent’s training from the start (blue traces) to episode
300,000 (grey) for three oblique saccade goals (at 14.1, 28.3,
and 42.4 deg eccentricity; indicated by the dashed lines). At
the start, the responses were small with a slight overshoot,
but they rapidly reached near-normal saccade traces after
about 150,000 epochs.

To show that the motor controllers produced pulse-step
signals to overcome the sluggish plant dynamics, Fig. 8
compares three saccade responses of the model for different

Fig. 8. Amplitude responses of the plant (dashed), and pulse-step saccade
responses (solid traces) for three different goals, [7o, 7o], [14.1o, 14.1o]
and [21.2o, 21.2o], after training (300k episodes). The step responses were
generated by setting the direct-path contribution to zero (see Fig. 1).

amplitudes (solid traces) with the associated step-only re-
sponses (dashed). Clearly, the pulse-step controlled responses
were much faster than the latter (with durations ∼ 500 ms).

Figure 9 (left) shows some typical velocity profiles for
six oblique saccades with amplitudes between 5 and 30o,
obtained after the training. Note the systematic increase in
duration of the saccades with amplitude, as well as the
increase in skewness of the profiles, as the peak velocity is
reached at a nearly fixed acceleration epoch of about 30 ms.
The relatively long exponential tails of these profiles are due
to the chosen shape of the agent’s policy pulses (Eqn. 3). The
right-hand panel shows the main-sequence amplitude/peak
velocity relation for saccades in all directions, pooled for
many different initial eye orientations. Note the clear sat-
uration of the peak velocity for large saccade amplitudes,
and the considerable range of peak velocities for a given
saccade amplitude (see also [1]; cf. with Fig. 2A,B). This



Fig. 9. Track-velocity profiles for six representative oblique saccades (Φ =
45o), and the amplitude/peak eye-velocity main-sequence relation for 1000
saccades in all directions and from different initial eye orientations. Dashed
line: linear relationship, from which the data clearly deviate.

is in accordance with the data reported for human saccades
[12].

In Fig. 10 we show the evoked oblique trajectories in 3D
for saccades starting from the primary position (at r = 0),
recorded during different stages of the training (see legend
in right-hand panel). Note that trajectories started extremely
curved during the initial stages of the learning phase, but
gradually became straighter towards the end of the training.
The right-hand panel shows the amount of cyclotorsion
during these trajectories. It demonstrates that already in the
early stages of the learning the saccades obeyed Listing’s
Law, as the maximal cyclo-torsion remained well within 2.0
deg (cf. with Fig. 2C,D).

Fig. 10. 3D oblique saccade trajectories starting from the primary position
are shown in the ry , rz plane (left), and rx, rz plane (right) during different
phases of the training.

Although the saccade trajecories in Fig. 10 appear less
straight than those found in human saccades [15], the critical
property underlying human oblique saccades is the presence
of cross-coupling between the horizontal and vertical com-
ponents of the velocity profiles (see Background). Note that,
physically, the three motors drive the oculomotor plant inde-
pendently. Thus, a potential outcome of the learning could be
curved trajectories in which the component velocity profiles
are independent of saccade direction. This happened indeed
at the start of the training (orange traces in Fig. 10). To
illustrate cross-coupling in our model, we selected saccades
with a fixed leftward horizontal component of 20 degrees,
while the vertical component was varied between [-30, +30]o.
The left-hand panel of Fig. 11 shows the horizontal and

Fig. 11. Cross-coupling of the horizontal and vertical velocity profiles in
oblique saccade trajectories. Dotted line shows the cosine of the saccade
direction, which would lead to perfectly straight saccades. The actual
amount of cross-coupling deviates somewhat from the perfect cosine, but is
highly different from zero in which case all peak velocities would be the
same.

vertical velocity profiles for these saccades. The right-hand
panel of Fig. 11 clearly demonstrates that the peak velocity of
the horizontal component strongly depended on the saccade
direction in a way that closely resembled the cosine of the
angle, as in human saccades. Thus, after training, the amount
of cross-coupling was considerable, and of the same order
as predicted for straight human saccades (dashed line).

Listing’s Law was obeyed with similar accuracy as shown
in Fig. 10 when the saccades were generated in arbitrary
directions, starting from arbitrary initial eye orientations.
This is shown in Fig. 12 for a full data set of 1000 saccade
trajectories, in which only the first initial fixation started
at r = 0, and every subsequent saccade started from the
endpoint of the previous saccade. The data show that there
is no accumulation of cyclotorsion in the system.

Fig. 12. Listing’s Law for 1000 saccade trajectories in randomly selected
oblique directions and amplitudes, starting from the end point of the previous
saccade. The cyclotorsional component of eye orientation remains within 2º
(standard deviation of rx is 0.6 deg; see Table I).

VI. DISCUSSION

The proposed method generated saccades in 3D with
human-like properties that emerged from the optimization of
five costs: accuracy, duration, energy consumption, fixation
force, and overshoot. Importantly, these results emerged
without having to impose constraints that directly relate to
the known kinematic and dynamical properties of saccades.



TABLE I
PERFORMANCE COMPARISONS BETWEEN THE ORIGINAL AGENT AND THE AGENTS FOR WHICH A PARTICULAR REWARD FUNCTION IS REMOVED.

Reward Type Mean Accuracy Average Settling Mean Distance Standard Deviation Average Overshoot (%) Average Energy
Error (º) Time of 95% (s) to Listing’s Plane (º) of LP (º) Spent (kJ kg−1m−2)

Full 0.64 0.41 -0.08 0.58 0.0 3
λf = 0 0.27 0.37 1.87 0.76 0.3 2
λo = 0 0.51 0.19 0.04 0.68 2.8 3
λe = 0 0.63 0.37 0.01 0.60 0.0 57

The most remarkable emerging properties of the model
saccades are: (i) a nonlinear main sequence (Fig. 9), with
a strong direction-dependence and initial eye-orientation de-
pendence of the peak track velocity as function of amplitude,
with horizontal saccades starting from straight-ahead being
fastest, (ii) a considerable amount of cross-coupling between
the independent motors, effectively rendering the agent to act
as a vectorial pulse generator (Fig. 11) , and (iii) Listing’s
Law (Figs. 10 and 12). The latter property also indicates
that during oblique and vertical saccade trajectories the R
and L motors jointly canceled each other’s cyclotorsional
torques. None of these properties was explicitly imposed on
the training, but resulted from the joint trade-off of different
costs in the reward functional of the reinforcement learning
algorithm (7).

It is, therefore, of interest to assess the importance of each
cost term in the total reward function with regard to these
human-like saccade properties. To that end, we repeated the
training with one of the λi = 0 in (7). We thus evaluated the
importance of fixation force by setting λf = 0, by training
a new agent under the same conditions as described above.
We then compared the agent’s performance for the same set
of 1000 saccades (Figs. 9 (right) and 12) with the default
agent that had access to all reward functions. Similarly, in
subsequent training sessions, we set λo = 0, or λe = 0. The
accuracy and duration rewards were not removed because of
their self-evident impact: if accuracy is not accounted for,
there is no need for the eye to move, and if the duration
is not constrained, saccades will tend to be very slow (not
human-like) to spend the least amount of energy possible
(9).

The results of the different training sessions without force
reward (λf = 0), overshoot reward (λo = 0), or energy
reward (λe = 0) are summarized in Table I. As seen in
the table, the force reward is important to produce saccades
that obey Listing’s Law. The mean deviation from Listing’s
Plane, and the width of the plane, is higher when the agent
does not aim to minimize the fixation force. This confirms
our earlier finding in [1]. With force minimization there is
a slight degradation on the accuracy, caused by the trade-off
between the force and accuracy. Note that, as our system is
symmetric, the force reward bias attracts the system naturally
to the the origin r = 0, for which the force cost will be at a
minimum.

When the energy consumption was not included as a cost,
no major changes in the saccade properties were observed.

This result can be explained by the already low value of
λe = 10−6. Thus, the energy budget was not a critical issue
to reach suitable solutions.

The absence of the overshoot reward naturally produced a
bigger amount of overshoot in the saccades. Interestingly,
this overshoot was quite small, as the other cost terms
also contributed to prevent large overshoots. As the average
overshoots were small and stayed within the 5% range of
the desired amplitude, the computed duration of the saccades
shortened as well.

A. Limitations

We note that our method to compute saccade duration
leads to underestimation of duration in case of small (< 5%)
overshoots. Additionally, the low decay rate of our pulse
function (3) leads to an overestimation of the duration of
non-overshooting saccades. As can be seen in Fig. 9 (left),
the pulse function created long, relatively slow, exponential
decays that lead to extended slow eye movements towards
the final orientation, yielding poor assessments of the move-
ment duration and, consequently, the energy consumption.
Together, these two effects demand for the penalization of
overshoot in the cost function to obtain suitable saccades.
We believe that different metrics of computing duration and
different pulse parameterizations may allow discarding the
use of the overshoot term in the reward function.

We also note that determining the values of λi in the
cost function is a non-trivial problem. Without a single
quantitative metric to evaluate the quality of saccades, it is
not possible to optimize these paramenters in a principled
way. We have used a trial and error process based on
the qualitative evaluation of the generated saccades by the
authors.

These imperfections notwithstanding, the overall prop-
erties of the agent’s saccades were remarkably similar to
human performance. We conjecture from this that the precise
calibration of the different components in the model (pulse
shape, reward weights) was not very critical for obtaining
these results.

VII. CONCLUSIONS

In this paper we have demonstrated that human-like sac-
cades can emerge in an artificial system by learning a model-
free policy using the Actor-Critic algorithm to optimize basic
elementary properties of duration, accuracy, energy, force
and overshoot. Complex properties like the main sequence,
component cross-coupling, and Listing’s Law all emerged



from this optimization instead of being imposed by design.
The resulting behaviors were obtained despite the limitations
in defining and measuring the terms in the reward function
and the weights of their contributions.

In future work we will study the application of the
method to a more realistic model of the human eye with 6
independent extra-ocular muscles [19]. This model presents
additional challenges in the control of muscle pretension
and their organization into agonist-antagonist pairs. Also, we
will work on the main identified limitations of the current
formulation: (i) definition of a better metric to assess saccade
duration, a parameterization of the pulse function with a
faster decay, and (ii) a more principled way to define the
weights of the cost function. For instance, using reinforce-
ment learning from human preferences [20] we could better
exploit the expert guidance during the learning process.

REFERENCES

[1] A. John, C. Aleluia, A. J. Van Opstal, and A. Bernardino, “Modelling
3d saccade generation by feedforward optimal control,” PLOS Com-
putational Biology, vol. 17, no. 5, pp. 1–35, 05 2021.

[2] S. Schulz, S. M. z. Borgsen, and S. Wachsmuth, “See and be seen
– rapid and likeable high-definition camera-eye for anthropomorphic
robots,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 2524–2530.

[3] H. Liu, J. Luo, P. Wu, S. Xie, and H. li, “Symmetric kullback-leibler
metric based tracking behaviors for bioinspired robotic eyes,” Applied
Bionics and Biomechanics, vol. 2015, pp. 1–11, 11 2015.

[4] D. Dansereau, D. Wood, S. Montabone, and S. B. Williams, “Exploit-
ing parallax in panoramic capture to construct light fields,” in ICRA
2014, 2014.

[5] G. Cannata and M. Maggiali, “Models for the design of bioinspired
robot eyes,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 27–44,
2008.

[6] X. yin Wang, Y. Zhang, X. jie Fu, and G. shan Xiang,
“Design and kinematic analysis of a novel humanoid robot
eye using pneumatic artificial muscles,” Journal of Bionic
Engineering, vol. 5, no. 3, pp. 264–270, 2008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1672652908600347

[7] M. Lakzadeh, “A biologically-inspired eye model for
testing oculomotor control theories,” Master’s thesis, Uni-
versity of British Columbia, 2012. [Online]. Available:
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0072549

[8] S. K. Rajendran, Q. Wei, and F. Zhang, “Two degree-of-freedom
robotic eye: Design, modeling, and learning-based control in foveation
and smooth pursuit,” Bioinspiration & biomimetics, vol. 16, 05 2021.

[9] J. Iskander and M. Hossny, “An ocular biomechanics environment for
reinforcement learning,” Journal of Biomechanics, vol. 133, p. 110943,
2022.

[10] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft
actor-critic algorithms and applications,” CoRR, vol. abs/1812.05905,
2018. [Online]. Available: http://arxiv.org/abs/1812.05905

[11] A. J. Van Opstal, The auditory system and human sound-localization
behavior. Academic Press, 2016, vol. 1.

[12] A. T. Bahill, M. R. Clark, and L. Stark, “The main sequence: a tool for
studying human eye movements,” Mathematical Biosciences, vol. 24,
pp. 191–204, 1975.

[13] D. A. Robinson, “Models of the saccadic eye movement control
system,” Biologic Cybernetics, 1973.

[14] S. P. S. Agostino Gibaldi, “The saccade main sequence revised: A
fast and repeatable tool for oculomotor analysis,” Behavior Research
Methods, 2021.

[15] A. C. Smit, A. J. Van Opstal, and J. A. M. Van Gisbergen, “Com-
ponent stretching in fast and slow oblique saccades in the human,”
Experimental Brain Research, vol. 81, pp. 325–334, 1990.

[16] R. Shadmehr and S. Mussa-Ivaldi, Biological Learning and Control:
How the Brain Builds Representations, Predicts Events, and Makes
Decisions. The MIT Press, 2012.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[18] R. Shadmehr, J. Orban, M. Xu-Wilson, and T.-Y. Shih, “Temporal
discounting of reward and the cost of time in motor control,” The
Journal of neuroscience : the official journal of the Society for
Neuroscience, vol. 30, pp. 10 507–16, 08 2010.

[19] R. J. Alitappeh, A. John, B. Dias, A. J. Van Opstal, and A. Bernardino,
“Emergence of human oculomotor behavior from optimal control
of a cable-driven biomimetic robotic eye,” arXiv, 2022. [Online].
Available: https://arxiv.org/abs/2203.00488

[20] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human preferences,” in
Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.


