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Resumo

O sistema oculomotor é responsável por orientar e controlar os movimentos oculares em humanos

mas também noutros animais. Sacadas são movimentos extramamente rápidos e precisos e os 6

músculos extra-oculares são capazes te direcionar a linha de visão com apenas 2 graus de liberdade.

Isto torna a modelação e design the um olho robótico inspirado inspirado na biologia humana, um prob-

lema bastante desafiante de se resolver. Um dos objectivos do projecto ORIENT é o desenvolvimento

de um protótipo de um olho robótico que seja capaz de imitar o sistema humano. Estimar a orientação

3D do protótipo mecânico, é por isso, crucial para que seja possı́vel implementar estratégias de controlo

que possam ajudar a melhorar ainda mais o design actual. Em trabalhos anteriores, esta estimação

foi feita com base num sensor inercial (IMU) e numa câmera separadamente. Contudo, só é viável

usar a câmera para estimar orientações a baixa frequência devido ao desfoque da imagem, e o IMU

tem uma relação sinal-ruı́do muito baixa para movimentos lentos. O foco principal deste trabalho é

desenvolver um algoritmo que funde a informação destes dois sensores para estimar a orientação da

câmera, utilizando uma abordagem bastante comum em odometria visual e inercial. Usamos a recen-

temente introduzida metodologia do Unscented Kalman Filter em grupos de Lie e comparamos com

a ground-truth. Avaliamos a performance do filtro em ambiente de simulação e também com dados

reais, adquiridos com o braço robótico, Kinova Gen3. Por último, é feita uma discussão de como esta

abordagem pode ser usada para resolver este problema e sugerimos possı́veis melhorias para trabalho

futuro.

Palavras-chave: Sacadas, estimação de orientação, Odometria visual e inercial, Unscented

Kalman Filter
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Abstract

The oculomotor system is responsible for directing and controlling eye movements in humans but

also in other animals. Eye saccades are extremely fast and precise movements and the 6 extra-ocular

muscles are able to direct the eye requiring only two degrees of freedom. This makes modelling and

design of a bio-inspired robotic eye a very challenging problem to solve. One of the goals of the ORIENT

project is to develop a prototype robotic eye that can mimic the human system. Estimating the 3D

orientation of the mechanical prototype is crucial to develop control strategies that could help us further

improve the design. In previous works, this estimation was done using an IMU and a camera separately.

However, the camera can only be used for low frequency estimation due to motion blur, and the IMU

suffers from poor signal-noise ratio in slow movements. The main focus of this work is to develop an

algorithm that fuses the information of these two sensors to estimate the orientation of the camera,

using an approach very common in Visual-Inertial Odometry (VIO). We use the recently introduced

Unscented Kalman Filter on Lie Groups methodology and compare to the ground-truth. We assess the

performance of the filter in simulation and with a real world dataset, obtained using the Kinova Gen3

robotic arm. Finally, we discuss how this approach can be used to solve this problem and suggest

possible improvements for future work.

Keywords: Eye saccades, orientation estimation, Visual-Inertial Odometry, Unscented Kalman

Filter
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Chapter 1

Introduction

1.1 Context

The brain is, without a doubt, one of the most fundamental and complex organs not just in humans,

but in other forms of life. There is still so much that we don’t understand about the way it functions. In

the case of the human brain, we use it everyday to perform seemingly simple tasks such as localising

objects, identifying them and picking them up. We might not consciously think about these actions when

we perform them, however, if we analyse them deeper, we realize that they are not so simple as we

thought they were.

Our visual senses, namely our eyes, play a critical role when we wish to find an object and pick it up.

Focusing solely on the eye movements, even from pure naive observation, it’s noticeable that the brain

is able to control the eyes so that they do incredibly fast and accurate movements (saccades). So we

are forced to ask one of many questions: How is the brain able to control our eyes to reach the desired

goal?

The human eye has 6 extra-ocular muscles, 3 agonist-antagonist pairs (Figure 1.1) and these mus-

cles provide 3 degrees of freedom (DOF) for rotation. Yet, to point the eye in any given direction (gaze

direction), only two degrees of freedom are required.

Figure 1.1: Side view of the 6 extraocular muscles. Taken from [1].

This poses a very challenging and interesting problem for neuroscientists but also in the robotics

field because not only is the oculomotor system non-linear, but also, trying to develop a biommimetic

1



model of the human eye with extra degrees of freedom brings additional constraints to the mathematical

formulation of the problem [2]. So far, there is no robot that is able to reproduce saccades using the

principles of the human system, with the actual complexity that comes from this problem. That’s why

there’s currently research being held in Lisbon in the context of the ORIENT project in order to design and

test a humanoid eye-head robotic system that follows the same principles as human psycho-physics 1.

There’s already been quite alot of previous work done in this project, namely in the development of

a (recent) biommimetic eye prototype (Figure 1.2) that consists of six independent motors controlling

the 6 cables that approximate the extra-ocular muscle geometry of the human eye. The team has also

developed models for these prototypes [2, 3] and subsequent control techniques [4, 5] as well as work

in the computer vision area [6].

Figure 1.2: Current prototype of the human eye.

1.2 Motivation

The eye prototype uses a standard camera (similar to the uEye camera in B.1) and an Inertial Measure-

ment Unit (IMU) to estimate the eye’s orientation. In previous works [6], the orientation was estimated

using these two sensors separately and from here the following conclusions were drawn:

• The camera can be used for low frequency motion estimation (10-20 Hz) but if the movements are

too fast, there’s motion blur problems. Eye saccades have peak velocities up to 700 deg/s [2] and

so, only when the eye slows down are we able to capture images with decent quality.

• The IMU is faster (100-200 Hz) but has the problem of drifting over time due to accumulation of

integration errors and so can only be used for short periods of time when estimating poses.

These two types sensors complement each other and have long been used to solve various problems

in the field of robotics and navigation. To be more specific, the IMU and camera are frequently used to

estimate the pose (orientation and pose) of an object, such as an aircraft [7]. This is the so called visual-

inertial odometry (VIO) problem and its applications also include 3D reconstruction and augmented

1http://www.mbfys.ru.nl/~johnvo/OrientWeb/orient_1.html
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reality. By taking advantage of the complementary nature of the camera and IMU, it’s possible that we

could get a more accurate and solid estimate of the orientation of the eye system.

1.3 Problem definition

Our eye system represented in Figure 1.2 is equipped with similar sensors to the ones used in this work,

and to design a robotic eye model as close to human physiology as possible, we need to have high

accuracy for the estimate of the camera’s orientation during fast movements. The inertial sensor is able

to give high rate measurements that enable the reconstruction of the trajectory transient (as we’ll see

later, eye saccades have step-like movements), but have a lot of motion drift. The camera is able to

help during slow motions since the 2D images provide plenty of useful information. However, they have

limited output rate, suffer from motion blur and aren’t reliable in low texture scenes.

Hence, the challenge here is to identify the best mathematical framework/algorithm that can extract

the best out of these two sensors to accurately estimate the orientation. The inertial sensor is rigidly

attached to the camera as can be seen in Figure 1.3. In the context of eye saccades, the IMU will be

used to track the trajectory of the movement and the camera will perform the correction of the trajectory

with the use of images at beginning and end of each saccade.

Figure 1.3: Eye system with camera and inertial sensor. This setup is just a replica of the actual eye

prototype and was used for benchmarking purposes as will be shown later in section 4.3.1.

1.4 Objectives

As briefly mentioned in the previous section, the main objective of this thesis project is to develop an

algorithm that estimates the orientation of camera in the specific context of saccadic eye movements.

Human saccades are extremely fast and precise and therefore there’s the concern of minimizing error

during estimation. To tackle this, the approach will involve fusing information of both camera and inertial

sensors. With this in mind, the following steps aim to help solve this problem:
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• Analyse and study the different approaches/algorithms that have been used to perform sensor

fusion;

• Perform real world benchmarking that allows the comparison of different algorithms.

• Test the algorithm with simulated data and real data. Assess the performance in terms of accuracy

and error.

1.5 Thesis Outline

The thesis is structured as follows:

• In Chapter 2, the fundamentals necessary to understand the work such as mathematical founda-

tions and notation are given.

• In Chapter 3 the detailed explanation of the chosen methods is provided. It includes the system

kinematic model for our visual-inertial setup, the equations that describe evolution of the system

that are fundamental for the VIO approach, and finally a description of the algorithm to be imple-

mented.

• Chapter 4 describes the implementation procedure for the proposed approach. An overview of the

architecture is given, as well as the description of how the system was implemented in simulation

and in real world scenario.

• Chapter 5 presents the experiments performed both in simulation and reality and the gathered

results. A discussion is made about the performance and accuracy of the implemented algorithms.

• Finally, Chapter 6 reviews the work as whole and provides an analysis of the contributions and

limitations of the method. It’s also provided some indications for future work.

1.6 State of the art

The use of inertial sensors in combination with cameras has been largely studied within the robotics

community, mainly for the estimation of poses (position and orientation) of robots, aircrafts and another

sensing platforms. These two types of sensors complement each other, are cheap, lightweight and

easy to find anywhere. This process of estimating the state (position, velocity and orientation) of an

agent using one or more cameras and IMUs is called Visual-Inertial Odometry (VIO) and is illustrated in

Figure 1.5.

When it comes to existing literature, there are a lot of different ways to fuse the information from

visual and inertial sensors. According to [7], the approaches to solve this problem can be categorized

into loosely-coupled and tightly-coupled sensor fusion [8]. In the loosely-coupled framework, the visual

and inertial measurements are processed separately, giving two independent motion estimates that are

fused in the end (e.g. [9, 10]) In opposition, the tightly-coupled fusion computes the final estimate using

4



the raw gyroscope, accelerometer and camera measurements (2D features) directly (e.g. [11, 12]). A

conceptual diagram that compares these two methods is shown in Figure 1.4.

Figure 1.4: Comparison between loosely-coupled (a.) and tightly-couple sensor fusion(b.) [8].

Apart from these approaches, VIO methods can also be categorized in terms of the type of algorithm.

There’s three that stand-out and those are filtering, fixed-lag smoothing and full-smoothing [7]. Filtering

algorithms only allow estimation the latest state of the system. Classic approaches include the Extented

Kalman Filter (EKF) or the Unscented Kalman Filter (UKF) which use the covariance matrix to represent

uncertainty. Fixed-lag smoothers estimate states included within a certain time window and rule out older

states. This approach is usually more accurate than filtering since they are robust to outliers (by the use

of robust cost functions for example). However, fixed-lag smoothers are similar to filters when it comes

to inconsistency and linearization errors. Lastly, full smoothing approaches, estimate the entire history

of states by solving a large non-linear optimization problem. This guarantees high accuracy since it can

update based on the complete history, but has the drawback of being too computationally expensive due

to the complex nature of the optimization problem. Therefore, full smoothers are not suited for real-time

operations.

For visual-inertial sensor fusion, fixed-lag smoothing and full-smoothing become easily unfeasible

due to their complexity and high computational cost. Filtering methods are usually the best option for

state estimation when these two sensors are involved.
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Figure 1.5: Illustration of the visual-inertial odometry problem showing the rigid attachement between

camera and IMU frames.
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Chapter 2

Background

2.1 Human eye

The human eye has six extra-ocular muscles that are responsible for pointing the eye in any given

direction (gaze). These muscles are represented in Figure 1.1 and function as follows for the right

eye: The Lateral Rectus (LR) rotates the eye rightward, the Superior Rectus (SR), rotates the eye up

and anticlockwise, and the Superior Oblique (SO) rotates the eyes down and anticlockwise. For each

of these muscles there is a corresponding muscle with which it forms a pair, respectively: the Medial

Rectus (MR), in charge of rotating the eye leftward, the Inferior Rectus (IR) which rotates the eye down

and clockwise and the Inferior Oblique (IO) that rotates it up and clockwise.

When it comes to its movement, the eye can’t translate and therefore only has 3 degrees of freedom

for rotational motion. However, Donder’s law states that the torsional component of the eye orientation

is a function of the vertical and horizontal components, meaning that the eye has not three but only two

degrees of freedom. Listing’s law can be seen as an extension of Donders’ law, by quantitatively defining

the amount of torsion. It states that, when the head is fixed and the optical axes are parallel (gazing at

infinity), there is an eye orientation called primary position such that the eye assumes only the set of

orientations that can be reached from the primary position by a single rotation about an axis in a plane

(called Listing’s plane) [2, 13, 14].

2.1.1 Saccadic eye movement

Saccades are extremely fast eye movements that humans make to direct the fovea to a region of interest.

In order to quickly identify objects in the surroundings, humans and other animals have to direct the fovea

as fast and as accurately as possible to the target. For instance, in monkeys, saccade peak velocities

can reach 1300 deg/s and in humans around 700 deg/s [15, 16] (Figure 2.1. Each saccade captures a

brief snapshot of a small piece high-acuity visual input. To have clear image of the whole environment

around us, our visual perception ”glues” all the different snapshots captured [15].
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Figure 2.1: Example of velocity profiles of different amplitudes. From [2].

The perfect saccade is assumed to have a step-like shape that comes from a second-order low-pass

system with an input that results from a combination of three different signals: a pulse, a step and an

exponential decay (slide). This prediction of the input has also been observed in the firing of oculomotor

neurons for a monkey saccade (shown in Figure 2.2).

Figure 2.2: Recordings of oculomotor neuron activity in a monkey saccade [17].

8



2.2 Orientation parametrization

A rigid body’s orientation can be represented in multiple ways. This section summarizes the most com-

mon used representations that were also relevant for this work. The use of each representation will

depend on the specific applications which will be described in the next sections.

2.2.1 Rotation matrix

A rotation matrix, R ∈ R3×3, can be defined by the following properties:

RTR = RRT = I3, det(R) = 1 (2.1)

As we’ll see later in section 2.5.3, rotation matrices also belong to the special orthogonal group, SO(3),

which is a matrix Lie group [18, 19]. This group will prove to be very important for the purposes of this

work. Considering a generic vector, x ∈ R3, the rotated vector is given by:

x′ = Rx (2.2)

with x′ also belonging to R3. It’s also possible to perform multiple rotations of a given vector through

matrix multiplication. The final rotated vector depends on the order in which the rotations are performed.

Considering two different rotation matrices R1,R2 ∈ SO(3):

R1R2 6= R2R1 (2.3)

2.2.2 Axis-angle

This representation describes an orientation with a rotation axis, n̂ = [nx, ny, nz], and an angle θ. Con-

sidering a vector, v ∈ R3, the rotated version, u, is given by

u = v cos(θ) + (n̂× v) sin(θ) + n̂(n̂ · v)(1− cos(θ)) (2.4)

It is also possible to rewrite the rotated vector in a matrix form [20],

u =
(
I3 + sin θn̂∧ + (1− cos θ) (n̂∧)

2
)

v (2.5)

where n̂∧ is the skew-symmetric matrix operator to compute the cross product n̂ × v = n̂∧v. This

operator is also associated with the Lie algebra of SO(3) which will be discussed further ahead in

section 2.5. Equation 2.5 is known as Rodriguez’s formula and from here we can extract the rotation

matrix corresponding to a rotation around axis n̂ by an angle θ.

R (n̂, θ) = I3 + sin θn̂∧ + (1− cos θ) (n̂∧)
2 (2.6)
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Finally, it’s important to point out that this representation of the rotation matrix is also known as the

exponential map and will be described in section 2.5.2 and 2.5.3.

2.2.3 Euler angles

Another very common representation is Euler angles. The rotations are defined using three angles,

(ψ, θ, φ), where each angle represents a rotation around one of the three axis. The three rotations are

sequential, and as with the case of rotation matrices, order is important. The most usual sequence is

ZY X, which corresponds to rotating counter-clockwise around the Z-axis, then the Y -axis and finally

the X-axis.

Rz (ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 Ry (θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



Rx (φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ


(2.7)

Combining these elemental rotations results in the following rotation matrix.

Rzyx = Rx (φ) Ry (θ) Rz (ψ) =

=


cos θ cosψ cos θ sinψ − sin θ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

 (2.8)

This parametrization has the advantages over rotation matrices of being more intuitive and requiring

only three variables in order to represent the rotation, whilst the latter requires nine parameters. How-

ever, Euler angles have the problem of not being a unique representation of a rotation, meaning that

different sets of ψ, θ, φ can still refer to the same orientation. This common issue is called gimbal lock.

More details about this can be found in [21].

2.2.4 Unit quaternions

Unit quaternions are a 4-dimensional parametrization of orientation and are written with a scalar com-

ponent and a vector (imaginary) component as

q = qw + qxi + qyj + qzk, ||q|| = 1 (2.9)

where i, j,k are imaginary numbers that satisfy this condition:

i2 = j2 = k2 = ijk = −1 (2.10)
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Unit quaternions live on the unit sphere ||q|| =
√
q2
w + q2

x + q2
y + q2

z = 1 where opposite sign quater-

nions q and −q, represent the same rotation as can be seen in Figure 2.3.

Figure 2.3: Unit sphere with opposite sign quaternions −q and q [20].

Furthermore, there’s a way to write a quaternion formula through the axis/angle representation as

q = cos

(
θ

2

)
+ n̂ sin

(
θ

2

)
(2.11)

where n̂ and θ are the rotation axis and angle, respectively. Another useful expression is the rotation

matrix associated with a quarternion, R(q) [21]

R(q) =


q2
w + q2

x − q2
y − q2

z 2qxqy + 2qwqz 2qxqz − 2qwqy

2qxqy − 2qwqz q2
w − q2

x + q2
y − q2

z 2qyqz + 2qwqx

2qxqz + 2qwqy 2qyqz − 2qwqx q2
w − q2

x − q2
y + q2

z

 (2.12)

Even though parametrizing a rotation with quaternions is not very intuitive, there’s a few advantages

over the previous representations. Firstly, there’s no gimbal lock as with the case of Euler angles and

secondly, it’s easier to perform interpolations. This last advantage plays an important role in the devel-

opment of this work. A very common procedure used for quaternion interpolation is SLERP (Spherical

Linear Interpolation) [22, 23]. Considering two quaternions q0 and q1, SLERP computes a new quater-

nion, q2, along the arc circle that connects q0 and q1.

q2 =
sin((1− α)θ)

sin(θ)
q0 +

sin(αθ)

sin(θ)
q1 (2.13)

where 0 ≤ α ≤ 1 is the interpolation coefficient that determines how close q2 is from q1 or q0. The angle

θ = cos−1(q0 · q1) is half the distance between the two quaternions and the dot product is between the

4 dimensional quaternion vectors.
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2.3 Coordinate frames

Throughout this work, a selected number of coordinates are necessary in order to represent measured

quantities by the camera and Inertial Measurement Unit (IMU) and to describe the movements of the

monocular visual-inertial system. The following coordinate frames were defined and their representation

is depicted in Figure 2.4.

The IMU frame, {I}, belongs to the moving IMU. The origin is located at the center of the accelerom-

eter and all the measurement vectors are represented in this frame.

The camera frame, {C}, is the coordinate frame of the uEye camera, centered at the pinhole and

its orientation is according to the computer vision convention.

The world frame, {W}, is the frame in which the system will navigate. The pose of the IMU and the

camera are determined with respect with this one.

The eye frame, {E}, is centered at the center of rotation of the eye. The coordinate system is

according to the neuroscience convention. Here, the torsional component, x, is in the observation

(gaze) direction, y is the horizontal component that points to the left and z is oriented vertically.

Figure 2.4: Computer vision (left) and neuroscience (right) conventions for the coordinate systems.

Below, the coordinate frames of the system. The blue rectangle represents the IMU and the yellow the

rigid attachment between the devices. The image of the camera was taken from the uEye datasheet

(see appendix B.1).

Both the camera and IMU are rigidly attached to the eye that rotates around a fixed point in a spherical

joint (in the Eye reference frame, mentioned above). So, their movements are constrained to move in a

sphere, with coupled position and rotation [6].
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2.4 Non-linear estimation

Most of the systems in the real-world are not linear and non-Gaussian, however, there are some ap-

proaches available nowadays that aim to solve this problem. There is a framework for solving these

filtering problems called Bayes filter [18]. There are also several variations of this filter that have been

used to tackle estimation: Extended Kalman Filter (EKF), Particle Filter (PF) and the sigma-point Kalman

Filter, better know as Unscented Kalman Filter (UKF) [24].

2.4.1 Bayes Filter framework

Considering a general state vector xk ∈ RN , the objective is to come up with a PDF that represents the

likelihood of this state using only measurements up the until the current instant. The system (eq.2.14)

and observation (eq.2.15) are defined by the following models, respectively:

xk = f(xk−1,uk,wk), k = 1...K (2.14)

zk = h(xk,nk), k = 0...K (2.15)

where k is the discrete-time instant and K the duration. uk ∈ RN is the input vector of the system, wk ∈

RN is the process noise with an assumed Gaussian distribution N (0,Qk), zk ∈ RM is the observation

vector and finally, nk ∈ RM is the observation noise, also, with Gaussian distributionN (0,Rk). The PDF

that we which to compute is called the posterior belief for xk:

p (xk|x̌0,u1:k, z0:k) (2.16)

where x̌0 is the initial state estimate.

To solve the MAP (Maximum A Posteriori) problem, it’s necessary to evaluate the PDF, p(x|u, z), and

find the best estimate for the system’s state, x̂, for all time instants given the prior information and the

measurements, u and z, respectively. However, since we’re dealing with a filtering problem, it is only

necessary to estimate the state at time instant k. This yields the following PDF, factoring it into two parts:

p (xk|u, z) = η p (xk|x̌0,u1:k, z0:k) p (xk|uk+1:K , zk+1:K) (2.17)

where η is a normalization constant that ensures that the axiom of total probability is preserved. The

latter equation shows that to solve the filtering problem it’s only necessary to focus on PDF given by

2.16. Taking into account the independence of all measurements and employing Bayes’ rule to 2.16,

p (xk|x̌0,u1:k, z0:k) = η p (zk|xk) p (xk|x̌0,u1:k, z0:k−1) (2.18)
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Next, in the second factor of the previous equation, we look for the state, xk−1, and integrate over all

possible values:

p (xk|x̌0,u1:k, z0:k−1) =

∫
p (xk,xk−1|x̌0,u1:k, z0:k−1) dxk−1

=

∫
p (xk|xk−1, x̌0,u1:k, z0:k−1) p (xk−1|x̌0,u1:k, z0:k−1) dxk−1

(2.19)

Since the system has the Markov property, i.e., in order to compute the future state, xk, it’s only neces-

sary to have knowledge of the current state, xk−1, and not from previous states in the past, we have,

p (xk|xk−1, x̌0,u1:k, z0:k−1) = p (xk|xk−1,uk) (2.20)

p (xk−1|x̌0,u1:k, z0:k−1) = p (xk−1|x̌0,u1:k−1, z0:k−1) (2.21)

Finally, substituting 2.21, 2.20 and 2.19 into 2.18, yields the Bayes Filter:

p (xk|x̌0,u1:k, z0:k) = η p (zk|xk)

∫
p (xk|xk−1,uk) p (xk−1|x̌0,u1:k−1, z0:k−1) dxk−1 (2.22)

In theory, this filtering technique works, but in practice it cannot be really implemented, especially in

nonlinear systems. Despite this, there are approximations that one can do in order to get accurate

state estimations. These techniques are briefly mentioned in the beginning of this section and can be

categorized as such:

Figure 2.5: Relationship between the estimation filters [18].
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2.4.2 Unscented transformation and sigma points generation

In this work, the approach will be to use a version of the Unscented Kalman Filter or UKF. This estimation

technique assumes that the PDFs can be approximated as Gaussians and then, instead of linearizing the

prediction (system) and observation models as in the EKF, the PDFs go through the non linear models

using the sigma point transformation [24, 25]. The filter is comprised of two main steps: prediction and

update. Before starting, lets be reminded of all the variables in the prediction and observation models,

2.14 and 2.15 respectively.

System state: xk ∈ RN

Input: uk ∈ RN

Process noise: wk ∈ RN ∼ N (0,Qk)

Measurement: zk ∈ RM

Measurement noise: nk ∈ RM ∼ N (0,Rk)

(2.23)

where once again, k is a discrete time instant.

Prediction

Considering a prior estimate of the state, xk−1, and its Gaussian representation, N (x̂k−1, P̂k−1),

where x̂k−1 is the state mean and P̂k−1 the covariance matrix, the following actions are performed

during the prediction step:

1. Firstly, we incorporate the noise in the system state by stacking the respective means and covari-

ance as such:

µ̂x =

x̂k−1

0

 , Σ̂x =

P̂k−1 0

0 Qk

 (2.24)

The resulting PDF representation will still be a Gaussian, N (µ̂x, Σ̂x). The total size of this new

vector will be L = 2N .

2. Perform the sigma point transformation. Compute a set of 2L + 1 sigma vectors X i from the

distribution N (µ̂x, Σ̂x).

X 0 = µ̂x,

X i = µ̂x +
√
L+ λ coli

(√
Σ̂x

)
, for i = 1, ..., L

X i+L = µ̂x −
√
L+ λ coli

(√
Σ̂x

)
,

(2.25)

where coli
(√

Σ̂x

)
represents the i-th column vector of the matrix square root of Σ̂x. This matrix

square root can be calculated using the lower triangular Cholesky factorization. The scaling pa-

rameter λ is set to λ = α2(L+ ζ)− L, where α defines the spread of the sigma points around the

mean µ̂x and is usually a small positive number. ζ is another scaling parameter but it’s normally
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set to 0 [25].

3. Propagate the sigma points through the system model in 2.14 with the latest input uk.

X k−1,i =

X xk−1,i

Xwk,i


X̌ xk,i = f(X xk−1,i,uk,Xwk,i), i = 0, ..., 2L

(2.26)

4. Compute the predicted belief N (x̌k, P̌k) using the weighted sample mean and covariance of the

propagated sigma points.

x̌k =

2L∑
i=0

W
(m)
i X̌ xk,i, (2.27)

P̌k =

2L∑
i=0

W
(c)
i

(
X̌ xk,i − x̌k

) (
X̌ xk,i − x̌k

)T
, (2.28)

where the weights Wi are given by

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+
(
1− α2 + β

)
W

(m)
i = W

(c)
i =

1

2(L+ λ)
i = 1, . . . , 2L

(2.29)

the new parameter β inserts prior knowledge about the distribution of xk−1. Since the state is

assumed to have a Gaussian distribution, the optimal value is β = 2.

Update

In this step, we take predicted belief and measurement model and use the regular Gaussian correc-

tion equations to perform the update of the state mean and covariance.

1. Similarly to the first step of the propagation, the predicted state, x̌k, and covariance, P̌k, are

stacked with the observation noise:

µ̌x =

x̌k

0

 , Σ̌x =

P̌k 0

0 Rk

 (2.30)

Once again this is still a Gaussian PDF and we let L = N + M , which are the dimensions of the

state vector and the measurement vector, respectively.

2. Perform the sigma point transformation. Compute a set of 2L + 1 sigma vectors X i from the
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distribution N (µ̌x, Σ̌x).

X 0 = µ̌x,

X i = µ̌x +
√
L+ λ coli

(√
Σ̌x

)
, for i = 1, ..., L

X i+L = µ̌x −
√
L+ λ coli

(√
Σ̌x

)
,

(2.31)

3. Propagate the sigma points through the observation model in 2.15.

X k,i =

X xk,i
Xnk,i


Žk,i = h(X xk,i,Xnk,i), i = 0, ..., 2L

(2.32)

4. Compute the weighted sample mean of the predicted measurements, žk, and cross-covariance

terms, Σzz,k and Σxz,k, to compute the Kalman gain.

žk =

2L∑
i=0

W
(m)
i Žk,i (2.33)

Σzz,k =

2L∑
i=0

W
(c)
i

(
Žk,i − žk

) (
Žk,i − žk

)T
(2.34)

Σxz,k =

2L∑
i=0

W
(c)
i

(
X̌ xk,i − x̌k

) (
Žk,i − žk

)T
(2.35)

the weights Wi are computed in the same way as in 2.29.

5. Finally, using the equations above, the current measurement, zk, and the predicted belief in 2.28,

we compute the Kalman gain, Kk, and update the state mean, x̂k, and covariance, P̂k (posterior

belief ).

Kk = Σxz,kΣ
−1
zz,k (2.36)

x̂k = x̌k + Kk (zk − žk) (2.37)

P̂k = P̌k −KkΣ
T
xz,k (2.38)
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Figure 2.6: Example of the unscented transformation for a 2D system. The left plot shows the true mean
and covariance using Monte-Carlo sampling. The middle plot shows the propagation using the EKF. The
right plot shows the propagation of sigma points in the UKF [25].

2.5 Lie group theory

2.5.1 Definitions and properties

In mathematics, a group, G, is a set of elements that together with an operation, ∗, respect the following

properties or group axioms:

• Closure: For any g1, g2 ∈ G, it holds that g3 = g1 ∗ g2 ∈ G.

• Associativity: For any g1, g2, g3 ∈ G it holds that (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

• Identity: There’s an identity element, e ∈ G such that for any g ∈ G it’s true that g ∗ e = e ∗ g = g.

• Invertibility: For every element g ∈ G there is an inverse counterpart g−1 ∈ G that verifies g∗g−1 =

g−1 ∗ g = e.

A Lie group is a group that is also a differential manifold with operations that are smooth (the deriva-

tives are continuous). Another property that is worth mentioning is commutativity in which the group

operation of the two elements doesn’t depend on the order in which they are written. As will be dis-

cussed later on, the matrix Lie groups, SO(3) and SE(3), do not share this property, meaning that they

are non-commutative (or non-abelian) groups [18].

2.5.2 Exponential mapping and Lie algebras

Every Lie group is associated with a Lie algebra which is its tangent space at the identity element,

completely capturing the local structure of the group. The exponential map relates a Lie group to its Lie

algebra by locally mapping an element of the tangent space to the group. The inverse operation, the

logarithmic map, transfers elements from the group back to its tangent space.
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Considering an element, g, belonging to the Lie group, G, the respective tangent space at g is given

by TgG. If we consider a point g ∈ TgG, the exponential map results in a new element of the Lie group,

g′:

g′ = gExp (g) (2.39)

The inverse operation, the logarithmic map, transforms g′ back to the tangent space, TgG,

g = Log
(
g−1g′

)
(2.40)

It’s important to note that in expressions 2.39 and 2.40, the operations Exp and Log differ from the

regular definitions of the exponential and logarithmic maps. More details about these functions will

be described for the specific cases in sections 2.5.3, 2.5.4 and 2.5.5. A visual representation of the

transforms between Lie group and Lie algebra (tangent space) described is depicted in Figure 2.7.

Figure 2.7: Representation of how the exponential mapping transforms points between the Lie group

and the tangent space.

Another relevant property of Lie groups is the direct product, which allows the combination of two

different groups, G and H, into a new group, G × H. If G has an operation ∗ and H an operation •, the

result of the direct product is defined component-wise as follows:

(g1, h1) (g2, h2) = (g1 ∗ g2, h1 • h2) (2.41)

with g1, g2 ∈ G and h1, h2 ∈ H. The resulting group G ×H satisfies all the properties mentioned in 2.5.1.

For the sake of completeness, the identity and invertibility are described below as they’ll be important

later on.

• Identity: The identity element of the direct product is (eG , eH) such that eG ∈ G and eH ∈ H.

• Invertibility: For every element (g, h) ∈ G ×H there is an inverse
(
g−1, h−1

)
.
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2.5.3 Special Orthogonal Group SO(3)

The special orthogonal group SO(3) is composed by 3D rotation matrices and is defined as following,

SO(3) :=

{
R ∈ R3×3 : RTR = RRT = I3,det(R) = 1

}
(2.42)

this set of matrices together with matrix multiplication as the group operation and the transpose as the

inverse, becomes a matrix Lie Group, as will be the case with SE(3) (2.5.4) and other topologies (2.5.5).

The tangent space to the group SO(3) at the identity is denoted as so(3) and is also called the Lie

algebra. It’s defined as the space of 3× 3 skew symmetric matrices. Given a vector ω ∈ R3,

ω∧ =


ωx

ωy

ωz


∧

=


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 ∈ so(3) (2.43)

where (.)
∧ is the hat operator as in [18, 26, 27]. Inversely, there’s the vee operator, (.)

∨ that maps a

skew symmetric matrix into a vector in R3 as:

Ω = ω∧ ⇒ Ω∨ = ω (2.44)

The exponential map transforms an element of the Lie algebra so(3) into a rotation matrix in SO(3)

and corresponds to the Rodriguez’s formula in section 2.5. For convenience, the definition is re-written

below:

R = exp (ω∧) = I3 +
sin(‖ω‖)
‖ω‖

ω∧ +
1− cos(‖ω‖)
‖ω‖2

(ω∧)
2 (2.45)

On the other hand, the logarithmic map converts a rotation matrix back into a skew symmetric matrix

and is defined as:

log(R) =
θ
(
R−RT

)
2 sin(θ)

with θ = cos−1

(
tr(R)− 1

2

)
(2.46)

where θ is the rotation angle around a rotation axis, n̂. Letting ω = θn̂, then ω = log(R)∨. By

convention, θ is chosen such as ‖ω‖ < π. If this domain is not restricted, then the exponential map

becomes surjective as every vector ω = (θ + 2πk) n̂ with k ∈ Z would be a possible solution.

For the sake of simplicity of notation, the exponential and logarithmic maps are altered to operate in

vectors instead of skew symmetric matrices:

Exp : R3 → SO(3) ; ω 7→ exp (ω∧) , ω∧ ∈ so(3)

Exp (ω) = exp (ω∧)
(2.47)

Log : SO(3)→ R3 ; R 7→ log (R)
∨

Log(R) = log(R)∨
(2.48)
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2.5.4 Special Euclidean Group SE(3)

The special euclidean group SE(3) allows for the representation of poses (orientation and position) in a

matrix form and is defined by:

SE(3) :=

{
T ∈ R4×4 : T =

 R o

01×3 1

 ,R ∈ SO(3); o ∈ R3

}
(2.49)

This group becomes a Lie group with matrix multiplication and the inverse operation given by:

T−1 =

 RT −RTo

0 1

 (2.50)

The lie algebra of SE(3) is denoted as se(3) and consists of the set of matrices of the form

ξ∧ =

 v

ω

∧ =

 ω∧ v

0 0

 ∈ se(3) (2.51)

with ω∧ ∈ so(3) and v ∈ R3. Once again, the hat operator is used to transform a vector in R6 into a matrix

in R4×4. Physically, ω and v can be interpreted as rotational and translational velocities, respectively.

This will be important in the process of propagation of the filter in chapter 3. Similarly as with case of

SO(3), the vee operator transforms the elements of se(3) into SE(3): Ξ = ξ∧ ⇒ Ξ∨ = ξ.

Once again, the exponential map can relate elements of the Lie group to its Lie algebra using the

following closed-form expression [18, 28]:

T = exp
(
ξ∧
)
≡
∞∑
n=0

1

n!

(
ξ∧
)n

≡ I4 + ξ∧ +

(
1− cosφ

φ2

)(
ξ∧
)2

+

(
φ− sinφ

φ3

)(
ξ∧
)3 (2.52)

with φ = ‖ω‖. We can also compute the inverse using

ξ = log(T)∨ (2.53)

2.5.5 Special Euclidean Group SE(3)2+p

In recent works [29–31] it has been explored the Lie group structure that appears naturally in the SLAM

problem. This ”new” Lie group structure was named SE(3)2+p, with p referring to the visual landmark

measurements and includes the matrices written in the form

SE(3)2+p :=

{
χ ∈ R(5+p)×(5+p) : χ =

 R v o p1...pp

0(2+p)×3 I(2+p)

 ,R ∈ SO(3); o,v,p1, ...,pp ∈ R3

}
(2.54)
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To compute the inverse of an element in SE(3)2+p we have

χ−1 =

RT −RTv −RTo −RT (p1...pp)

0(2+p)×3 I(2+p)

 (2.55)

And since RT ∈ SO(3) and −RTv,−RTo,−RT (p1...pp) ∈ R3 the inverse element χ−1 is also a

member of SE(3)2+p. In a similar manner as with SE(3), the Lie algebra of SE(3)2+p is defined as

ξ∧ =

ξ∧R ξv ξo ξp1
... ξpp

0(2+p)×(5+p)

 ∈ se(3)2+p (2.56)

with ξ∧R ∈ so(3). Finally, the exponential map relates the elements of the Lie algebra to the matrix Lie

group with the closed-form expression:

χ = Exp(ξ) = exp(ξ∧) = I5+p + ξ∧ +

(
1− cos (‖ξR‖)

‖ξR‖

)(
ξ∧
)2

+

(
‖ξR‖ − sin (‖ξR‖)

‖ξR‖
3

)(
ξ∧
)3 (2.57)

2.5.6 Gaussian distributions and uncertainty description

When working with Gaussian random variables living in a vectorspace, i.e, x ∈ RN , they usually take

the form

x ∼ N (x̂,Σ) or x = x̂ + ε, ε ∼ N (0,Σ) (2.58)

where x̂ is a noise-free component also known as the mean and ε is a small noise component with zero-

mean and covariance, Σ. This representation, however, does not work for matrix Lie groups because

the closure property mentioned in 2.5.1 and 2.5.3 would not hold (R1 + R2 /∈ SO(3)). So, the way we

define random variables for matrix Lie groups is using the exponential map [18, 27]. For example, in

SO(3) the uncertainty definition is given by:

R = R̂ Exp(ε), ε ∼ N (0,Σ) (2.59)

with R̂ being the noise-free rotation matrix (or mean) and ε the small perturbation with zero-mean and

covariance, Σ.

2.6 Camera model and image formation

To obtain an image from a camera it’s necessary to transform 3D points from the world to 2D points

in the camera plane. When capturing a frame, the light rays that reflect from the objects enter the tiny

aperture on the camera (pinhole) and form the image on the sensor. The camera pinhole is also called

center of projection, principal point, or focal point. Considering an observation, O, of a point, P, in 3D

space projected using an ideal camera, the resulting image is flipped because the image plane is behind

the pinhole. To avoid this, the frontal projection model (depicted in Figure 2.8) assumes that the image
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plane is in front of the center of projection [18].

Figure 2.8: Camera projection model. In this model, the image plane is in front of the pinhole which

avoids flipping the image.

To transform a point in the real world, P = [X Y Z]
T , into a point in the image plane, p = [x y]

T , we

use the following expression,

x = f
X

Z
, y = f

Y

Z
(2.60)

where f is the focal length (distance between the image plane and the pinhole) in meters. From this

equation, it’s noticeable that is not possible to recover the Z coordinate (depth) from the image after

projection.

2.6.1 Camera intrinsics

Once we have projected a 3D point through an ideal pinhole using a projection model, we still have to

transform the resulting coordinates according to the pixel sensor spacing and the relative position of the

sensor plane to the origin. To convert the points of the image plane into the actual digital image that we

see through the camera, we have to resort to its intrinsic parameters, given by matrixK in equation 2.61.

K =


fsx s cx

0 fsy cy

0 0 1

 (2.61)

where f is once again the focal length, (sx, sy) are scaling parameters in pixel/m that convert the

points into pixels, (cx, cy) are the offsets to the optical centre in pixels, and finally, a skew s (from non-

orthogonality between optical axis and image plane).

To have a complete camera model, it’s also assumed that the camera frame is not always aligned with

the world reference frame. Therefore, to convert points from the world frame to the camera frame, we
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a need rotation (represented my a matrix R) and a translation, t. These are usually called the extrinsic

parameters of the camera. It’s also common in computer vision to represent this model in homogeneous

coordinates as in equation 2.62

λ


u

v

1

 = K
[
R t

]

X

Y

Z

1

 (2.62)

with λ = Z being the unknown scaling parameter. The expression above is also commonly represented

as

λx = PX (2.63)

with P being the 3× 4 camera matrix.

2.6.2 Lens distortion

The camera model discussed above assumes that cameras obey a linear projection model where

straight lines in the world result in straight lines in the image. Unfortunately, in practice, lenses have

considerable non-linearities that result, for example, in radial distortion, which manifests itself as a vis-

ible curvature in the projection of straight lines. There’s also tangential distortion and comes from the

camera sensor mis-alignment during the manufacturing process. It occurs when the camera sensor is

not in parallel with the lens [20]. These effects are shown in Figures 2.9 and 2.10. For this work, we

considered the combined radial-tangential distortion polynomial model expressed in the equation below.

The radial parameters are given by k1, k2 and the tangential parameters by p1, p2.

x′d = x
(
1 + k1r

2 + k2r
4
)

+
(
2p1xy + p2

(
r2 + 2x2

))
y′d = y

(
1 + k1r

2 + k2r
4
)

+
(
p1

(
r2 + 2y2

)
+ 2p2xy

) (2.64)

where r2 = x2 + y2. x, y are the undistorted image coordinates from equation 2.60 and x′d, y
′
d are

corresponding distorted coordinates.

Figure 2.9: Example of radial distortion effect.
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Figure 2.10: Cause of the tangential distortion.

2.7 Feature detection and tracking

Image features are the points of interest which provide rich information about the image which can

be used for recognition, matching, reconstruction, among many other applications in computer vision.

These interest points are preferably invariant to rotation, translation, intensity and scale changes (basi-

cally robust and reliable). There are different types interest points such as corners, edges, blobs etc.

The process of identifying features in an image is called feature detection, and multiple detectors have

been described in the literature, dependent on the features of interest. According to [32] ideal features

should have the following qualities:

• Distinctiveness: the detected features should have characteristics that makes them easy to iden-

tify;

• Locality: to reduce the chances of getting occluded.

• Quantity: should be in enough quantity to describe the image;

• Accuracy: features should be accurate enough to be detected scale, shape or location;

• Efficiency: should be detected fast enough to be used real-time application;

• Repeatability: a high number of features should be detected in different images in the same

regions;

• Invariance: deformative minimal effects on the features, due to scaling, rotation or translation;

• Robustness: features should be less sensitive to deformations due to noise, blur, compression,

etc.
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2.7.1 Corner detection

As mentioned above, corners can be considered interest points in an image. The Harris Corner Detec-

tor [33] is a famous example of a corner detector. It works using the following steps:

• Compute the x-wise (horizontal), Ix(x, y), and y-wise (vertical), Iy(x, y), partial image derivatives;

• Compute the second-order derivatives, I2
x(x, y), and, I2

y (x, y), and cross-derivatives, Ix, Iy(x, y)

• Compute the second-moment matrix M(x, y) in a Gaussian window around each pixel

• Compute the Harris score defined by: H(x, y) = λ1λ2 − k × (λ1 + λ2)
2

= det(M)− k × trace(M)2

• Detect local extrema whose Harris score is greater than the set threshold

An alternative to select corners is to analyse the eigenvalues, λ1 and λ2, of M . If both eigenvalues

are below a minimum, there’s no interesting features (flat region). If one is low, but the other is high, we

are in the presence of and edge. Lastly, if both eigenvalues are high, the pixel is most likely a corner

(Figure 2.11). Therefore, another solution to corner selection criterion, is to check the value of the lowest

eigenvalue of M(λmin), through the approximation Eq. (2.65).

λmin ≈
λ1λ2

λ1 + λ2
=

det(M)

trace(M)
(2.65)

Figure 2.11: Diagram of corner selection according to the eigenvalues.

26



Chapter 3

Methods

This chapter contains all the mathematical models used to develop the fusion of the IMU sensor and

the camera. The coordinates frames and the transformations between physical quantities are described

in section 3.1 and the sensor models in section 3.2. The variable notation used from here on out was

based on the work [26] and can also be consulted in the Nomenclature section.

3.1 System model

Firstly, we need to assign coordinate frames to each component of the system, as well as, define the ge-

ometric transformations between them. Figure 3.1 conceptually describes the kinematics of our visual-

inertial sensor configuration. The IMU frame, denoted as {I}, is rigidly attached to the camera frame,

{C}, and finally a static world frame, {W} is created. The frame assignment of the IMU is done accord-

ing to its datasheet B.2 and the camera frame is oriented based on the neuroscience convention.

Figure 3.1: System kinematics.
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The next sections contain the continuous and the discrete time system models that describe the

movement of the IMU and the camera.

3.1.1 System dynamics

In this model, we consider that the IMU is the main responsible for the dynamics of the system. The

inertial measurements of the gyroscope and accelerometer are directly incorporated in the propagation

of the state variables. These variables include the orientation, velocity and position of the IMU (from

here on out called ”body”) relative to the world frame. As will be seen in sections 3.2.1 and 3.2.2, the

IMU measurements are affected by bias and noise and so, in the state dynamics they are modelled as

random walks. Lastly, the 3D positions of p static landmarks are included in the state and will be tracked

by the camera.

Let’s consider the following model of the system containing the IMU and camera [30]:

Body (IMU):



ṘW
I(t) = RW

I(t)
(
ωI W,I(t) + bg(t) + wg(t)

)∧
= RW

I(t) ω̃
I ∧

W,I(t)

v̇W
W,I(t) = RW

I(t)
(

aI W,I(t) + ba(t) + wa(t)
)

+ gW = RW
I(t) ãI W,I(t) + gW

ȯW
I(t) = vW

W,I(t)

ḃg(t) = wbg

ḃa(t) = wba

(3.1)

Landmarks:
{

ṗW
i = 0, i = 1, ..., p (3.2)

where RW
I(t) ∈ SO(3) is the current orientation of the IMU frame relative to the world frame,

oW
I(r) ∈ R3 and vW

W,I(t) ∈ R3 are the position and velocity of the IMU in the world frame, respectively.

Finally, vectors bg(t),ba(t) ∈ R3 are the IMU biases that are related to the gyroscope and accelerom-

eter measurements, ω̃I W,I(t), ãI W,I(t) ∈ R3. The multiple white Gaussian noise sources are modelled

according to equation 3.3.

wg ∼ N (0,Σg), Σg = σ2
gI3 ∈ R3×3

wa ∼ N (0,Σa), Σa = σ2
aI3 ∈ R3×3

wbg ∼ N (0,Σbg), Σbg = σ2
bgI3 ∈ R3×3

wba ∼ N (0,Σba), Σba = σ2
baI3 ∈ R3×3

(3.3)

3.1.2 Time discretization

The dynamic model that describes the evolution of the state in 3.1.1 is expressed in continuous time

and, therefore, is now discretized using the first-order forward Euler method as in [27, 34]. The discrete
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time system can be expressed as

RW
I(t+ ∆t) = RW

I(t) Exp
((
ω̃I W,I(t)− bg(t)−wgd(t)

)
∆t
)

vW
W,I(t+ ∆t) = vW

W,I(t) +
(

RW
I(t)

(
ãI W,I(t)− ba(t)−wad(t)

)
+ gW

)
∆t

oW
I(t+ ∆t) = oW

I(t) + vW
W,I(t)∆t+

1

2

(
RW
I(t)

(
ãI W,I(t)− ba(t)−wad(t)

)
+ gW

)
∆t2

bg(t+ ∆t) = bg(t) + wbgd

ba(t+ ∆t) = ba(t) + wbad

(3.4)

The discrete time noise variables wgd(t) and wad(t) have a covariance that is a function of the

sampling time ∆t: Σgd(t) = 1
∆tΣg(t) and Σad(t) = 1

∆tΣa(t) for the gyroscope and accelerometer,

respectively. The biases noises wbg,wba are modelled in a similar way: Σbgd = ∆tΣbg and Σbad =

∆tΣba. For convenience, we dropped the coordinate frame superscripts and subscripts and replaced

the time interval from [t, t + ∆t] to [k − 1, k] to express the state variables before and after integration

in 3.5.

Rk = Rk−1 Exp
((
ω̃k − bg

k−1 −wgd
k

)
∆t
)

vk = vk−1 +
(
Rk−1

(
ãk − ba

k−1 −wad
k

)
+ g

)
∆t

ok = ok−1 + vk−1∆t+
1

2

(
Rk−1

(
ãk − ba

k−1 −wad
k

)
+ g

)
∆t2

bg
k = bg

k−1 + wbgd

ba
k = ba

k−1 + wbad

(3.5)

3.2 Observation models

The measurement models used for the IMU are described in this section. A simplification was made by

considering that the world frame is stationary relative to the inertial frame because the sensor doesn’t

travel significant distances when compared to the size of the earth. Therefore, all the IMU measurements

are considered to be made with respect to the world frame.

3.2.1 Gyroscope observation model

The 3-axis gyroscope measures the angular velocity in rad/s of the body frame with respect to the

world frame, expressed in the body frame. The measured rotation rate, ω̃I W,I(t) is affected by additive

Gaussian noise, wg(t), and bias, bg(t).

ω̃I W,I(t) = ωI W,I(t) + bg(t) + wg(t) (3.6)
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3.2.2 Accelerometer observation model

The accelerometer provides measurements of the specific force (acceleration together with gravity) in

m/s2. Like the gyroscope, the accelerometer model assumes the measurements are corrupted by Gaus-

sian noise, wa(t), plus a bias, ba(t).

ãI W,I(t) = aI W,I(t) + ba(t) + wa(t)

= RI W (t)( aW (t)− gW ) + ba(t) + wa(t)
(3.7)

If we assume that the linear accelerations in the world frame are approximetly zero ( aW (t) ' 0), then

the accelerometer model is the following:

ãI W,I(t) = − RI W (t) gW + ba(t) + wa(t) (3.8)

This assumption comes from the fact that the main purpose of this sensor is to measure inclination, not

the change in position.

3.2.3 Camera observation model

In combination with the measurements from the gyroscope and accelerometer, images from a camera

are also collected. This information is used to detect and track the p landmarks using the standard

pinhole model [6, 20, 31]. The measurement of landmark pi is given by,

zi =
1

ziw

ziu
ziv

+ niz, i = 1, . . . , p (3.9)

with niz ∼ N (0,R) and R = σ2
zI2 ∈ R2×2. Each landmark observation, zi, is obtained through the

camera model in equation 3.10 in homogeneous coordinates. A detailed diagram of the coordinate

transformations between reference frames is depicted in Figure 3.2.
ziu

ziv

ziw

 = K
[
I3 03×1

] pC i

1


= K

[
RC I

(
RW T
I pW

i + oI W

)
+ oC I

]
(3.10)

where pC i is the position of landmark pi expressed in the camera coordinate frame andK is the intrinsic

parameter matrix (for more information about the estimation of this matrix, check appendix B.1.2). From

equation 3.10, the variables RC I and oC I refer to the relative pose between the IMU and the camera

and result from the extrinsic calibration of the two sensors (check appendix B.3).
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Figure 3.2: Coordinate transformations. Each landmark pi is projected to the image plane according

to 3.9.

3.3 Unscented Kalman Filter using Lie Group structure

This section contains the main object of study of this thesis, which includes using a variation of the

standard Unscented Kalman Filter described in section 2.4. The method uses the Lie Group state

structure introduced in earlier sections and the recent works involved in sensor fusion [30, 31, 35]. In

the previous sections of this chapter we modelled the system dynamics through equations 3.1 and 3.5

and now we want use UKF formulation to compute the probability distribution of the states variables.

However, we cannot use the standard version of the UKF which assumes that the state is in the form

x ∈ Rn. We’ll define a different parametrization of the state which involves the use of Lie group theory

introduced in chapter 2.

3.3.1 State structure

Like with any Gaussian filter, the state distribution is defined by its mean, x̂k, and covariance, Pk. For

our problem, the general mean state and covariance are given by

x̂k =
(
R̂k, v̂k, ôk, b̂

g
k , b̂

a
k, p̂1, . . . , p̂p

)
∈ SO(3)× R3 × R3 × R3 × R3 × R3p (3.11)
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and

Pk =



PR 0 0 0 · · · 0 0 0

0 Pv 0 0 · · · 0 0 0

0 0 Po 0 · · · 0 0 0

0 0 0 Pp1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Ppp 0 0

0 0 0 0 · · · 0 Pbg 0

0 0 0 0 · · · 0 0 Pba



∈ R(15+3p)×(15+3p) (3.12)

where each member of the diagonal represents the covariance matrices of the orientation, velocity,

position, landmark positions and gyroscope and accelerometer biases, respectively.

Another possible way to write the state is to use a combination of the Lie group structure described

in section 2.5.5 that is commonly found in SLAM problems, with elements of R3. Under this topology, the

orientation, velocity and position of the body (IMU) are combined with the landmark locations in a matrix

of the form χ̂k ∈ SE(3)2+p. The biases b̂g
k , b̂

a
k are considered to be independent from this structure and

maintain the vector form. Thus, the final state is represented by

x̂k =
(
χ̂k, b̂k

)
∈ SE(3)2+p × R6 := S

χ̂k =

R̂k v̂k ôk p̂1...p̂p

0(2+p)×3 I(2+p)

 ∈ SE(3)2+p

b̂k =

b̂g
k

b̂a
k

 ∈ R6

(3.13)

where S denotes the defined group for the state of the filter. The corresponding Lie algebra is denoted

by s.

3.3.2 Uncertainty and state covariance

In order to define random variables for Lie groups we have to resort to another strategy since our state

is not a vector. For the state xk ∈ S, its uncertainty is represented by

xk ∼ N (x̂k,Pk)→ xk = ϕ(x̂k, ξk) =
(
χ̂k Exp(ξχk ), b̂k + ξbk

)
, ξk =

ξχk
ξbk

 ∼ N (0,Pk) (3.14)

where we have two Gaussian noise perturbations ξχk and ξbk, for the matrix part χ̂k, and for the vector

part b̂k of the state, respectively. The two uncertainties in equation 3.15 are stacked together to give the

total uncertainty of the state. Notice that the covariance matrix of ξk yields Pk, defined in 3.12. For the

bias vector, the Gaussian noise is additive as one would expect, but for the case of the matrix state we
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have to use the exponential map which is computed according to equations 2.56 and 2.57.

ξχk =
[
ξTR ξ

T
v ξ

T
o ξ

T
p1
... ξTpp

]T
∈ R9+3p

ξbk =
[
ξTbg

ξTba

]T
∈ R6

(3.15)

where the distribution of each uncertainty ξ is given by,

ξR ∼ N (0,PR), PR ∈ R3×3

ξv ∼ N (0,Pv), Pv ∈ R3×3

ξo ∼ N (0,Po), Po ∈ R3×3

ξbg
∼ N (0,Pbg), Pbg ∈ R3×3

ξba
∼ N (0,Pba), Pba ∈ R3×3

ξpi
∼ N (0,Ppi

), i = 1, ..., p, Ppi
∈ R3×3

(3.16)

3.3.3 Propagation

Now that we have all the necessary definitions about the structure of the state we can now proceed

to the propagation/dynamics of the system. Letting f be the discrete time function that propagates the

state variables described in 3.5

x̌k =
(
χ̌k, b̌k

)
= f (x̂k−1,uk,wk) (3.17)

we remind that x̌k has the same notation as the one used to represent the predicted belief at time

instant k, in the standard UKF (section 2.4.2). The input vector uk is defined as 3-axis gyroscope and

accelerometer readings, ω̃k and ãk, respectively. Vector wk denotes the Gaussian noise of the process

and the respective covariance matrix Qk is represented in the expression below.

wk =


wgd
k

wad
k

wbgd
k

wbad
k

 ∼ N (0,Qk) with Qk =


Σg 0 0 0

0 Σa 0 0

0 0 Σbg 0

0 0 0 Σba

 ∈ R12×12 (3.18)

The propagation of the state starts by propagating the noiseless mean x̂k−1 and augment the co-

variance to include the process noise. Then, sigma points for the augmented state uncertainty are

generated and are passed through the dynamic model in 3.17. However these sigma points are first

mapped to the Lie group using 3.14. The propagated sigma points are finally transformed back to the

tangent space where we then retrieve the covariance matrix Šk. More details are described in Algo-

rithm 1 and in appendix A.2. It’s important to point out that both the propagation and the update steps

follow the square-root implementation of the UKF, which propagates the covariance matrix through its

Cholesky factor for being numerically more stable and computationaly less expensive [36].

33



Algorithm 1: Propagation of the state [31]

Input: x̂k−1 =
(
χ̂k−1, b̂k−1

)
, P̂k−1 → Ŝk−1 (Cholesky decomposition),

Q (Process noise), uk =
[
ω̃Tk ãTk

]T
(IMU measurements)

1 Q→ SQ, (Cholesky decomposition) // Process noise covariance

2 ŜAk−1 =

[
Ŝk−1 0

0 SQ

]
// Create augmented state covariance

3 x̌k = f (x̂k−1,uk,0) =
(
χ̌k, b̌k

)
// Propagate noiseless mean (Propagated belief)

/* Generate sigma points */

4 X k,i = γ coli
(
ŜAk−1

)
, for i = 1, ..., LA

5 X k,i = −γ coli
(
ŜAk−1

)
, for i = 1 + LA, ..., 2LA

6 X k,i = ±
[
ξχk,i ξ

b
k,i wk,i

]
, i = 1, . . . , LA

/* Propagate sigma points through the process model */

7

 ξ̌
b

i = ξbi + ∆twb
i // add bias noise

X̌χi = f
(
χ̂k−1 Exp (ξχi ) ,uk − ξ̌

b

i ,wi

) , i = 1, . . . , 2LA // Omitting time instant k

8 ξ̌
χ

i = Log
((
χ̂k−1

)−1 X̌χi
)
, i = 1, . . . , 2LA // Transform points back to original space

9 Šk ← qr
(
ξ̌
χ

i , ξ̌
b

i , i = 1, . . . , 2LA,SQ

)
// Compute propagated covariance. See Appendix or [31]

Output: x̌k =
(
χ̌k, b̌k

)
, Šk (Propagated belief)

3.3.4 Update

For the update step of the filter, we’ll consider the camera measurements for each of the static land-

marks. These measurements are the 2D pixel locations of the features tracked using the Kanade-

Lucas-Tomasi (KLT) tracker and take the form of equation 3.9. To facilitate reading, we compact all the

camera observations in the following expression

Zk =


z1
k

...

zpk

 := H (χk,nz) (3.19)

it’s noticeable that this model only ”observes” part of the state contained in χk. nz ∼ N (0,R) is the

Gaussian noise for one landmark, with R being the measurement covariance matrix.

Similarly to the propagation step, the update starts by computing the predicted measurement using

the propagated noiseless state χ̌k, and constructing the augmented state covariance by incorporating

the measurement covariance. The 2LA tangent space sigma points, ξχk,i, are then mapped to the re-

spective Lie group and passed through the observation modelH to give the sigma points of the predicted

measurements, Ži. Next the predicted measurement mean, Žk, the cholesky factor of the measurement

covariance, Szz, and the cross covariance, Pxz are computed so that we can get the Kalman gain, K,

and the correction terms (innovation), δξ
χ

and δξ
b
. More details can be found in Algorithm 2 and in

appendix A.3.
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Algorithm 2: State update [31]

Input: x̌k =
(
χ̌k, b̌k

)
, Šk,

Zk =
[
z1
k
T
. . . zpk

T
]T

(Camera observation of the p landmarks),
R (Observation noise)

1 R→ SR, (Cholesky decomposition) // Observation noise covariance

2 ŠAk =

[
Šk 0
0 SR

]
// Create augmented state covariance

3 Ž0 = H (χ̌k,0) // Pass propagated mean through observation model H

/* Generate sigma points */

4 X k,i = γ coli
(
ŠAk
)
, for i = 1, ..., LA

5 X k,i = −γ coli
(
ŠAk
)
, for i = 1 + LA, ..., 2LA

6 X k,i = ±
[
ξχk,i ξ

b
k,i nk,i

]
, i = 1, . . . , LA

/* Propagate sigma points through the observation model */

7 Ži = H (χ̌k Exp (ξχi ) ,ni) , i = 1, . . . , 2LA // Omitting time instant k

8 Žk = W
(c)
0 Ž0 +

∑LA

i=1W
(m)
i

(
Ž+

i + Ž−i
)

// Compute predicted measurement mean

9 Szz,Pxz ← computeMeasurementCovariances
(
Žk, Ž0, Ž

±
i , ξ

χ
k,i
±
, ξbk,i

±)
// Compute measurement

covariance cholesky factor and cross covariance. Check appendix

10 K = Pxz

(
STzzSzz

)−1
// Kalman gain

11 δξ =

[
δξ
χT
, δξ

bT
]T

= K
(
Zk − Žk

)
// Innovation

/* Update state mean and covariance (posterior belief) */

12

 χ̂k = χ̌k Exp
(
δξ
χ
)

b̂k = b̌k + δξ
b

13 Ŝ
′

k ← SeqCholUpdate
(
Šk, KSTzz, −1

)
// Check appendix

14 Ŝk = Ŝ
′

kJ

Output: x̂k =
(
χ̂k, b̂k

)
, Ŝk (Posterior belief)
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Chapter 4

Implementation

In this section, an overview of the implemented system will be made. The implementation comprises

the practical application of the methods and algorithms described in chapter 3. The UKF on Lie group

algorithm was implemented in MATLAB [31] and was tested in a simulation environment [37] as well as

in real data (offline). All the steps involved in the design and development of the experiments will also

be described in the following sections.

4.1 Full system architecture

The implemented system revolves around the UKF on Lie groups with the objective of fusing information

from the IMU and camera. Figure 4.1 shows a simple flow diagram with the main functions of the de-

signed system. The measurements from the inertial sensor, i.e, angular velocity (rad/s) and acceleration

(m/s2), are directly used to propagate the state of the filter and infer the motion of the body through

simple Euler integration as this is simpler and easier to implement [27]. In the update step, the visual

information provided by the camera is used to correct the trajectory and update the error covariances.

It does so by detecting and tracking p static landmarks in the scene using the standard pinhole cam-

era model in 3.2.3. The filter uses the KLT tracker using minimum eigenvalue feature detection, both

implemented in MATLAB [38].

In order to evaluate the performance of the filter, the orientation estimation is compared against a

ground-truth. In the case of the simulator, as it’ll be seen, this ground-truth corresponds to the generated

trajectory. In the real case, the ground-truth is given by the joint angle feedback of the Kinova Gen3 robot

that is used to infer the trajectory of the end-effector, where the camera and IMU are mounted 4.3. In

the following sections, the procedures involved in the planning and the setup for the experiments will be

described.
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Figure 4.1: Simplified flow diagram of the system. The gyroscope and accelerometer readings prop-

agate the state of the filter at a high rate (100 Hz), while the camera updates and corrects the state

whenever there’s a frame available (20 Hz). This illustration only contains the ground truth for the real

case scenario.

4.2 Simulation (ESIM simulator)

In the previous work [6] done for this project, a MATLAB simulator that generates image points matches

(with or without noise) with known rotations was developed. However, for this thesis, since the goal is to

have a sense of the whole trajectory of the camera, this simulator becomes a bit short because we’re

not only interested in the initial and final orientation of the camera. Plus, this simulator skips the whole

image processing task usually involved in visual odometry, such as feature detection and tracking.

For these reasons, the option was taken to use the open event camera simulator, ESIM [37], which

was already being used in the context of the ORIENT project. The object of this work does not involve

event cameras, however, this simulator (depicted in Figure 4.2) is still able to provide regular camera

frames, IMU readings and ground-truth.

The rendering engine is able to capture the scene from the viewpoint of the camera, at a constant

frame rate and can also simulate exposure times which results in motion blur of the images (making a

more realistic approximation of an actual camera). The user inputs the trajectory of the virtual camera

and the simulator generates the accelerometer and gyroscope readings as well as the ground-truth tra-

jectory. This trajectory is a result of a spline interpolation, in order to give a smooth trajectory (continuous

and differentiable). This also is important for the generation of the inertial sensor readings because they

can be derived using double differentiation, in the case of the accelerometer. Then, the simulator adds

some bias and noise, resulting in more realistic data. The same logic can be applied for the genera-

tion of angular velocity readings for the gyroscope by taking the first derivative of the rotation along the
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trajectory.

Figure 4.2: Architecture of ESIM. It shows the tight coupling between the rendering engine and the

simulator. The user defines the camera trajectory (pose, TWC(tk), and twist, ξ(tk)) which is then passed

through the rendering engine, resulting in a new irradiance map E(tk) and a motion field map V(tk) at

time tk. For more information consult [37].

4.3 Real system - Kinova Gen3

One of the main problems to solve in the previous implementation [6] was the aspect of the ground-truth

when dealing with real world data. The ground-truth orientation could only be estimated up to an error

of 4 degrees which compromised the comparison with the rotation estimation algorithms. For this work,

the option was to use the Kinova Gen3 robotic arm with 7 degrees of freedom, where each joint has a

precision of around 1 degree. Besides this very important feature, with the Kinova and its available API 1

(in C++, Python, MATLAB and ROS) it’s possible to communicate with the robot via Ethernet connection

and develop scripts to configure parameters, read sensor feedback, send joint commands, etc. The only

downside of using the Kinova is its built in joint speed limitations of around 50 deg/s for the smaller joints

and 57 deg/s for the bigger joints (see datasheet in [39]). As mentioned in the beginning in section 1.2,

eye saccades have very high peak velocities (around 700 deg/s) and so, the ideal case would be a

benchmarking system that is able to handle these kinds of speeds. However, for the purpose of this

thesis, it’s better to start with a simpler and perhaps more reliable setup to test the algorithm and slowly

improve in future works.

Like with the experiment using the ESIM simulator, the purpose of working with the robotic arm was

to send pre-computed, well defined trajectories that serve as ground-truth, and at the same time, collect

the camera frames and inertial sensor readings (from gyroscope and accelerometer). This way, we’ll

have a real world dataset where it’s possible to test visual inertial odometry algorithms. The details of

the dataset recording and format are described in section 4.3.3.

1https://www.kinovarobotics.com/en/resources/gen3-technical-resources
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4.3.1 Sensor setup

The setup used for the recording of the dataset is represented in Figure 4.3.a and consists of the Ki-

nova Gen3 robot, with a custom gripper designed in SolidWorks where the visual-inertial system is

attached. The 3D model of the gripper is shown in Figure 4.3.b. The camera and IMU are attached to

the gripper using hex screws in such a way so that vibrations are as low as possible. In Figure 4.3.a are

also illustrated the different transformations that are relevant to problem. TE B refers to transformation

between the base frame, {B}, and the end-effector frame of the robot, {E}, and is specified by the

Denavit–Hartenberg parameters in the Kinova datasheet [39]. TC E expresses the pose of the camera

frame, {C}, relative to the end-effector frame. This transformation is obtained through the known dimen-

sions of the designed gripper, and as it’ll be seen in section 4.3.2, the planning of trajectories that are

sent to the robot are based in the camera frame. Last but not least, TC I is the transformation between

the IMU frame, {I}, and the camera frame. The knowledge of this transformation is very important for

the implementation of our the visual-inertial system and was obtained using the Kalibr Toolbox from ETH

Zurich 2. All of these matrices can be consulted in appendices B.4 and B.3.

Figure 4.3: a. Sensor setup used during the dataset collection. The Kinova image was taken from the

datasheet [39]. b. 3D model of the custom gripper designed for the Kinova.

4.3.2 Trajectory planning

One of the concerns with this experiment was to record movements that resemble human eye saccades

and therefore we were only interested in rotational trajectories in the 3D space (the eye doesn’t trans-

late). With this in mind, the next step was to generate 3D rotations that the Kinova arm could perform.

To accomplish this, a MATLAB script was developed to define waypoints of the trajectory, perform an

interpolation at a constant rate (50 ms) between those points using SLERP (described in section 2.2.4)

2https://github.com/ethz-asl/kalibr

40

https://github.com/ethz-asl/kalibr


and solve the numerical inverse kinematics (BFGS Gradient Projection algorithm) in order to obtain the

trajectory in the robot joint space. A more detailed diagram of this procedure is illustrated in Figure 4.4,

alongside the robot model with the custom grip in its initial configuration.

Figure 4.4: Simplified trajectory planning diagram

All the trajectories planned for the experiments were computed based on the camera frame, using

the transformations mentioned in the previous section to describe the kinematics of the system. It’s

important to point out that, while the trajectory planning is solved at 50 ms, it’s necessary to re-interpolate

the trajectory to 1 kHz due to software constraints in the Kinova API. This interpolation was performed

in each of the 7 joint trajectories using the Akima spline algorithm [40]. Even after this last step, the

trajectory has to be verified to guarantee that the algorithm didn’t hit any singularity of the robotic arm.

An example of a rotation trajectory around the Z-axis of the camera frame with a maximum amplitude

of 20 degrees is shown below in Figure 4.5.

Figure 4.5: Example of trajectory planning. a. Result of the SLERP interpolation using a trapezoidal

velocity profile. b. Orientation of the end-effector (camera frame) in Euler angle notation after the re-

interpolation at 1kHz, ready to be sent to the robot.
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4.3.3 Dataset format and recording

The data collected comes in the format of a rosbag. It contains the images, IMU measurements and the

Kinova joint angles using the standard sensor msgs/Image, sensor msgs/Imu and sensor msgs/JointState

message types, respectively. For convenience, we also saved all the .mat files that contain the informa-

tion about the planning. The pre-computed trajectory is sent to the robot through its MATLAB API 3. An

overview diagram of the recording system is given in Figure 4.6.

Figure 4.6: Simplified diagram of the implemented system.

The various sensors and their summarized specifications are described in Table 4.1. The measure-

ments collected by the rosbag have the following characteristics:

• Camera - intensity frames at rate of 20 Hz.

• IMU - inertial measurements (angular velocity in rad/s and linear acceleration in m/s2) at 100 Hz.

• Kinova - joint angle feedback in radians at 10 Hz.

Table 4.1: Overview of sensor characteristics. For more information about each one, refer to appen-
dices B.1, B.2 and B.4

Sensor Type Rate Characteristics
Camera IDS uEye USB3 UI-3271LE-C-HQ-VU 20 Hz CMOS sensor, Global shutter, 2056x1542

IMU LPMS-CU 100 Hz 3-axis gyroscope, 3-axis accelerometer
Kinova Actuator sensors KA-75+ and KA-58 10 Hz Position sensor precision at start-up ±1.5o

3https://github.com/Kinovarobotics/matlab_kortex
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4.3.4 Ground truth

The ground-truth for this dataset was considered to be given by the joint angle feedback of the Kinova,

due to the high precision of its actuators. The joint-wise trajectory is then transformed into the camera

frame trajectory to give our ground-truth trajectory.

4.3.5 Calibration

Both the camera calibration and the extrinsic calibration between the camera and IMU were done recur-

ring to the open-source toolbox, Kalibr. More details about this procedure are found in appendices B.1.2

and B.3.

4.3.6 Limitations

This dataset has a few issues that worth mentioning:

• The vibrations of the actuator joints may throw-off and cause poor readings, specially in the IMU.

• It’s assumed that the trajectory planning done in MATLAB matches the movement performed by

the Kinova. Specially because we define a location of the principal point that might correspond to

the reality.

• There’s error in the estimation of the relative pose between the IMU and the camera.

• The ROS timestamps may not be accurate and synchronised.

• The IMU is known to have poor signal-to-noise ration in slow movements.

4.4 Error metrics

To evaluate the performance of the filter, we consider the geodesic distance between two points in

SO(3), at time instant k

εk = ||Log(R̂T
kRGT

k )|| (4.1)

where RGT
k is the ground-truth orientation calculated using the feedback joint angles of the Kinova.
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Chapter 5

Experiments and results

This chapter contains the various experiments performed (in simulation and real world data) and the

respective results. Firstly, we test the performance of the filter in terms of the orientation estimation error

for a few trajectories sent to the ESIM simulator. Then, the UKF on Lie groups is tested on real world

data acquired using the Kinova robotic arm. An overall discussion of the obtained results is also done in

the end. All experiments were performed using the coordinate system convention defined in section 3.1.

5.1 Simulation (ESIM simulator)

The experiments with the ESIM were based on simple rotations around each one of the axes. The

camera trajectories sent to the simulator had amplitudes of around 18 degrees. An example of a ground-

truth trajectory is shown in Figure 5.1, alongside the initial frame of the rendered scene.

Figure 5.1: (a.) Example of the ground-truth rotational trajectory from the ESIM. (b.) Initial frame of the

scene for the dataset.

The returned data (in the format of a .txt file) from the simulator consisted of the inertial measure-

ments and ground-truth sampled at 1kHz, camera frames at around 15 Hz with timestamps, and the

intrinsic and distortion parameters of the camera. The initial state of the filter was considered to be the
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first element of the ground-truth. The measurement noise for one landmark was set to 2 pixels standard

deviation and the IMU noises were set to values similar to the ones used in the real experiment and can

be found in appendix B.2.1. The plots for each individual rotation (in Euler angles) around the X, Y and

Z axis are found in Figures 5.2 and 5.3, respectively.

Figure 5.2: Rotation around X (left) and Y (right).

Figure 5.3: Rotation around Z.

The Root Mean Squared Error (RMSE) for the camera rotation was calculated for each trajectory

and is represented in Table 5.1.
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Axis X Y Z

RMSE (o) 0.5411 0.5590 1.0257

Table 5.1: Root Mean Squared Error in degrees for the rotation estimated by the filter.

From the plots and the table above, we can conclude that the filter is able to keep track of trajectory

and have a low error. However, for the axis where supposedly there is no rotation, the estimation

seems to drift (it’s specially noticeable for the case of the Z axis rotation). This may be due to error

accumulation from the IMU, but also from the fact that there’s ambiguity when it comes to depth of the

landmarks which then introduces errors when computing the predicted measurement mean (prediction

of feature position).

One of the main issues found with this simulator is that, for our specific application, the image resolu-

tions were quite low (which affects the tracking of features across the image) and we couldn’t test faster

movements (that resemble saccades for instance).

5.2 Dataset - Kinova Gen3

For the real world dataset, the procedure was very similar to the one used in the simulation. We gen-

erated rotation trajectories for each axis as was explained in section 4.3.2 and sent them to the Kinova.

The obvious difference was the rate at which we sampled the data. The IMU captured at 100 Hz, the

camera at 20 Hz and the joint angles for the ground-truth were sampled at 10 Hz. The reason for this

value to be so slow resides in software constraints in the Kinova API, which restricts the feedback com-

munication depending on the complexity of the commands that it has to execute. The scene used to

captured the data is shown in Figure 5.4. We made sure that the scene had good lighting conditions and

that there were enough textures to facilitate the tracking of features for the filter.

Figure 5.4: Picture of the experiment setup used when recording the Kinova dataset.
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As with the ESIM, the filter was initialized to the ground-truth trajectory. The noise parameters were

the same for the process and update part, as well as the IMU noises (appendix B.2.1). It was early

noticed that the real raw IMU measurements were extremely noisy and contained some outliers that

were damaging the estimation. With this in mind, we decided to test the algorithm without, and with

a prefiltering of the inertial measurements. We used the built-in MATLAB function that implements a

median filter with window sizes of 10 or 15 samples.

We performed experiments for three different amplitudes of rotation (10, 15 and 20 degrees), for each

individual axis. For each amplitude, we also tested the estimation against three different joint velocities

(given by the trajectory planning). The procedure was repeated to include the cases where there’s no

prefiltering of the inertial measurements and pre-filtering with a median-filter of window sizes of 10 or

15 samples. Tables 5.2, 5.3 and 5.4 summarize the results of the estimation in terms of the root mean

squared error for orientation (difference between the estimated trajectory and the ground-truth provided

by the Kinova). The initials MF10 and MF15 stand for ”Median Filter size 10” and ”Median Filter size

15”, respectively. We also plotted the estimated trajectories against the ground-truth for three different

experiments, as well as the evolution of the estimation error. They can be found in Figures 5.5, 5.6

and 5.7.

Amplitude Max. speed No pre-filter MF10 MF15

10o
9o/s 5.7740o 6.06210 6.4316o

13o/s 10.3822o 8.9449o 6.6748o

18o/s 1.1646o 1.4568o 1.3571o

15o
13o/s 8.3587o 10.0005o 6.9050o

20o/s 21.2131o 12.1310o 21.3327o

27o/s 13.5712o 5.1181o 7.3425o

20o
18o/s 2.0388o 1.8295o 2.7774o

21o/s 1.3059o 1.7515o 3.5968o

27o/s 1.2968o 2.0826o 1.8405o

Table 5.2: Root Mean Squared Error in degrees for the rotation around the X-axis estimated by the filter.

Amplitude Max. speed No pre-filter MF10 MF15

10o
9o/s 5.6552o 2.0862o 4.5036o

11o/s 5.6254o 0.9170o 1.4776o

13o/s 4.1176o 1.3798o 1.3497o

15o
11o/s 10.1208o 2.2902o 4.2037o

13o/s 10.9695o 2.9958o 4.6353o

16o/s 10.7740o 10.3929o 10.2110o

20o
13o/s 7.0344o 3.6176o 2.3387o

15o/s 18.7596o 3.0261o 3.5340o

18o/s 9.9611 2.2135 3.0578o

Table 5.3: Root Mean Squared Error in degrees for the rotation around the Y -axis estimated by the filter.
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Amplitude Max. speed No pre-filter MF10 MF15

10o
9o/s 7.0316o 3.0881o 4.2551o

11o/s 7.7438o 2.1107o 4.4832o

13o/s 7.0317o 2.5079o 11.5581o

15o
11o/s 12.9176o 2.5718o 2.6900o

13o/s 8.5640o 3.2799o 1.6522o

16o/s 19.4217o 2.6324o 2.5665o

20o
13o/s 8.7397o 3.5558o 4.6629o

15o/s 11.6063o 2.1810o 6.0337o

18o/s 24.2505o 3.6255o 4.3504o

Table 5.4: Root Mean Squared Error in degrees for the rotation around the Z-axis estimated by the filter.

The results from the rotation around the X-axis, represented in Table 5.2, show that the best per-

formances were achieved for the case of greater amplitude of movement (20 degrees). For amplitudes

of 15 degrees the filter revealed to be quite inconsistent and poor in terms of estimation error. With 10

degrees amplitude, the estimation was also not the best, except for the case where the joint speed was

18o/s. It’s noticeable that the pre-filtering rarely improves the error with the exception of a few cases. It

would be expected, since the rotation around the torsonial axis is the simplest one, that the filter would

better estimate the orientation, however that is not always the case. With visible landmarks in almost

every frame, it’s possible that the source of these errors might come from fine tuning in parameters of

the filter or bad initial guess of trajectory and biases.

For rotations around the Y and Z axis the results seem to improve sightly, especially in terms of

consistency. In these experiments, the effect of pre-filtering the raw gyroscope and accelerometer mea-

surements, has, overall, significant impact on the RMSE. If we increase the size of the window to 15

samples, the estimation starts to worsen, probably because we’re filtering out reliable measurements.

Finally, from the inspection of the plots, it’s possible to see that, in general, the filter does a good job

of tracking the rotation around the ”main” axis. A large amount of error comes from the drift around the

axis where there is no rotational movement. This drift shows that filter is not able to keep track of the

bias correctly, leading to bad estimations.
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Figure 5.5: Example experiment: Rotation of 10 degrees around the X-axis with maximum joint speed
of 18 degrees per second for 3 different scenarios (left). Root mean squared error on orientation as
function of time for 3 different scenarios (right).

Figure 5.6: Example experiment: Rotation of 15 degrees around the Y -axis with maximum joint speed
of 11 degrees per second for 3 different scenarios (left). Root mean squared error on orientation as
function of time for 3 different scenarios (right).
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Figure 5.7: Example experiment: Rotation of 20 degrees around the Z-axis with maximum joint speed
of 15 degrees per second for 3 different scenarios (left). Root mean squared error on orientation as
function of time for 3 different scenarios (right).
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Chapter 6

Conclusions

The objective of this thesis was to develop an algorithm that could fuse sensor information from an IMU

and a camera to accurately estimate the orientation of a camera that would be embedded in the current

eye prototype. The proposed approach was the Unscented Kalman Filter on Lie groups, which can be

leveraged in visual-inertial odometry. We found that the filter can indeed be used to track rotational

trajectories, both in simulation and in real world scenarios, with reasonably good accuracy. However,

there are still quite a few problems, namely in terms of consistency (the filter is sensitive to the tuning of

noise parameters of the IMU) and computational efficiency (as of now, the filter is still slow and needs to

be optimized and adapted to fit a real-time application). The fact that we were only able to perform slow

movements for the benchmarking process, most likely also compromised the consistency of the filter

because of the poor signal-to-ratio of the IMU at low frequencies. Faster movements would improve the

readings, but would at the same time affect the camera frames. The depth ambiguity can also become

a problem since it may cause the filter to diverge.

Overall, this method can definitely be used to estimate orientations for our existent eye prototype.

6.1 Achievements/contributions

The main contributions added to the project are the following:

• Provide an overview on how to deal with visual-inertial odometry problems.

• Full characterization of the sensors used in the prototype for benchmarking purposes.

• Design and development of a real world experiment with reliable ground-truth.

• Implementation in MATLAB of a sensor fusion algorithm that combines inertial measurements with

camera frames in a versatile way (UKF-LG).
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6.2 Future Work

To finish this work, it’s possible to identify several ways to improve or new paths to explore. Unfortunately,

this work was not able to include minimization of the back projection error (MBPE) approach studied

in [6]. So, a possibility is to try to incorporate the latter in the UKF-LG. However, instead of using a

tightly-coupled framework like the one proposed in this work, one could try a loosely-coupled approach,

briefly mentioned in the state of the art. To the best of our knowledge there isn’t really a dataset for

this application of rotation only movements (especially eye saccades). For future work, it would be

interesting to develop both a simulator and a real world setup specifically designed to help the problem

of eye saccades. A prototype gimbal that could be used in this new benchmarking process is presented

in Figure 6.1. As for the simulator, it could also be interesting to develop an ESIM type simulator but

for eye movements. The user would define a saccade trajectory and the result would be images with

resolution close to what would be expected from the human eye, as well as, IMU measurements and

ground-truth.

Figure 6.1: 3D model of the prototype gimbal system.

54



Bibliography

[1] The extraocular muscles. URL https://teachmeanatomy.info/head/organs/eye/

extraocular-muscles/.

[2] A. John, C. Aleluia, A. J. Van Opstal, and A. Bernardino. Modelling 3d saccade generation by

feedforward optimal control. PLOS Computational Biology, 17(5):1–35, 05 2021. doi: 10.1371/

journal.pcbi.1008975. URL https://doi.org/10.1371/journal.pcbi.1008975.

[3] B. das Chagas e Silva Colaço Dias. Modeling, simulation, analytic linearization and optimal control

of a 6 tendon-driven biomimetic eye: a tool for studying human oculomotor control. Master’s thesis,

Instituto Superior Técnico, 2020.
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Appendix A

Square-root Unscented Kalman filter

on Lie groups

A.1 Initialization

• Initialization of orientation, velocity and position with the ground-truth.

• IMU bias initialization at zero.

• Initialization of landmarks done by detecting the first set of points in the first image and setting the

depth at z = 1.

The initial covariance matrix, P0, associated with the state, χ0, is given by equation A.1, where each

element of the diagonal is also a 3 × 3 diagonal matrix containing the variances of the state variables.

This uncertainty can be fine tuned depending on how well the initial state is known.

P0 =



PR 0 0 0 · · · 0 0 0

0 Pv 0 0 · · · 0 0 0

0 0 Po 0 · · · 0 0 0

0 0 0 Pp1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · PpN
0 0

0 0 0 0 · · · 0 Pbg 0

0 0 0 0 · · · 0 0 Pba



∈ R(15+3p)×(15+3p) (A.1)

x̂0 =
(
χ̂0, b̂0

)
, P̂0 → Ŝ0 (Cholesky decomposition) (A.2)
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A.2 Propagation of the state

x̂k−1 =
(
χ̂k−1, b̂k−1

)
, P̂k−1 → Ŝk−1 (Cholesky decomposition)

uk =

ω̃k
ãk

 (IMU measurements)
(A.3)

Propagate noiseless mean (Predicted belief).

x̌k = f (x̂k−1,uk,0) =



Řk = R̂k−1 Exp
((
ω̃k − b̂g

k−1

)
∆t
)

v̌k = v̂k−1 +
(
R̂k−1

(
ãk − b̂a

k−1

)
+ g

)
∆t

ǒk = ôk−1 + v̂k−1∆t+ 1
2

(
R̂k−1

(
ãk − b̂a

k−1

)
+ g

)
∆t2

b̌g
k = b̂g

k−1

b̌a
k = b̂a

k−1

(A.4)

x̌k =
(
χ̌k, b̌k

)
(A.5)

Generate sigma points. First augment the covariance matrix to include the process noise. The

covariance of the state has size L = 15 + 3p and the noise covariance has size M = 12. The total size

of the augmented state covariance is LA = L+M .

Q→ SQ, (Cholesky decomposition)

ŜAk−1 =

Ŝk−1 0

0 SQ

 ∈ RL
A×LA

(A.6)

Scale parameters: λ =
(
α2 − 1

)
LA, γ =

√
LA + λ, α = 1× 10−3 (usual value according to [25]) and

β = 2. Compute weights according to equation 2.29.

X k,i = γ coli
(
ŜAk−1

)
, for i = 1, ..., LA

X k,i = −γ coli
(
ŜAk−1

)
, for i = 1 + LA, ..., 2LA

(A.7)

X k,i = ±
[
ξχk,i ξ

b
k,i wk,i

]
, i = 1, . . . , LA (A.8)

Sigma point propagation:

uk ← uk − b̂k−1 (A.9)

The sigma points, ξχi , are first mapped to the Lie group and then propagated through the system

model, f . Omitting time instant k:

 ξ̌
b

i = ξbi + ∆twb
i

X̌χi = f
(
χ̂k−1 Exp (ξχi ) ,uk − ξ̌

b

i ,wi

) , i = 1, . . . , 2LA (A.10)
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Recollect propagated sigma points in the original space.

ξ̌
χ

i = Log
((
χ̂k−1

)−1 X̌χi
)

(A.11)

Recalculate the Cholesky factor for the propagated covariance, Šk.

Šk ← QR


√
W

(c)
i


ξ̌
χ

1 · · · ξ̌
χ

LA −ξ̌χ1 · · · −ξ̌χLA

ξ̌
b

1 · · · ξ̌
b

LA −ξ̌b1 · · · −ξ̌bLA

0 SQ 0 −SQ


 (A.12)

A.3 State update

Observation model

zik = h (χk) + niz, i = 1, . . . , p (A.13)


ziu

ziv

ziw

 = K
[

RC I

(
RT
k pi + ok

)
+ oC I

]
(A.14)

Compact version

Zk =


z1
k

...

zpk

 := H (χk,nz) (A.15)

x̌k =
(
χ̌k, b̌k

)
, Šk → Predicted belief

Zk =


z1
k

...

zpk

 (Camera observation of the p landmarks)→ Actual measurements
(A.16)

where each landmark observation zik is given by the model in equation 3.9.

Create sigma points. Firstly, pass the propagated mean without noise through the observation model.

The other measurement sigma points are computed separately.

Ž0 = H (χ̌k,0) (A.17)

Augment the covariance matrix to include the observation noise. The covariance of the state has

size L = 15+3p and the noise covariance has size M . The total size of the augmented state covariance

is LA = L + M . Note that the observation covariance matrix, R, represents the pixel image noise for
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one landmark.

R→ SR, (Cholesky decomposition)

ŠAk =

Šk 0

0 SR

 ∈ RL
A×LA

(A.18)

Scale parameters: λ =
(
α2 − 1

)
LA, γ =

√
LA + λ, α = 1× 10−3 (usual value according to [25]) and

β = 2. Compute weights according to equation 2.29.

X k,i = γ coli
(
ŠAk
)
, for i = 1, ..., LA

X k,i = −γ coli
(
ŠAk
)
, for i = 1 + LA, ..., 2LA

(A.19)

X k,i = ±
[
ξχk,i ξ

b
k,i nk,i

]
, i = 1, . . . , LA (A.20)

Sigma point propagation:

 χi
± = χ̌k Exp

(
ξχi
±
)

Ži = H (χi
±,±ni)

, i = 1, . . . , 2LA (A.21)

Compute the predicted measurement mean and weighted deviations:

Žk = W
(c)
0 Ž0 +

LA∑
i=1

W
(m)
i

(
Ž+

i + Ž−i
)

e0 =

√
|W (c)

0 |
(
Ž0 − Žk

)
e±i =

√
W

(c)
i

(
Ž±i − Žk

)
, i = 1, . . . , LA

(A.22)

Compute the Cholesky factors of the measurement covariance, Pzz, and the cross covariance, Pxz.

S
′

zz ← QR
([

e+
1 · · · e+

LA −e−1 · · · e−
LA S

′

R

])
Szz ← CholUpdate

(
S

′

zz, e0, sign
(
W

(c)
0

))
Pzz = STzzSzz

Pxz =

LA∑
i=1

√
W

(c)
i


 ξ+

i

b+
i

T e+
i +

 ξ−i

b−i

T e−i


(A.23)

Using the current measurement vector, Zk, and the predicted belief, compute the Kalman gain and

the innovation.

K = Pxz

(
STzzSzz

)−1 → Kalman gain

δξ =

δξχ
δξ
b

 = K
(
Zk − Žk

)
→ Innovation

(A.24)
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Finally, update the state mean and covariance (posterior belief).

 χ̂k = χ̌k Exp
(
δξ
χ
)

b̂k = b̌k + δξ
b

(A.25)

Ŝ
′

k ← SeqCholUpdate
(
Šk, KSTzz, −1

)
Ŝk = Ŝ

′

kJ
(A.26)

x̂k =
(
χ̂k, b̂k

)
, Ŝk → Posterior belief (A.27)
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Appendix B

Hardware

B.1 Camera: uEye LE USB3

The camera used in the project is an uEye USB3 from Imaging Development Systems GmbH. It’s a PCB

camera used commonly for medical and industrial applications and has a S-Mount for the lens B.1.1.

The basic datasheet is represented in Figure B.1. For more information about the technical data, refer

to the suppliers page 1.

B.1.1 Lens - Lensation BM4018S118C

The specifications of the lens can be found in the datasheet below in Figure B.2.

B.1.2 Calibration

The camera calibration was done using the Kalibr Toolbox from ETH Zurich 2 with an Aprilgrid with the

following dimensions (represented in Figure B.3):

• Tag columns: 6

• Tag rows: 6

• Tag size: 0.055 [m] (size of the apriltag, edge to edge)

• Tag spacing: 0.3 (ratio of space between tags to tag size)

1https://en.ids-imaging.com/store/ui-3271le.html
2https://github.com/ethz-asl/kalibr
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Figure B.3: Aprilgrid calibration target.

The estimated intrinsic parameters are:

K =


1129.723097 0 978.656074

0 1130.712255 773.305876

0 0 1

 (B.1)

Since the ideal camera model doesn’t include a lens, to accurately represent a real camera, it’s neces-

sary to include the radial and tangential distortion of the lens. These parameters are also estimated and

are given by

k1, k2 = [−0.269803 0.068608]

p1, p2 = [0.000538 0.000525]
(B.2)

B.2 IMU: LPMS-CU

The IMU sensor used in this project is the LPMS-CU developed by Life Performance Research 3. Its

specifications can be consulted in Figure B.4.

B.2.1 IMU noise model parameters estimation

The Allan Standard Deviation (ASD) plots obtained for the gyroscope and accelerometer are represented

in Figures B.5(a.) and B.5(b.), respectively. They were obtained by recording a rosbag of the IMU

3https://lp-research.com/

65

https://lp-research.com/


(standing still) measurements for around 4 hours. Then, the Allan deviations were plotted and interpreted

as suggested by Kalibr [41].

Figure B.5: Allan Standard Deviation for both gyroscope (a.) and accelerometer (b.) for the LPMS-CU

sensor determined by Kalibr [41].

B.3 IMU-Camera extrinsic calibration

To calibrate the extrinsics, i.e, estimate the relative pose between the IMU and camera, we used once

again the open source software Kalibr [41]. The procedure implies that both camera and IMU are

individually calibrated and after that we have collected a dynamic dataset by exciting all axes of the IMU

(in rotation and acceleration). The calibration process resulted in the following transformation from the

IMU fram to the camera frame:

TC I =


0.02380328 0.99967821 0.00876872 −0.02115072

−0.9996539 0.02370258 0.01141338 −0.00470428

0.01120186 −0.00903736 0.99989642 0.00017564

0 0 0 1

 (B.3)

where the rotation matrix encodes the difference of orientation between the IMU and the camera frames

and the translation of approximately 2 cm along the optical axis of the camera. This translation can be

easily confirmed because the IMU is right behind the camera lens (Figure B.6).
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Figure B.6: Visual-inertial sensor configuration used.

B.4 Kinova Gen3

The specifications of the Kinova Gen3 robotic arm used to record the real world dataset can be found

in [39]. The homogeneous transformation matrix in the initial configuration, TE B , and the pose of the

end-effector frame relative to the camera frame, TC E , are specified in B.4.

TE B =


0 0.0124 0.9999 0.6288

1 0 0 0.0014

0 0.9999 −0.0124 0.3559

0 0 0 1



TC E =


0 0 1 −0.0970

1 0 0 0

0 1 0 0

0 0 0 1



(B.4)

In Figure B.7 there’s also a table with the technical specifications of the joints actuators.
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Figure B.1: Datasheet of the uEye USB3 camera used in the project.
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Figure B.2: Technical specifications of the lens BM4018S118C.
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Figure B.4: Technical specifications of the LPMS-CU inertial sensor.
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Figure B.7: Specifications of the Kinova actuators.
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