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Abstract 
The biophysics department of the Radboud University of Nijmegen has decades of experience in 

research in the neuro-physics and mechanics of saccades, and other eye movements. Since a couple of 

years, a vestibular chair is being constructed to do research into the effects of vestibular stimulation on 

human subjects during localization of stimuli. To construct the gaze of a subject, head-in-world and eye-

in-head data is measured using real-time camera tracking and modelling techniques. So far, the 

orientations of head and eye were simply added up to approximate the gaze, neglecting translational 

movements and torsional rotations of the head. This report attempts to find a method that does 

consider translations and 3D-rotations of the head, and calculate the gaze through matrix multiplication, 

to improve the gaze approximation. This is done by performing two experiments. One where the subject 

is asked to move their head in extreme orientations and positions while fixating their gaze at an LED, 

and one where the subject is tasked to locate stimuli while making radical and extreme movements with 

their head. By assuming that the subject’s localization is accurate, which is a good approximation if the 

stimuli are displayed sufficiently long, the calculation method can be tested. Using Fick angles to 

construct rotation matrices, as done by Ronsse, et al. (2007), did not result in significant improvements. 

However, using quaternions to construct the rotation matrices, an improvement is realized for 

experiments where very extreme and radical head movements were made by the subject. But, if the 

subject moved their head orderly, these improvements were not visible as clearly. Further research 

must be conducted to prove the validity of the calculation of the gaze.

 

Introduction 
Because humans are only able to percieve detail 

with a small area of the retina, called the fovea, 

we need to make frequent saccades to get a 

visual perception of the world. The response 

time, accuracy and speed of these saccades are 

undeniably remarkable, clocking in at over 500 

degrees per second (Collewijn, Erkelens and 

Steinman, 1988). In the beginning of the 

twentieth century, the Dutchman Franciscus 

Donders and the German Johann Listing were 

the first to delve into the physiology of the 

human eye (Donders, 1864, Listing, 1845). In 

1964, D. Robinson explored the mechanics 

behind human saccadic eye movements by 

building a model to describe the eye by its 

dynamical abilities and constraints, which 

formed the starting block for further research in 

the field (Robinson, 1964). Since then, research 

on the (human) eye has intensified. Nowadays, 

current technology gives us the opportunity to 

investigate the neurological and oculomotor 

properties of the eye. This is of particular 

interest, because the eye is a sophisticated 

mechanical structure, directed by six distinct 

muscles per eye, able to rotate the eye in all 

three dimensions. This structure can be 

compared to other motor systems like the ones 

that control our limbs. The anatomy of the 

Figure 1 – This figure shows the anatomy of the 

muscles driving the movement of human eyes. For 

each eye the muscles can be placed in three sets 

of two, the lateral and medial rectus muscles, the 

superior and inferior rectus muscles and the 

superior and inferior oblique muscles. (adapted 

from Purves, 2008) 
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muscles is shown in figure 1. The medial and 

lateral rectus muscles are solely responsible for 

horizontal eye movements, where the superior 

and inferior muscles, and the oblique muscles 

are responsible for both the vertical 

movements as rotations along the axis of gaze, 

known as cyclotorsion, or just torsion. The 

structure of the motor control of human eyes 

and the neurological structure responsible for 

this control has been mapped to great detail in 

past research (see e.g. overview by Spark, 

2002). We now know that the saccade control 

in humans is directed from the superior 

colliculus (SC) in the brainstem and the frontal 

eye fields (FEF) in the frontal cortex (Brodmann-

area 8) (Purves, 2008). In the SC, visual and 

auditory information gets translated into a code 

of electrical signals by information type specific 

cells (visual or auditory). Both types of stimuli 

are combined in the processing in the SC 

depending on timing and original location 

(Sparks, 1986). There is also some 

understanding on how the SC cells program the 

motor system. Past research found that the SC 

maps the motor controls in polar coordinates 

and that is anisotropic and nonlinear (van 

Opstal, van Gisbergen, 1989). Nearly 10 years 

later, Goossens and van Opstal (1997) visualized 

saccades to visual and auditory stimuli. With 

this data they proposed a 2D gaze control 

model on how saccades are produced. Axons of 

motor neurons in the SC reach to so-called gaze 

control centers, located lower in the brainstem; 

in the midbrain, caudal midbrain and pons. 

Horizontal and vertical saccade components are 

controlled through separate neuron control 

trains and are synchronized so that they are 

executed simultaneously. The paramedian 

pontine reticular formation (PPRF) is the gaze 

control center that is responsible for the 

horizontal component of saccades, directing 

the lateral and medial rectus muscles and the 

horizontal components of the superior and 

inferior oblique muscles. The control of vertical 

saccade components is conducted by the 

rostral interstitial nucleus of the medial 

longitudinal fasciculus (riNMLF). The 

information of direction and velocity of the 

saccade that is to be made, is coded in the 

frequency, duration and number of spikes of 

the signals that the PPRF and riNMLF produce 

directed by the SC. Goossens and Van Opstal 

(2006) directly related the number of spikes by 

the SC to eye displacement in monkeys. The 

PPRF and riNMLF gaze centers connect to their 

own respective motor neurons that control the 

eye muscles. This entire discharge train is linked 

to the SC and not the FEF. The discharge train 

initiated by the FEF is to this day not well 

understood, but it is known that most control is 

done by the SC since a lesion in the FEF will be 

recovered over time while lesions in the SC are 

not recovered at all (Schiller, True, Conway, 

1980). Sparks gives a detailed review about the 

Figure 2 – This figure shows the endpoints of 

rotation vectors of arbitrary made saccades by a 

monkey for 90 seconds in the (A) horizontal (y) 

and vertical (z) component, and (B) vertical and 

torsional (x) component. Notice the clearly visible 

Listing’s plane in graph B. (adapted from 

Haslwanter et al., 1991) 
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neurological structure of human eye 

movements in his 2002 paper (Spark, 2002; 

Purves, 2008).  

Listing’s and Donder’s law 

The torsional rotation of the eye is just like the 

vertical rotation, controlled by the riNMLF, 

making the management of vertical and 

torsional rotation inseparable (Sparks, 2002). 

Moreover, as explained above, vertical and 

torsional rotations are conducted by the same 

set of eye muscles, which gives rise to a 

limitation to eye rotations during head-fixed 

saccades referred to as Listing’s law. First 

derived by Johann Listing and later 

experimentally confirmed by Hermann von 

Helmholtz (Helmholtz, 1867) and directly 

measured in the 1980’s (Ferman, Collewijn, Van 

den Berg, 1987), Listing’s law states that the 

human eye cannot achieve all orientations and 

that all rotations initiated from a straight 

reference orientation are a result of a rotation 

around an axis laying in the plane orthogonal to 

the reference gaze orientation. This plane is 

called Listing’s plane. This law only holds in the 

special case where the head is fixed and looking 

straight forward at a point infinitely far away. 

Under these unnatural conditions, all 

orientations that cannot be achieved with 

rotations about an axis within Listing’s plane, 

the human eye is not able to make. Even then, 

the eye can still make small derivations from the 

Listing’s plane, which are usually compensated 

in later saccades due to the eye position 

dependence of the neuron’s activity in the SC 

(Van Opstal, Hepp, Suzuki and Henn, 1995). 

Listing’s law is a special case of Donder’s law, 

which states that the 3D orientation is unique 

to the gaze direction. In other words, no matter 

how a certain gaze direction is obtained, the 

torsion will always be the same for a certain 

gaze. Under roll and pitch movements of the 

head and vergence of the eyes, Listing’s law 

does not hold. This is comprehendible, because 

the torsion of the eye tends to counter the 

rotation of the head stabilizing the orientation 

of the eye in the world reference frame. Figure 

2 shows a collection of rotation vectors 

corresponding to 90 seconds of free saccades 

made by a monkey, while his head was fixated. 

In figure B, Listing’s plane is clearly visible; all 

endpoints of the rotation vectors fall on or close 

to the dotted line (Haslwanter, Straumann, 

Hess, Henn, 1991).  

Fick and Helmholtz angles 

One way of modeling eye orientations is using 

rotation matrices. Euler’s theorem, which 

states that every orbital orientation can be 

reached from any arbitrary initial orientation 

through a single rotation about a single fixed 

axis, is not the way a 3D eye orientation was 

described for a long time. The method used 

until the 70’s of the previous century was the 

method of describing an orientation using a 

multiplication of a rotation matrix 

corresponding with every orthogonal 

dimension. By using the matrices  

𝑅1(𝜃) = [
cos(𝜃) −sin(𝜃) 0

sin(𝜃) cos(𝜃) 0
0 0 1

]  (1) 

for the horizontal rotation axis, 

𝑅2(𝜑) = [
cos(𝜑) 0 sin(𝜑)

0 1 0
−sin(𝜑) 0 cos(𝜑)

] (2) 

for the vertical rotation axis and 

Figure 3 – This figure shows the clear difference 

between the gimbals made with (A) Fick angles 

and (B) Fick angles. The difference in order of 

rotations around the three axis will result in a 

different end orientation (adapted from 

Halswanter, 1995).  
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𝑅3(𝜓) = [

1 0 0
0 cos(𝜓) −sin(𝜓)

0 sin(𝜓) cos(𝜑)
] (3) 

for the torsional rotation axis, every orientation 

could be obtained by multiplying them in order, 

with their own respective angles. These angles 

are called Euler angles or Tait-Bryan angles and 

fully describe the orientation. Euler angles and 

Tait-Bryan angles differ in the fact that with 

using Euler angles, the first rotation axis is the 

same as the third, where for Tait-Bryan angles, 

all axes are used for the 3D rotation. A rotation 

of vector 𝑟𝑖 around the horizontal axis with 

angle 𝜃 and vertical axis with angle 𝜑 to reach 

the new orientation 𝑟𝑓 would then be written as 

𝑟𝑓 = 𝑅1(𝜃) ∙ 𝑅2(𝜑) ∙ 𝑟𝑖    (4) 

To complete the information on the orientation 

of the eye, the torsional component must be 

added. Because of the non-commutative nature 

of 3D rotations, a problem arises with 

describing a rotation by the above described 

method. For 3D rotations the order of 

multiplication results in a unique orientation. 

Writing this out gives: 

𝑅1(𝜃) ∙ 𝑅2(𝜑) ∙ 𝑅3(𝜓) ≠ 𝑅2(𝜑) ∙ 𝑅1(𝜃) ∙ 𝑅3(𝜓) 

This specific order of multiplying the different 

coordinate and angle specific rotation matrices 

show the disagreement between Adolf Fick and 

Hermann Helmholtz, who, in the nineteenth 

century, disagreed which order was superior 

over the other. Later the scientific community 

started referring to the order of corresponding 

angles as Fick and Helmholtz angles 

respectively. Taking the order of rotation into 

account, the three Helmholtz or Fick angles fully 

describe the rotational orientation. Figure 3 

visualizes the difference in order of rotation 

between Fick and Helmholtz with a so-called 

gimbal, a system where rotations about 

coordinate axis are carried out in sequence to 

reach a final position. (Haslwanter, 1995) 

Quaternions 

A way to overcome the problems that arise 

from defining rotation matrices by three angles 

is to use a method that more closely resembles 

Euler’s theorem. This can be done in the form 

of quaternions. The use of quaternions 

eliminates the importance of order when 

describing a single 3D orientation, but are still, 

just like rotation matrices, non-commutative. 

Mathematician William Hamilton discovered 

quaternions (Hamilton, 1844-1850), which are 

simply-said the extension to the imaginary 

number scheme that can unintendedly describe 

rotation in a very neat way. Quaternions extend 

the three-dimensional real world with not only 

one imaginary dimension 𝑖, but with three 

imaginary dimensions 𝑖, 𝑗 and 𝑘. The rules that 

describes these dimensions are 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖 × 𝑗 × 𝑘 = −1  (5) 

and 

𝑖 × 𝑗 = 𝑘 𝑗 × 𝑘 = 𝑖 𝑘 × 𝑖 = 𝑗 

𝑗 × 𝑖 = −𝑘 𝑘 × 𝑗 = −𝑖 𝑖 × 𝑘 = −𝑗 

A quaternion is written similar to how imaginary 

numbers are written when only using one 

dimension, but then with the three imaginary 

dimensions: 

𝑞 = 𝑞0 + 𝑞1 ∙ 𝑖 + 𝑞2 ∙ 𝑗 + 𝑞3 ∙ 𝑘  (6) 

where 𝑞0 is called the scalar component and 

{𝑞1, 𝑞2, 𝑞3} is the vector part. For representing 

rotational orientations, unit quaternions are 

used (length 1 i.e. √𝑞0
2 ∙ 𝑞1

2 ∙ 𝑞2
2 ∙ 𝑞3

2 = 1). The 

relation between this type of quaternion and 

rotations that are described by a 3D rotation 

matrix is 

𝑞 ∘ (𝑥 ⋅ 𝐼) ∘ 𝑞−1 = (ℝ ⋅ 𝑥) ⋅ 𝐼  (7) 

where 𝑞−1 is the inverse of the quaternion, 𝑥 is 

an initial orientation vector, ℝ is the according 

rotation matrix and 𝐼 = (
𝑖
𝑗
𝑘
). For subsequent 

rotations described by quaternions, order once 

again uniquely describes the final orientation of 

the rotated body.  
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Rotation vectors 

Rotations can also be described in a third way, 

called rotation vectors, which are tightly bound 

to quaternions. This method of describing 

rotations most closely resembles Euler’s 

Theorem and is written as 

𝑟 =
𝑞

𝑞0
= tan (

𝜃

2
) ∗ 𝑛.   (8) 

In this formula the rotation vector is described 

as a vector 𝑟, rotated around the axis 𝑛 with an 

angle 𝜃, as Euler’s Theorem describes. The 

rotation vector 𝑟 can be turned into a rotation 

matrix by 

𝑟 = 
1

1+(𝑅11+𝑅22+𝑅33)
∙ (

𝑅32 − 𝑅23

𝑅13 − 𝑅13

𝑅21 − 𝑅12

)  (9) 

where the rotation matrix would then be 

ℝ =(

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

).  

(Haslwanter, 1995) 

Modelling gaze 

Many studies have been performed on gaze and 

eye saccades, testing multiple properties of the 

oculomotor systems of human subjects. Two 

main methods are used in past research to 

measure eye-head saccades. The first method 

consisted of two coils moving in large uniform 

magnetic fields, first proven useful by Robinson 

(1963) and later used by for instance Goossens 

and van Opstal (1997) and many others. One 

coil, attached to the head, was used to track the 

head position. The other one, embedded in a 

contact lens that was placed on the surface of 

the eye, tracked the position of the eye. 

Movement of the head and eyes would result in 

a change of measured magnetic flux, that could 

be translated to the actual movement of the 

head and eye thus measuring the eye in space 

and head in space. Finding the eye in head 

location, makes the analyzing of the accuracy 

and latency of gaze saccades possible. As 

technology evolved, optical tracking of gaze is 

now widely used in research and in commercial 

applications. In the past, before Robinson first 

used the coil method in 1963, only optical 

methods were used to do research on eye 

movements, but without the use of computers 

(Wade and Tatler, 2005). In research, 

combining optical data with computer power to 

study eye movements was first used in 1987 

(Vieville and Masse, 1987), and is now used 

widespread.  

Eye tracking 

Typically, there are three methods to track and 

compute eye orientations optically. One models 

either an elliptical shape or a complex shape to 

the eye or one of its features like the eyelids, iris 

or pupil, and can be categorized by the term 

shape-based approach. Orientations changes of 

the eye are then measured by the orientation 

changes of the model and a similarity measure, 

or confidence measure as used in this report, 

gives the reliability of the data. Another method 

is feature-based and measures orientation of 

the eye, based on certain distinct features of 

the eye, like the cornea reflections or the 

contrast differences in the image between the 

pupil or iris and the white of the eye. Another 

method that may be used is a template 

comparison, or appearance-based method. 

Here images get compared with templates to 

directly track the eye. This is subject to failure 

under rotations of the image or variance in 

scale. This method is based on statistics and 

needs a lot of training data. It is therefore not 

often used (overview paper by Hansen, 2010). 

Cesqui, et al., (2013) showed that using eye 

tracking technology can be more accurate than 

the electromagnetic one, considering that 

measures must be taken for slippage of the 

head gear during the experiment. Of course, 

the accuracies in his study are greatly 

dependent on precise calibration and settings 

of the parameters involved. A particular difficult 

part of obtaining 3D gaze is the torsion. 

Hatamian and Anderson (1983) where the first 

to show that cross-correlating images of the iris 

of a human is sufficient to find the torsion of the 

eye. At the time, the procedure of measuring 

was very time-consuming and error sensitive. 

The last decades numerous researches and 

JohnvO
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methods where proposed that improved these 

statistics. Currently, methods have been 

proposed that can measure torsion at 100 Hz, 

in real time, with an error of less than 0,1˚ 

within a gaze of 20˚ up, left and right and 10˚ 

down (Otero-Millan et al., 2015). 

Head tracking 

For head tracking, two different methods can 

be used. The first is optical and uses optical light 

(usually infrared) to track either active LEDs or 

reflective dots. A ternary of points is enough to 

form a rigid body that could resemble the head, 

but more points may improve accuracy and 

therefore reduce the error margin. Head 

movement can also be measured by using an 

inertial movement unit or IMU, which measures 

movement relative to calibration parameters. 

This is however very sensitive to slippage that 

could render a measurement usage and thus 

must be calibrated frequently which could be 

impractical.  

Gaze 

A gaze can be constructed by combining head 

and eye data. This can be done in 2D and 3D. As 

described above, the human eye rotates in 

three dimensions but for some studies 2D gaze 

models are sufficient. 2D gaze models do not 

need sophisticated calibration and are easy to 

implement, but will fail under large head 

movements and do not give the complete 

picture of eye-head movements. 3D gaze is 

defined by horizontal rotations, vertical 

rotations and torsional rotations of both the 

head and eye. 3D gaze models do give the full 

picture but are geometrically much more 

difficult to implement due to the non-

commutative nature of 3D rotations. Also, since 

the head movements displace the position of 

the eyes and the head rotates around different 

axes as the eyes, the analysis of the gaze 

direction of the subject and the 3D orientation 

of the eye from the data, turns into a complex 

geometric problem. In the previous section 

three methods of defining rotations are 

described. Cesqui et al. (2013) solved the 

geometric problem in his paper by introducing 

five reference frames, one for the data of the 

eye tracking camera and one for the data of the 

head tracker, one for the eye and one for the 

skull and one for world frame. By constructing 

angles and associated rotation matrices from 

the coordinates obtained from the trackers, and 

translating them to the right reference frame, 

Cesqui et al. could obtain an accurate 

unrestricted gaze of the subject in the world 

frame. Using Fick angles to construct rotation 

matrices for head and eye has also been proven 

a viable method of determining gaze (Ronsse, 

Oliver, Lefèvre, 2007). With such a method it is 

important to take the order of angles into 

account to prevent problems described in the 

above section on Fick angles. The usage of 

quaternions to describe gaze orientation has 

also already been proven (Tweed, Cadera and 

Vilis, 1990) with its above described advantages 

over using Fick angles. Because of the smaller 

size of quaternions, only four numbers define a 

quaternion while a rotation matrix needs nine, 

another big advantage of using quaternions is 

computing speed. The use of quaternions 

becomes even more advantages when 

performing operation like multiplication 

(Huynh, 2009).   

The goal of this study is to find a robust 

calculation method for determining gaze in the 

reference frame of a movable chair for 

unrestricted head and eye movements using a 

head-tracker and pupil detection hardware and 

software. The goal is, that this method can then 

be used for later research in localization 

experiments under vestibular stimulation. 

 

Methods 
To check the accuracy of our analyses, a variety 

of experiments were conducted. All 

experiments were conducted in a movable 

spherical mainframe structure with a chair 

located in the middle, from now referred to as 

the vestibular chair (see figure 4). With this 

chair, localization experiments can be 

conducted under vestibular stimulation. In our 

JohnvO
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experiments the chair was kept stationary. The 

vestibular chair was situated at the biophysics 

labs of the Donders Institute for Brain, 

Cognition and Behavior at the Radboud 

University Nijmegen. In front of the chair, 63 

speakers with build in LEDs were attached to a 

wooden hemisphere in a range of -50 to 50 

degrees in azimuth and elevation relative to the 

middle speaker. This middle speaker is referred 

to as the central fixation LED and is situated at 

coordinates (0,0) in azimuth and elevation. 

Above this hemisphere Optitrack’s hardware is 

hung up, made up from three infrared cameras 

(OptiTrack V120 trio System, 

www.optitrack.com). A collection of computers 

is hung behind the backrest of the seat that 

collected the data during experiments. Figure 4 

shows the setup. All experiments were 

conducted on two subjects; KW and MP. Both 

subjects have normal vision and no refractive 

error in their eyes. More hardware from 

OptiTrack was used: Five active infrared LEDs 

were mounted on a headband and were 

defined as a rigid body and tracked by Motive, 

OptiTrack’s software. Via trigonometry the 

orientation and location of the rigid body were 

determined and saved on one of the computers 

on the backrest of the seat. A relatively arbitrary 

ground plane was defined just below the 

straight line of sight, with the y-axis oriented 

upwards, the x-axis oriented to the right and the 

z-axis oriented to the rear, relative to the 

straight line of sight (see figure 5A). The eye 

orientation was measured with PupilLabs 

software and hardware (Core glasses, Pupil Labs 

GmbH, www.pupil-labs.com). The hardware 

was made up of a frame that most closely 

resembles the frame of a pair of glasses and was 

worn by the subject. It was equipped with a 

world-camera mounted on the frame, above 

the right eye, and an eye-camera mounted on 

an adjustable beam in front of and below the 

right eye. The software used the shape-based 

method to track the pupil, as described in the 

introduction. It fits an ellipse to the pupil 

contour and uses a 3D model to determine a 

normalized orientation vector. Before every 

measurement with the PupilLabs eye tracker, a 

calibration procedure must be performed. A 

unique high contrast marker was held at 

Figure 4 – A: This image shows the structure of vestibular 

chair. The black beam structure can be rotated about the 

vertical axis and the blue beams can be rotated about the 

horizontal axis. (www.ru.nl) B: This image shows the 

hemisphere of the 63 speakers and LED’s with the middle 

one being the fixation LED. (www.mbfys.ru.nl) 
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armlength in front of the subject to look 

towards while moving their head in different 

orientations. The calibration could be checked 

by viewing the live image of the world camera 

where a point should be displayed where the 

subject looks at. If this was correct, the 

calibration was successful. The software also 

gave an accuracy and precision parameter that 

could be used to check the calibration. A value 

for the accuracy parameter of two degrees or 

less was interpreted as accurate. The reference 

frame of the eye tracking was oriented as 

follows; the x-axis oriented to the left, the y-axis 

oriented upwards and the z-axis oriented 

straight ahead, relative to the line of sight for a 

straight gaze. See figure 5B for a visualization of 

this coordinate system in the reference frame 

of Optitrack’s data. 

Central fixation experiment 

To test whether the analyzing script modulates 

the gaze correctly, two experiments were 

conducted. One of these was a central fixation 

experiment. During this experiment the subject 

was tasked to keep their gaze on the fixation 

LED for a predetermined amount of time (three 

blocks of 1 minute). During this time the subject 

made arbitrary translational, rotational and 

torsional movements with their head, while 

keeping their gaze at the fixation LED. The goal 

of this experiment was to test the script for 

correctness in calculating the total gaze for a 

variety of extreme head movement. The subject 

was free to move their head; no instructions 

were given besides that every orientation was 

allowed. The resulting gaze calculation should 

be approaching a constant gaze over time at the 

fixation LED, thus nearing 0 degrees for both 

coordinates azimuth and elevation. The 

PupilLabs hardware is a lot more sensitive than 

the Optitrack hardware. Because of sporadic 

low confidence values for the pupil tracking and 

because of vergence of the eyes, we assume 

that an error of 3 degrees could be a result of 

an error in the measurements. 

Figure 5 – (A) This figure shows the axis of Optitrack’s coordinate system in its own  reference frame. The blue 

arrow denotes the z-axis, the red arrow the x-axis and the yellow arrow the y axis. The black arrow denotes a 

straight gaze toward the fixation LED (black diamond). The three black circles show the location of the cameras 

in front and above of the subject. The origin is the location of the eye. (B) This figure shows the coordinate 

system of PupilLabs’ data within the reference frame of Optitrack’s data. The colored arrows denote the same 

coordinate axes as in A. In this coordinate system the z-axis points towards a straight gaze toward the fixation 

LED (black diamond). The black circle is the camera that films the eye suspended to the right and just below 

the eye. The eye is ones again located at the origin. 

JohnvO
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Localization experiments 

The second experiment was a collection of 

localization experiments, with one under 

extreme orientations and translations of the 

head. During normal localization experiments, 

when testing the capability and limits of 

humans during stimulus localization under 

different light conditions or during vestibular 

stimulation a LED only must be lit up for a few 

milliseconds.  To test our script these human 

limits were not of our interest, only the validity 

of the analyzing script was. The LED stimuli were 

therefore shown for long enough to make sure 

the subject could locate the target (i.e. a second 

or more). For all localization experiments, first 

the fixation LED was lit up, so the subject made 

saccades initiated from the same orientation 

for every saccade. After this, the stimulus LED 

was lit up. We started by conducting a 

localization experiment where the subject was 

tasked to only move his eyes and keep the 

orientation of their head fixated towards the 

fixation LED. After this the same experiment 

was conducted where the subject was 

instructed to move both their eyes and head, 

performing saccades in a natural way. The final 

localization experiment was conducted under 

extreme head movements and orientations. 

The subject was, similar as during the fixation 

experiment, instructed to make extreme 

translational and torsional movements with 

their head during the localization of the stimuli. 

Because of the length of time the stimuli were 

shown the experiment, this should still result in 

an accurate localization by the subject and 

therefor tests the script for correct 

computation of the gaze of the subject. 

Analyzing 

The analyzing scripts were written in Matlab, 

version R2018b. Firstly, Ronsses method was 

used (Ronsse et al., 2007). This method used 

defined Fick angles determined by the 

orientation of the rigid body that resembled the 

head to construct rotation matrices, which in 

their turn were computed into a final gaze 

vector (see introduction). The script was first 

written for the manual input of values for head 

orientation, eye orientation and eye location 

relative to the initial position. This data was 

used to compute a gaze vector using the 

rotation matrix used in Ronsses paper (Ronsse, 

et al., 2007). After constructing of the gaze 

vector, the vector was intersected with a 

hemisphere defined by the location of the 

central LED, which was located at the 

coordinates (0.1257; 0.0195; -0.8426) in the 

Optitrack reference frame (see figure 5 for 

indication of this setup). This location was 

determined by attaching trackable points to a 

laser pointer that measured the distance 

between itself and the fixation LED. The 

location of the laser pointer was determined by 

Motive, and with the distance read out on the 

laser pointer, the location of the fixation LED in 

the Optitrack reference frame could be found. 

The intersection coordinates were then used to 

compute the azimuth and elevation via the 

geometric properties of the hemisphere. The 

script is given in the appendix. 

After simulations to check that filling in 

different values for location for the eye and 

orientation of eye and head gave the correct 

results, the script was applied to real data. 

Motive tracks the head orientation and exports 

the data in quaternions and location data in 

cartesian coordinates in OptiTrack’s reference 

frame. This location data could be used since 

the hemisphere is also defined in OptiTrack’s 

reference frame. The quaternions must be 

converted into Fick angles which can be done by 

defining an order of rotation over the three 

coordination axes, which in the case of our Fick 

angles and the reference frame of Optitrack, 

was ‘zyx’ or ‘321’. If this order was altered, the 

final values for azimuth and elevation were 

different and therefore incorrect (see 

introduction). 

After intensive testing, the script was adjusted 

to not construct the rotation matrices with Fick 

angles, but with quaternions (equation 7). This 

had the convenient advantage of eliminating 

the problems that arose from the conflicting 

reference frames which made the construction 
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of rotation matrices with Fick angles tricky. Also, 

the problem of order in constructing the Fick 

angles out of the quaternions was eliminated. 

Now only the x-axis and the z-axis must be 

inversed due to the difference in reference 

frames between Optitrack’s and PupilLabs’ 

data. The output data PupilLabs’ software 

produces, was a normalized gaze vector. By 

defining the straight gaze as a vector (0,0,1), a 

rotation matrix could be estimated. Then a 

normal vector could be calculated about which 

the rotation takes place by 

𝑛 = 𝑟 ⋅ ℝ    (10) 

where 𝑟 is the normalized gaze vector and ℝ is 

the estimated rotation matrix. Then the 

quaternion resembling the rotation could be 

determined using equation 8. To calibrate a 

straight gaze the quaternion data must be 

multiplied by the inverse of the quaternion that 

was known to resemble the straight 

orientation. This was done by looking at the raw 

orientation data of the eye and head and 

manually choosing a moment in time where this 

was the case. By asking the subject to look 

straight when initiating the experiments and 

building in a pause between starting the 

measurements and showing the first LED 

stimulus, these moments of straight gaze could 

always be found. Figure 6 gives a scheme of all 

the steps done to get to the results. 

Reference frames 

Looking to figure 5, it is obvious that the 

different reference frames involved must be 

aligned. To align them, for the head data 

(Optitrack), the x and z data can 

be inversed to rotate the frame 

180 degrees about the y-axis and 

create a logical reference frame 

seen from the subject. To align 

both reference frames, for the 

PupilLabs data the y and x data 

needed to be inversed as well. 

Then what remained, was that 

for the location data to be 

correct as well, the x and z data 

needed to be inversed too. For 

the quaternion calculation, this is easy to 

implement (see script), but for the Fick angles 

method this is not. For the Fick angles method, 

all cartesian location data was inversed to 

obtain the results. This is further discussed in 

the discussion section. 

Results 

Fick angles 

To check our method, we first performed 

simulations to visualize the experimental setup 

for a single moment in time. By filling in the 

orientation of the head in 3D (azimuth, of the 

elevation and torsion), the orientation of the 

eye in two angles, azimuth and elevation, and 

the location of the eye in cartesian coordinates 

relative to the middle of the hemisphere 

formed by the speakers and LED’s, a gaze vector 

was calculated and displayed which intersects 

the hemisphere at the red cross (see figure 14 

in the appendix). From the intersection 

coordinates a gaze was computed in polar 

coordinates, using geometrics of the 

hemisphere, so they could be compared to the 

stimuli’s polar coordinates during the fixation 

experiment. The results of implementing this 

visualization method is shown in figure 7 for 

both subjects MP and KW. The plotting of the 

visualization for all data points was 

computationally very intensive and therefore 

omitted for the calculation of gaze for the data 

of the experiments. The location data is relative 

to a straight gaze. The figure shows the gaze as 

a function of time for both the azimuth and 

elevation. Both the calculation method as 

Figure 6 – This scheme shows the different steps taken in the script, using 

quaternions to create rotation matrices. For the full script, see the 

appendix. 
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explained by Ronsse, et al. using Fick angles 

(blue line) and simply adding the angles of 

orientation of the head and eye (orange line) 

are plotted. The adding angle method does not 

take translational and torsional movements of 

the head into account. As visible in the figure, 

for elevation our approach resulted in an 

improvement of the standard deviation of 

about 4.51 degrees for subject KW and about 

1.50 degrees for MP compared to simply adding 

the angles of head and eye. For the azimuth 

direction the standard deviation gets worse for 

both subjects by about 1.28 degrees for KW and 

about 0.06 degrees for MP. Also, the absolute 

standard deviations are not within the desired 

limits of 3 degrees for both subjects, that could 

be explained by measurement errors. For KW 

the standard deviation for azimuth is about 4.98 

degrees and for elevation is about 3.75 degrees. 

For MP the standard deviation is about 6.79 

degrees for azimuth and about 5.19 degrees for 

elevation. For elevation the method seems to 

Figure 7 – This figure shows the gaze over time during the fixation experiment, where the gaze is calculated 

using Ronsses method with Fick angles (blue line) compared to the gaze constructed from adding the angles 

of orientation of head and eye. A shows the experiment conducted on subject KW. B shows the experiment 

conducted on subject MP. The standard deviation of the gaze calculated with Fick angles is shown in the figure 

as “Calc std”. The improvement of this standard deviation over the one calculated by adding angles is shown 

as “improvment std”. 
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be a step in the right direction, but for azimuth, 

just adding the angles of orientation is a better 

approximation which should not be the case. 

This problem, together with the increased 

speed of computing, leads us to use 

quaternions to try and improve the results. 

Quaternions 

Where with the use of Fick angles the script 

would run for nearly 90 seconds to complete 

the calculation of polar gaze for about 30000 

datapoints, the use of quaternions to create 

rotation matrices would only take about 2 

seconds to do the same. Further analysis will 

therefore be done using this method. The same 

data of the fixation experiment was analyzed 

Figure 8 – This figure shows the gaze over time in azimuth (top) and elevation (bottom) of subject KW. Here 

the subject was tasked to keep fixation on the central LED (azimuth and elevation at 0 degrees). The red line 

gives the gaze given by adding the orientation of head and eye. The blue line gives the gaze by multiplying 

rotation matrices constructed with quaternions. It is expected that the gaze would remain at 0 degrees for both 

polar coordinates during the entire duration of the experiment. The standard deviation of the calculation line 

(blue) and the improvement of this standard deviation over the adding angles line (red) are displayed within 

the graph. A shows the data from subject KW, B shows the data from subject MP. 
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using this method. The results of this method 

are shown in figure 8. As shown for subject KW, 

there is a significant improvement visible for the 

standard deviation of the gaze for this 

experiment, with an improvement of about 

0.93 degrees to a standard deviation of about 

2.77 degrees for the azimuth, and an 

improvement of about 6.84 degrees to a 

standard deviation of about 2.22 degrees for 

the elevation. These values lie within the 

desired standard deviation of about 3 degrees. 

Still, there are peaks and dips that are larger 

than de 3 degrees. For subject MP the 

improvements are similar for azimuth. For 

elevation the improvement seemingly is a lot 

smaller. The standard deviation of the gaze 

calculated with matrix multiplication is here 

about 3.72 degrees. Also visible, are some 

maxima that near 20 degrees, especially in 

during the first 80 seconds of the experiment. 

The thin peaks that are visible are due to blinks 

or faults in the pupil tracking. 

Localization experiments 

Three different types of localization 

experiments were conducted (see methods). 

The last experiment performed, where the 

subject was tasked to make arbitrary and 

extreme head movements during the 

localization, is the one where the difference 

between the original method of defining gaze of 

just adding the angles of head and eye 

orientation and the new calculation method 

using quaternions should be greatest and 

therefore the one that will be discussed here. 

For the first two experiments, no significant 

difference was found. Figure 9 gives an 

indication of the movements subjects KW and 

MP made with their heads in the last 

experiment. As seen in the figure, for the x 

coordinate, MP made far more extreme 

movements compared to KW. This is similar for 

the y and z coordinates. One can plot the gaze 

as a function of time for the adding angles 

method and the new calculation method for 

both azimuth and elevation where the stimuli 

are indicated in the graph by black horizontal 

lines (see figure 12 in the appendix). This figure 

may  be difficult to read quantitively. For some 

saccades the calculated gaze seems to be a 

better approximation than the gaze 

constructed by adding the angles, but for others 

it seems to be worse. This can only be 

concluded assuming that the subject’s ability to 

accurately localize stimuli is perfect due to the 

length of time the stimuli are shown. To further 

evaluate the newly introduced script, let us look 

closer at single saccades, that either improve 

the gaze approximation or worsen it. Firstly, let 

us look at examples of improvement. Figure 10 

shows three examples where the calculated 

gaze using matrix multiplication is a better 

approximation than the adding angles gaze. 

Figure 10A is the saccade made by subject KW 

at a stimulus of about 21,5 degrees to the left. 

Only the azimuth is shown here. By only adding 

the angles the gaze appears to be 

underestimated. While locating the stimuli, the 

subject simultaneously moved their head closer 

to the stimuli (shown in the lower graph of 

figure 10A) which means that she must adjust 

her head and eye orientation to locate the 

stimuli and make a smaller saccade. The new 

calculation takes this translation of the head 

into account and therefore approximates the 

gaze more accurately. This phenomenon is even 

better visible in figure 10B and C, which are 

saccades made by MP. In figure 11B, the 

subject’s head position is moved to the left (the 

same direction as the stimuli) by nearly 20 

centimeters, resulting that adding the 

orientation of head and eye would result in a  

Figure 9 – This figure shows the movement of the 

subject’s head in the x (horizontal) coordinate plotted 

against the time. The movement is shown over the whole 

experiment. The orange line represents subject MP and 

the blue line subject KW. 
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Figure 10– This figure shows a 

multitude of individual 

saccades. In every figure (A-D) 

the top graph shows the 

orientation of head, eye and 

gaze for a single saccade. All 

saccades are taken from the 

experiment where the subjects 

were tasked to make extreme 

head movements during the 

localization of the stimuli. The 

blue line is the gaze calculated 

with multiplying rotation 

matrices versus the red line 

which resembles the gaze 

constructed by simply adding 

orientational angles. In the top 

figure the orientation of the eye 

and head are also displayed in 

respectively a yellow and purple 

dotted line. The stimuli location 

is shown in a thick black dotted 

line. Note that the location of 

the stimuli is exact, but the 

timing is not resembled by the 

dotted line. It is only plotted for 

reference of accuracy of 

localization. For all lines the 

orientation in azimuth or 

elevation (depending on the 

saccade in question) is plotted 

against the time of the 

experiment. The lower of the 

two graphs displays the position 

of the head in three dimensions 

relative to an initial straight 

gaze position. Here the blue line 

is the x coordinate, the red line 

the y coordinate and the yellow 

line the z coordinate. A shows 

the azimuth part of saccade 35 

made by subject KW. B shows 

the azimuth part of saccade 17 

made by subject MP. C shows 

the elevation part of saccade 36 

made by subject MP. D shows 

the azimuth part of saccade 35 

made by subject KW. This is the 

only saccade of the four, that is 

an example where the 

quaternion calculation is worse 

than the adding angles 

calculation. All saccades shown 

are indicated in figure 11 which 

gives an overview of the 

experiment. 
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smaller deviation for the gaze in the reference 

frame of the hemisphere of speakers and LEDs. 

Where the calculation method takes this into 

account, the adding angles method does not, 

thus underestimating the stimulus. For C the 

opposite happens. Here the gaze in the 

hemisphere reference frame is much smaller 

than the orientation of the head and eye 

combined, since the subject has moved his 

head towards the negative z-direction, causing 

the adding angle method to overestimate the 

stimulus. These examples show that, under 

extreme head movements, different gaze 

angles are necessary to find the stimuli. Figure 

10D shows an example where the adding angles 

method is a better approximation than the new 

calculation method, again assuming that the 

subject’s accuracy in locating the stimulus was 

perfect. The calculated gaze, using rotation 

matrices, underestimates the location of the 

stimuli. Here the subject (KW) moved her head 

about 4 centimeters frontwards and 

downwards, simultaneously with the saccade. 

The explanation for this error, and the ones in 

other saccades are discussed in the discussion. 

The saccades plotted in figure 11 are indicated 

by circles in figure 12. The location data in the 

lower graphs of figure 11 are in the Optitrack 

reference frame (see figure 5A). To give an 

overview of whether this new calculation 

Figure 11 – This figure shows the accuracy of localization of subject MP during the localization experiment 

where the subject made extreme translational and torsional movements with their head. The response location 

is plotted against the stimuli location in degrees, both for azimuth (top) and elevation (bottom). The regression 

line is visible in blue with a dotted black line as the expected regression line. Values for gain, bias and R-squared 

are added to compare the figures quantitatively. 
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method in its current state, is better or worse 

than the approximation made by just adding the 

orientational angles of head and eye, one can 

use the assumption that the localization 

accuracy of the subject is perfect. With this 

knowledge, an accuracy plot would give insight 

in whether the new calculation method is an 

overall improvement. These accuracy plots are 

shown in figure 11 for MP and figure 13 (see 

appendix) for subject KW. A linear regression 

line is plotted and the gain, bias and R-squared 

are shown for the different methods. As shown, 

all parameters show an improvement for the 

calculated method relative to the adding angles 

one for MP. Especially for the azimuth the 

improvement is spectacular, showing a gain of 

1.01 for the matrix multiplication method 

compared to 0.733 for the adding angles 

method. Also, the R-squared shows an 

improvement from 0.796 to 0.922. For the 

elevation the improvement is smaller; for the 

gain from 0.805 for adding angles method to 

0.88 for the matrix calculated method, and for 

the R-squared 0.908 for adding angles to 0.945 

for the matrix calculation method. For subject 

KW (see figure 13 in the appendix), the 

improvements are much smaller. The gain for 

azimuth shows an improvement of 0.061 and 

the R-squared value an improvement of about 

0.02. For the elevation the gain actually 

decreases for the matrix calculation method 

relative to the adding angles method. The R-

squared does show a small improvement. 

Discussion 
The method previously used, where orientation 

angles were added, is physically not correct. 

Matrix multiplication, however, is physically 

correct and should therefore show better 

results when calculating and plotting the gaze. 

Besides this, the old method does not include 

translational movements of the head and is only 

valid to this aspect if the eye remains at the 

exact same position during all saccades. This is 

not realistic, since the eye moves through space 

as the head rotates. Also, torsional rotations of 

the head are not accounted for in the old 

method but are in the new matrix multiplication 

method. In this report, it was not researched 

which of these differences cause the 

improvements that are shown. Since the 

improvements in the accuracy plot are much 

greater for subject MP then for subject KW, and 

it is shown that subject MP made much more 

extreme translational movements with their 

head, it is no unfounded assumption that the 

improvements are mostly due to the inclusion 

of location data of the head. Below, both 

experiments and analyzing methods are 

discussed. 

Fick angles 

For the fixation LED experiment, the Fick angles 

method does not show the expected 

improvement (figure 7). It has been previously 

proven that this method is a valuable way to 

calculate a gaze vector for unrestricted head 

and eye movements, as Ronsse, et al. showed 

(2007). We did not manage to reproduce the 

same results in our setup. The standard 

deviation does seem to improve for the 

elevation coordinate of the gaze, but for the 

azimuth an improvement is not realized. Also, 

the absolute standard deviations for both the 

elevation and azimuth for both subjects MP and 

KW are greater than expected. These issues 

imply that the reference frames of Optitrack’s 

and PupilLabs’ data do not line up. For 

construction of the rotation matrix with the Fick 

angles, lining up the reference frames is not 

trivial. It is very easy to intermix reference 

frames and lose track of coordination systems 

while constructing rotation matrices this way 

and is therefore very error sensitive. This is 

further confirmed by the fact that the results 

were best, if all location data is inversed. As 

described in the methods, this is not expected. 

This makes for a far from robust, and maybe 

even fragile, script. It is more argumentative 

that the z and x-data need to be inversed since 

that would be the correct conversion to align 

the reference frames, as described in the 

methods section. This, in combination with the 

fact that the results are not as good as expected 

and the advantageous speed of computation 

with quaternions, caused us to divert to the use 
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of quaternions to create rotation matrices, 

instead of Fick angles, to do further analysis. 

Quaternion calculation 

Let us first discuss the fixation experiment. Here 

the standard deviation is smaller in all cases for 

the calculated gaze compared to the adding 

angles method (figure 8). It is interesting to 

note that the improvement for elevation is 

much greater than the one for azimuth. One 

may think that this is because for all 

experiments, the location of the eye is 

approximated at a central point in the middle of 

the active LEDs attached on the head band. 

However, because a straight gaze is also 

determined relative to this point, this 

explanation can be excluded. It is more likely 

that this difference arises from the fact that for 

elevational rotations (about the x axis in 

Optitrack’s reference frame) of the head, the 

eye lies further away from rotation axis than for 

azimuthal rotations (about the y axis in 

Optitrack’s reference frame) of the head. For 

the calculation with quaternions, the expected 

inversions need to be performed to obtain the 

best results. The triviality of inversing axes is a 

big advantage of this method, compared to 

using Fick angles. The resulted absolute 

standard deviations are within the expected 

value for a standard deviation of 3 degrees, but 

as can be seen in figure 8, has still some big 

peaks and dips that exceed this value. As will be 

discussed further in this chapter, the script is 

probably not perfect. Improvements can and 

must be made to deliver a robust gaze 

calculation. By looking at the movements, the 

subject makes at the times where the gaze 

deviates from 0 degrees, particular the location 

and orientation data of head and eye 

separately, one may be able to investigate what 

movements and orientations causes the gaze to 

deviate, and debug the script further to 

improve the end result.  

Localization experiments 

Three types of localization experiments were 

conducted. The first two, the one where the 

subject was instructed to only use their eyes to 

locate the stimulus, and one where the subject 

was instructed to make only necessary 

movements with head and eye to complete the 

saccade towards the stimulus, do not result in 

differences between the adding angle method 

and quaternion calculation method. The 

interesting experiment to discuss is the final 

one, where the subjects made extreme 

translational and orientational movements with 

their heads while locating the stimuli. As 

showed in the results, we took a closer look into 

single saccades and compared the old adding 

up and new multiplication method. As 

described in the result there are a multitude of 

examples of single saccades where the 

quaternion calculation is a big improvement. 

Here the script seems to make the right 

corrections. But there are some stimuli where 

the script does not make the right corrections 

as seen in figure 10. For subject KW, in the 

elevation graph (bottom), the calculation 

method seems to undershoot the lower stimuli 

(Figure 12A). This is not the case for MP. Also, 

visible in the range between about 50 and 80 

seconds in the azimuth graph for MP, where the 

movements made by MP are very extreme 

(evidenced by the fact that the adding angles 

method fails completely for this range), the 

calculation method is, although an 

improvement over the adding angles method, 

not accurate enough. Also, the fixation between 

stimuli, which should be at 0 degrees for both 

azimuth and elevation, is not at 0 degrees for 

this range. This is also the case for MP in the 

elevation graph between about 140 and 170 

seconds. In this last case, looking back at the 

world camera video, it was found that between 

140 seconds and 170 seconds subject MP 

moved his head forwards. Further investigation, 

for instance by doing an experiment where the 

same localizations are conducted for different 

head position, could determine whether this is 

a constructive error or a one-off error. The final 

result shown, the localization accuracy figure 

for subject MP (figure 11), shows a clear 

improvement in the regression parameters. For 

KW the improvement is not that clear (Figure 13 



19 
 

in the appendix). A reason why the 

improvement is clearer for MP in this plot, is 

probably because MP made more extreme 

head movements compared to KW (see figure 

9), implying that the matrix multiplication 

method to construct the gaze as it stands now, 

is a better method to calculate gaze, but only 

for very extreme head movements during the 

experiment. If head movements are more 

orderly, an improvement could not be realized 

with the current calculation method. 

Conclusion 

Overall it can be concluded that we did not 

manage to implement matrix multiplication 

with rotation matrices constructed with Fick 

angles correctly. There is no clear improvement 

over just adding angles of orientation, even 

though it has proven before that it can work 

(Ronsse et al., 2007). Due to the non-

commutative nature of 3D rotations, conflicting 

reference frames, data formats outputted by 

the measurement software and increased 

computation speed (Huynh, 2009), we shifted 

to a new method using quaternions to create 

the rotation matrices to do the multiplication 

with. With this method, improvements over the 

old adding method were realized for 

localization experiments where the subject 

performed very extreme and radical head 

movements and (torsional) rotations. For more 

orderly head movements during stimuli 

localization experiments, improvements were 

not clearly visible. Faults in the script and 

calculation method cannot be excluded at this 

time, so further research with more subjects 

need to be carried out to make the script robust 

and useful. Also, to construct the full 3D gaze, 

ocular torsion must be included in later 

research. This is an ongoing project that will see 

betterment over time, to the point where it can 

be used in localization experiments and other 

sorts of experiments using the vestibular chair 

lab of the Biophysics Department of the 

Radboud University in Nijmegen. 
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Appendix 

Figure 13 – This figure shows the gaze versus time calculated with quaternions and rotation matrices (blue) 

and calculated with adding angles of orientation of head and eye. The gaze is measured during a localization 

experiment where the subject is tasked to make extreme and erratic head movements. The stimuli locations 

are plotted as small black horizontal lines. For perfect localization, the gaze should be on this line. A shows 

the results from subject KW. In the azimuth graph, the black circle denotes saccade 35, plotted in figure 7A. 

B shows the results of subject MP. Here in the azimuth graph, the black circle denotes saccade 17 and the 

green circle denotes saccade 35. In the elevation graph, the purple circle denotes saccade 36. These saccades 

are plotted in figure 7B through 7D respectively. 
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Figure 14 – This figure shows the accuracy of localization of subject KW during the localization 

experiment where the subject made extreme translational and torsional movements with their 

head. The response location is plotted against the stimuli location in degrees, both for azimuth 

(top) and elevation (bottom). The regression line is visible in blue with a dotted black line as the 

expected regression line. Values for gain, bias and R-squared are added to compare the figures 

quantitatively. 
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Figure 7 – This figure shows the visualization of the calculation of gaze using Fick angles 

(Ronsse, 2007) given orientation of head and eye and location of head. 1a and 1b give a 

straight gaze for a view from the side (a) and a view from above (b). For 2a and 2b the gaze 

is 20 degrees up (elevation) for a view from the side (a) and a view from above (b). For 3a and 

3b the gaze is 20 degrees to the left (azimuth) for a view from the side (a) and a view from 

above (b). 
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Scripts 

Fick angles 

function Gaze = Ronsseintersect(locz,locx,locy,Azeye,Eleye,Azhead,Elhead,Torhead) 

%Fill in location of eye in cartesian coordinates (first three parameters) 

%Fill in azimuth and elevation of eye and head respectively (next four 

%parameters 

%Fill in torsion of head (final parameter) 

 

%Ref frame: z-negative line of sight for straight gaze; x-positive 

%rightwards relative to line of sight for straight gaze; y-positive upwards 

%relative to line of sight for straight gaze (see methods) 

 

%Radius and location of sphere (fixation LED in sphere) 

R = 0.91;                            

locLED = [0.1257,0.0195,-0.8426]; 

 

%Initial coordinates of "eye" relative to location of fixation led 

iniz = locLED(3)+R; 

inix = locLED(1); 

iniy = locLED(2); 

 

%Parameters of the sphere 

a = 1; b = 1;c = 1; 

calz = 0; 

calx = 0; 

caly = 0; 

 

%Manual input plus initial location "eye" 

loczax = locz + iniz; 

locxax = locx + inix; 

locyax = locy + iniy; 



25 
 

 

%Define angles for calculation of rot matrix (inversions needed to correct 

%for rotated reference frame) 

thetah = deg2rad(-Azhead); 

phih = deg2rad(-Elhead); 

psih = deg2rad(Torhead); 

 

azeye = deg2rad(-Azeye); 

eleye = deg2rad(-Eleye); 

 

%Length of gaze vector that intersects sphere 

rp = 1.5; 

 

%Defining eye vector (rotation matrix eye times straight gaze) 

P = [cos(azeye)*cos(eleye), -sin(azeye), cos(azeye)*sin(eleye);... 

            sin(azeye)*cos(eleye), cos(azeye), sin(azeye)*sin(eleye);... 

            -sin(eleye),0,cos(eleye)] * [rp;0;0]; 

 

Pcal = P + [calz; calx; caly]; 

 

%Defining gaze vector (rotation matrix head times eye vector) 

PG = [cos(thetah)*cos(phih), cos(thetah)*sin(phih)*sin(psih)-sin(thetah)*cos(psih), 

cos(thetah)*sin(phih)*cos(psih)+sin(thetah)*sin(psih);... 

 sin(thetah)*cos(phih), sin(thetah)*sin(phih)*sin(psih)+cos(thetah)*cos(psih), 

sin(thetah)*sin(phih)*cos(psih)-cos(thetah)*sin(psih);... 

             -sin(phih), cos(phih)*sin(psih), cos(phih)*cos(psih)] * Pcal; 

  

%Plotting sphere and gaze vector 

[x, y, z] = sphere(720); 

x = x(360:end,:);        

y = y(360:end,:);        

z = z(360:end,:); 
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h = surf((-R*z+(locLED(3)+R))/a^2,(R*x+locLED(1))/b^2,(R*y+locLED(2))/c^2); 

set(h,'FaceAlpha',0.5); 

shading flat 

xlabel('z');ylabel('x');zlabel('y'); 

hold on 

 

quiver3(loczax,locxax,locyax,-PG(1),PG(2),PG(3)); 

[uu, vv, ww] = sphere(64); 

kk = surf(0.02*uu+locLED(3)+R,0.02*vv+locLED(1),0.02*ww+locLED(2)); 

set(kk,'FaceColor',[0 0 1], ... 

              'FaceAlpha',0.1,'FaceLighting','gouraud','EdgeColor','none') 

[u, v, w] = sphere(64); 

k = surf(0.02*u+loczax,0.02*v+locxax,0.02*w+locyax); 

set(k,'FaceColor',[0 0 1], ... 

               'FaceAlpha',0.5,'FaceLighting','gouraud','EdgeColor','none') 

 

%Calculating intersection and plotting intersection 

fun = @(t) (R^2-(((locLED(1))-locxax-PG(1)*t)^2)/a^2 ... 

                 -((locLED(2))-locyax-PG(2)*t)^2)/b^2 ... 

                 -(((locLED(3)+R)-loczax--PG(3)*t)^2)/c^2; 

    t = roots(chebfun(fun,[0 1])); 

 

zinter = loczax - PG(1)*t; 

xinter = locxax + PG(2)*t; 

yinter = locyax + PG(3)*t; 

  

scatter3(zinter,xinter,yinter,'rx')      %Plotting intersection as red cross 

  

%Caluclating gaze in azimuth and elevation in hemisphere reference frame 

ElGaze = rad2deg(atan2((yinter-locLED(2)),sqrt((xinter-locLED(1))^2+(zinter-(locLED(3)+R))^2))); 
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AzGaze = rad2deg(atan2((xinter-locLED(1)),(zinter-(locLED(3)+R)))); 

if AzGaze>0 

          AzGaze = AzGaze-180; 

     else AzGaze = AzGaze+180; 

end 

 

Gaze = [AzGaze,ElGaze] 

 

end 

 

 

Quaternions 

%% Create AzEl and quaternions for head from Optitrack (Opt) data 

q = quaternion(Opt.qw, -Opt.qx, Opt.qy, -Opt.qz); %Data is given in  

%components of a quaternion (Opt.qx Opt.qy Opt.qz as vectorial part, Opt.qw 

%as scalar part) x and z component are inversed.  

 

[AzEl]=quat2azelAnnemiek(q); %This function calculates the orientation 

%directly from the quaternion in azimuth and elevation, to use for 

%determining straight gaze later in script 

 

%% Create AzEl for eye 

%Construction of normal verctor 

normv = Pup.gaze_normal_3d(1:10,:); 

normv=median(normv); 

 

% Estimate rotation matrix 

GG = @(A,B) [ dot(A,B) -norm(cross(A,B)) 0; 

  norm(cross(A,B)) dot(A,B)  0; 

     0              0           1]; 
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FFi = @(A,B) [ A (B-dot(A,B)*A)/norm(B-dot(A,B)*A) cross(B,A) ]; 

 

UU = @(Fi,G) Fi*G*inv(Fi); 

b=normv'; a=[0 0 1]'; 

Rot = UU(FFi(a,b), GG(a,b)); 

 

% Determine normalized gaze vector 

gaze_normalsrot=Pup.gaze_normal_3d*Rot; 

 

% Convert to angles azimuth and elevation for determining straight gaze 

% later in the script 

[AzElEye]=-VCxyz2azel(gaze_normalsrot(:,1),gaze_normalsrot(:,2),gaze_normalsrot(:,3)); 

 

%% Create quaternions for Eye 

%First interpolate the normal gaze vector of the eye to be the same length  

%as the Optitrack data 

gaze_normalsrotOpt(:,1)=interp1(lsl_tsPup,gaze_normalsrot(:,1),lsl_tsOpt,'pchip'); 

gaze_normalsrotOpt(:,2)=interp1(lsl_tsPup,gaze_normalsrot(:,2),lsl_tsOpt,'pchip'); 

gaze_normalsrotOpt(:,3)=interp1(lsl_tsPup,gaze_normalsrot(:,3),lsl_tsOpt,'pchip'); 

 

%Inverse the x and y coordinate to align the Pupillabs data ref frame and the 

%Optitrack data ref frame 

gaze_normalsrotOpt(:,1)=-gaze_normalsrotOpt(:,1); 

gaze_normalsrotOpt(:,2)=-gaze_normalsrotOpt(:,2); 

 

%Create quaternion for a rotation of straight gaze ([0 0 1]) to the normal 

%gaze vector 

qEye  = quaternion.rotateutov([0 0 1]',gaze_normalsrotOpt',1,1); 

 

%% Define stimuli 

for j=1:length(BlockInfo.trial) 
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     StimAz(j)=BlockInfo.trial(j).stim(2).azimuth; 

     StimEl(j)=BlockInfo.trial(j).stim(2).elevation; 

end 

 

%% Determine stable fixation towards central LED 

% Plotting Raw angles for head and eye 

subplot(2,1,1) 

plot(lsl_tsOpt,AzEl-AzEl(1,1)) 

hold on 

plot(lsl_tsPup,AzElEye-AzElEye(1,1)) 

legend('Head azimuth','Head Elevation','Eye azimuth','Eye elevation') 

subplot(2,1,2) 

plot(lsl_tsOpt,AzEl-AzEl(1,2)) 

hold on 

plot(lsl_tsPup,AzElEye-AzElEye(1,2)) 

legend('Head azimuth','Head Elevation','Eye azimuth','Eye elevation') 

 

% Determining straight gaze by manually choosing point of straight gaze in 

% raw data 

[x y]=ginput(1); 

 

[~, indpup]=min(abs(lsl_tsPup-x)); 

[~, indopt]=min(abs(lsl_tsOpt-x)); 

 

%Subtracting median of choosen point of straight gaze to set straight gaze 

%to (0,0) azimuth and elevation 

AzEye=AzElEye(:,1)-median(AzElEye(indpup-20:indpup+20,1)); 

ElEye=AzElEye(:,2)-median(AzElEye(indpup-20:indpup+20,2)); 

 

AzHead=AzEl(:,1)-median(AzEl(indopt-20:indopt+20,1)); 

ElHead=AzEl(:,2)-median(AzEl(indopt-20:indopt+20,2)); 
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%Creating rotation matrices for multiplied quaternion data with their 

%respective straight gaze quaternions 

qRot = q(indopt); 

qRotEye = qEye(indopt); 

RsEye = RotationMatrix(qEye*qRotEye'); 

Rs = RotationMatrix(q*qRot'); 

 

%% Interpolate eyedata to Optitrack length and remove values with low confidence for eye data 

AzEyeinterp=interp1(lsl_tsPup(Pup.confidence>0.7),AzEye(Pup.confidence>0.7),lsl_tsOpt,'pchip'); 

ElEyeinterp=interp1(lsl_tsPup(Pup.confidence>0.7),ElEye(Pup.confidence>0.7),lsl_tsOpt,'pchip'); 

 

%Transpose to get correct size 

AzEyeinterp = AzEyeinterp'; 

ElEyeinterp = ElEyeinterp'; 

 

%% Calculate gaze in azimuth and elevation 

% Calibration data (only radius is being used) 

R=0.85; 

 

% Calulating Gaze vectors with matrix multiplication 

tic 

for n = 1:length(lsl_tsOpt) 

P(:,n) = RsEye(:,:,1,n) * [0;0;1]; %multiplying the eye rot matrix with a straight gaze of 

%[0,0,1] to create eye vector (eye in head) 

     Pcal(:,n) = P(:,n) 

PG(:,n) = Rs(:,:,1,n) * Pcal(:,n); %multiplying rot matrix of head data with eye vector to 

%create gaze vector (eye in world) 

PGs(:,n) = PG(:,n)*2+[-(Opt.x(n)-Opt.x(indopt)); (Opt.y(n)-Opt.y(indopt)); -(Opt.z(n)-

Opt.z(indopt))]; %adjusting for translations of the eye all location data is relative to the 

%initial straight gaze position (Opt.X(indopt)) and x and z data is inversed to adjust for %the 

correct ref frame 

    PGnorms(:,n)=PGs(:,n)/norm(PGs(:,n)); %normalizing gaze vectors 
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     %Intersecting the normalized gaze vector with the hemisphere 

vector(:,:,n)=[linspace(-(Opt.x(n)-Opt.x(indopt)),PGs(1,n),1000);linspace((Opt.y(n)-

Opt.y(indopt)),PGs(2,n),1000);linspace(-(Opt.z(n)-Opt.z(indopt)),PGs(3,n),1000)]; 

     [~,intersect(n)]=min(abs((vector(1,:,n).^2+vector(2,:,n).^2+vector(3,:,n).^2)-R^2)); 

     PGintersect(:,n)=vector(:,intersect(n),n); 

end 

toc 

 

% Calculating gaze in azimuth and elevation from gaze vector 

[AzElGaze]=-VCxyz2azel(PGintersect(1,:),PGintersect(2,:),PGintersect(3,:)); 

AzGaze=AzElGaze(:,1); 

ElGaze=AzElGaze(:,2); 

 

% Exlcuding outliers 

AzGaze(AzGaze>80|AzGaze<-80)=NaN; 

ElGaze(ElGaze>80|ElGaze<-80)=NaN; 

 

% Calculating reference gaze (old method, simply adding angels) and exclude 

% outliers 

AzGazecheck = AzHead - AzEyeinterp; 

AzGazecheck(AzGazecheck>80|AzGazecheck<-80)=NaN; 

ElGazecheck = -ElHead - ElEyeinterp; 

ElGazecheck(ElGazecheck>80|ElGazecheck<-80)=NaN; 

 
 

 

 

 

 

 


