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Resumo

A aplicação de algoritmos de reinforcement learning em robótica tem vindo a crescer ao longo das

últimas décadas, especialmente na implementação de tarefas não triviais, onde o controlo de robôs

com um número elevado de graus de liberdade, é bastante complicado através da utilização de técnicas

clássicas de controlo. O corpo humano pode ser visto como um sistema composto de vários subsis-

temas complexos, e o ORIENT project pretende estudar e aprender o controlo de uma versão robótica

de um destes subsistemas – o olho humano. Usando o algoritmo de soft actor-critic, este trabalho

tem como objetivo ligar reinforcement learning a este problema de controlo, e criar um framework que

irá aprender o controlo em malha aberta do movimento do olho para qualquer modelo. A base do

controlo implementado é inspirada no sinal de controlo do olho humano, onde um sinal de pulso é ger-

ado, integrado e enviado através do sistema nervoso para os músculos necessários para efetuar os

movimentos desejados (sacadas). A métrica para avaliar as sacadas produzidas vai ser também inspi-

rada no sistema humano, e será usada para guiar algoritmo de aprendizagem a resultados desejados.

Esta metodologia foi aplicada a uma versão bastante simplificada do olho humano, devido a limitações

de tempo, e conclusivamente o algoritmo conseguiu aprender controlo ótimo de sacadas, para três

funções diferentes de funções de pulso: as trajetórias obtidas, juntamente com as suas propriedades

não-lineares assemelham-se àquelas registadas em humanos.

Palavras-chave: Soft Actor-Critic, Controlo em Malha Aberta, Olho Biomimético, Sacadas
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Abstract

The application of reinforcement learning algorithms to robotics has been increasing over the last

decades, specially in the implementation of non-trivial tasks where the control of a robots with a high

number of degrees of freedom is very difficult using classic control techniques. The human body can

be seen a system composed of very complex subsystems, and the ORIENT project study and learn

the control of a robotic version of one of these subsystems – the human eye. Using the soft actor-critic

algorithm, this work aims to link reinforcement learning to this control problem, and create a framework

that will learn the open-loop control of the movement of the eye on any model. The base for the type of

control implemented is inspired on the human eye control signal, where a pulse signal is generated, inte-

grated and sent through the nervous system to the muscles required to perform the wanted movements

(saccades). The metric that evaluates the saccades produced will also be inspired by the human system

and it will be used to lead the learning algorithm to desired results. This methodology was applied on

a very simplified version of the human eye, due to time limitation, and conclusively the algorithm man-

aged to learn the optimal saccadic control, for three different versions of pulse functions: the trajectories

obtained, along with its non-linear properties assimilate to the ones registered in humans.

Keywords: Soft Actor-Critic, Open-Loop Control, Biomimetic Eye, Saccades
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, the speed of technological developments has increased tremendously. Part

of these developments aim at alleviating everyone’s daily burdens in life, for example, through designing

machines, including robotic systems, which may eventually automate our daily routines: machines that

wash our clothes, washing dishes or do vacuum cleaning; ICT gadgets that let you know whether the

fridge is running out of supplies, or that can turn on the lights by a simple voice command; but also

vehicles that are able to transport us around safely in cities and on highways without the need of a

human driver - automation is everywhere. A major challenge for many of these technologies is that they

have to reliably and safely perform under highly uncertain and noisy conditions, and in a-priori unknown

environments.

One of the major conceptual advances that is guiding these developments is the statistical technique

called ”machine learning”, which is defined ”as the study of statistical computer algorithms that improve

automatically through experience” [1], and which manage to perform tasks that would otherwise be

extremely difficult, if not impossible, to be carried out by humans. These algorithms are in the forefront

of development, and their many application are used in critical professions such as medicine, where

image recognition is used to diagnose patients, or artificial intelligence systems that would suggest

concrete treatment for a given patient on the basis of a large amount of data [2].

At the same time, these developments run the risk to cause distress to people who fear to lose control

over their lives, or lose human connection. It is with this in mind that the development of humanoid

robots may be thought to better connect this complex technology with humans. Humanoid robots could

be employed to perform tasks in ways that resemble humans. However, the human body is a highly

complex system that is shaped by an evolutionary process during many millions of years. Mimicking

such systems in a humanoid robotic system with traditional control techniques is therefore not a trivial

task.

One example of a complex subsystem of the human body is the eye. Within the ORIENT project (a

EU Horizon 2020 ERC advanced grant) our group learns and studies how to control a humanoid robotic

1



version of the human eye through the application of different control techniques [3–7]. So far, the group

has worked on different robotic models, and used classical control techniques to generate the desired

movements of the robotic eye

(see, e.g. Orient’s web page, at http://www.mbfys.ru.nl/ johnvo/Orient.html ).

1.2 Objectives

This thesis follows up on previous work done under the ORIENT project, and aims to develop a

framework with a new methodology to study how the eye moves. Unlike the other works, this will follow

a machine-learning approach for the control of the eye, where the algorithm will be put in situations

where a certain movement is desired and by trial and error the algorithm will learn how to perform

desired motions. Due to the exhaustive and time consuming learning process of machine learning

algorithms, the model of the eye used for learning won’t be as complex as the biomimetic models that

were developed so far for the project, but it will be constrained to a much simpler one-dimensional

model of the eye. This model will have linear characteristics, unlike the other ones, but nonetheless

the methodology that will be developed will take this feature into account, and be implemented in a

transferable way that can be readily adapted to the application of non-linear models. The technique

can also be expanded to the problem with more degrees of freedom. It will be formulated to execute

movements which will serve as a base for the algorithm to learn and improve, along with a way to induce

the learning to arbitrary pre-desired solutions in order to validate the performance of the algorithm.

1.3 Thesis Outline

Chapter one gives an introduction and provides the context to the overall theme of this thesis. Chap-

ter two will provide the background and explanation of the necessary key theory to understand the

relevant concepts and links between them applied throughout this work. Chapter three will provide

some history of one of the models developed for the ORIENT project and the need for simplification and

validation, which supported the realization of this work. Chapter four will elaborate on how the algorithm

will connect to the model of the eye, it will give a description of the various components needed for

the learning process and mention extra characteristics of the training process. Chapter five will present

the results of the training and accounts for their validity. Lastly, chapter six will summarize the results,

discuss the achievements and encountered problems, provides suggestions for future work.
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Chapter 2

Background

2.1 Human Eye

The human eye is the sensory organ that collects electromagnetic radiation from λ ∼380 - 700 nm,

which is absorbed by photo-receptors, composed of rods and cones located at the back of the retina,

and through electrical signals it sends this information to the brain as action potentials that travel via

the optical nerve [8]. Depending on the orientation of the eye, different locations of the environment are

perceived. For a fixed head the eye’s orientation is governed by the six extra-ocular muscles attached to

the eye, split into three agonist-antagonist pairs: Superior Rectus (SR) and Inferior Rectus (IR), Superior

Oblique (SO) and Inferior Oblique (IO) and Medial Rectus (MR) and Lateral Rectus (LR) 2.1 - when one

of the pairs pulls to move the eye, the other tends to relax. As a higher concentration of cones is located

around the center of retina, the fovea, the resolution of the images captured by the human is much

higher at the center than on its periphery, and so the brain uses these 6 muscles to control the gaze

direction to obtain high-resolution visual information from the environment.

Figure 2.1: View of the 6 muscles that control the right eye
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2.1.1 Saccades

The two main type of conjugate eye movements of the human oculomotor system are smooth pursuit,

where the retinal slip [9] is kept to a minimum in order to track and maintain moving objects on the fovea,

and saccades, which are the focus of this work. This latter eye movement type is described by a

quick change of the line of sight to allow for a quick re-orientation of the fixation point. Since the brain

cannot perceive clear images during fast motions [10], it’s imperative to keep the duration of saccadic

movements to a minimum, allowing for swift scans of the environment. Saccades with a large amplitude

(30 deg or more) can reach peak velocities of 500-700 s−1 [11], and most saccades have a duration of

20 to 100 ms, with inter-saccadic fixation times of 200 to 300 ms [12].

2.1.2 Neural Control

The model of the eye-plant (extra-ocular muscles, the eye ball, and surrounding tissues) has been

approximated by a second-order linear over-damped system with a long time constant of about T1 ∼ 200

ms, and so without any insight into the neural control, fast and precise eye movements with durations

of about 40-80 ms seem at first glance counter intuitive. The fatty tissues around the eye are the major

cause of this slow over damped property, far exceeding the average saccade duration [12]:

He(s) = κ
sTz + 1

(sT1 + 1)(sT2 + 1)
(2.1)

where T2 = 0.02, Tz = 0.07, T1 = 0.2s and κ is a gain dependent on the three time constants. As such

it can be easily seen, applying linear systems theory that a step-like input signal would result in an eye

movement that would be far slower than a regular saccade.

As a consequence, the brain has to employ a non-linear pulse-step control strategy to overcome this

overdamped system for fast and accurate saccades. David A. Robinson [13] proposed a model (figure

4.2) for the control of the eye which has a solid conceptual framework to study and understand the eye

control system. Based on the dynamic error between the desired target and the current eye orientation,

a high-frequency pulse signal is sent to the motor neurons to make the saccadic movement, and which

overcomes the eye’s frictional forces, and in parallel this pulse signal is neurally integrated to let the

motor neurons produce the required elastic force that keeps the eye at the desired orientation. And so,

the saccadic movement of the eye is caused by a pulse-step control signal, where the appropriate pulse

is programmed by the brain, which is also neurally integrated:
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Figure 2.2: Robinson’s model of the saccadic system [13]

Figure (2.3) shows empirical data from neural recordings of a single abducens motor neuron (lateral

rectus eye muscle) for 11 identical saccades. The thin small lines show the individual action potentials of

the neuron for each saccade, summarized below by a peri-saccadic time histogram. It can be observed

that there is a clear high-intensity pulse, followed by a slide (time constant Tz), and a step component of

the signal sent to plant, which is associated with very fast step-like saccades with high reproducibility.

Figure 2.3: Recordings of oculormotor neuron firing for 11 identical saccades in monkeys and conse-

quent eye trajectories [12]

2.1.3 Non-linear Dynamics

A saccade main sequence describes relationships between its properties: duration, velocity and

amplitude. Skewness is another property that would describe the ratio between the time of deceleration

of a saccade and its duration. These have been proven has an important tool to investigate the motion

of the eye, as in, the design and test of various models of saccadic control as well as diagnosing the

integrity of the saccadic system [14].
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Figure 2.4: Non-linear properties of saccades

Above, in figure 2.4, it’s illustrated the very much stereotyped, across many studies, main sequence

properties: the non-linear dynamic system of the saccades can be seen in all four 4 graphs. The

duration of a saccade increases with amplitude, the peak velocity behaves for small saccades tends to

be linear but as amplitude increases this value tends saturate, and skewness of the velocity profile tends

to increase with amplitude, this is all saccades have a somewhat constant period of acceleration (25 ms)

[15], but have a larger duration of deceleration as the amplitude growth. These dynamics will be key in

the work to understand and evaluate whether or not the saccadic control is adequate and if it assimilates

to that of the human eye.

2.2 Eye Orientation Representation

This section is introduced to give some basic understanding to the description of eye orientation that

will be mentioned further into this thesis. Even though this thesis will focus mainly on horizontal angular

movement, which is straightforward, expanding this concept to three dimensions will give insight into the

expressions mentioned in chapters 3 and 4 which will allow to extend this work to the problem with more

degrees of freedom.

2.2.1 Rotation Matrix

Any rotation can be represented by a matrix R ∈ R3×3in a three dimensional euclidean space which

obeys the following rules:

det(R) = 1 (2.2)

RT = R−1 (2.3)
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And to describe a rotation around each of the three cardinal head-fixed axes, x (frontal axis; cyclotor-

sional rotation), y (horizontal axis; vertical rotation) and z (vertical axis; horizontal rotation):

Rx(ψ) =


1 0 0

0 cos(ψ) − sin(ψ)

0 sin(ψ) cos(ψ)

 , Ry(φ) =


cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

 , Rz(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


(2.4)

where the direction of rotation obeys the right hand rule for each axis. So to apply a rotation R to a

vector v, the output vector v′ could be expressed as:

v′ = Rv (2.5)

If there is a need to perform multiple rotations around any of these axes, a sequential multiplication of

the desired rotation matrices suffices. It is important, though, to note that these sequence of rotations

is not commutative, as in, performing a rotation of a vector around the x-axis, then a rotation around the

y-axis and then a rotation around the z-axis could not yield the same result as performing a rotation first

around the z-axis, then the y-axis and finally x-axis, or any other sequential combination.

2.2.2 Quaternion

Quaternions are an alternative way to represent rotations and 3D body orientations. They may be

considered as an extension of the complex numbers, which results in a direct connection to 3D rotations

with more convenient algebraic properties that 3D rotation matrices. A quaternion, q, can be represented

by:

q = q0 + q1 · I = q0 + qxi+ qyj + qzk (2.6)

where q0 is a scalar, q1 ≡ (qx, qy, qz) is a vector of real numbers and I is a complex vector of i, j and k

which are the fundamental quaternion units, representing the axis of rotation of the quaternion, with the

following relations:

i2 = j2 = k2 = ijk = −1 and ij = k jk = i ik = −j (2.7)

When describing rotations, it is usually done in terms of an angle ψ and a unit rotation axis n =

(nx, ny, nz):

q = ‖q‖
(

cos(
ψ

2
) + n · I sin(

ψ

2
)

)
= ‖q‖

(
cos(

ψ

2
) + (nxi+ nyj + nzj) sin(

ψ

2
)

)
(2.8)

where ‖q‖ ≡
√∑4

i=1 q
2
i is the norm (or length) of the quaternion. Without loss of generality, rotations

are represented by quaternions with norm ‖q‖ = 1.

To represent a combined rotation by a quaternion q = q0 + q1I followed by another quaternion p =

p0 + p1I, the noncommutatice multiplicative operation between the quaternions holds:

pq = p0q0 − p1 · q1 + p0q1 + q0p1 + p1 × q1 (2.9)
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where · represents the dot product and × represents the cross product.

Other properties of the unit quaternions include:

q−1 = q∗ (2.10)

where is the q∗ represents the complex conjugate of q (q∗ = q0 − q1I).

It is also noteworthy that the expression that represents the time derivative of a quaternion (q̇) relates to

the angular velocity, ω, of the rotating body by:

q̇ =
1

2
ωq (2.11)

where ω = 0 + ω1I and ω1 would represent the angular velocity for each of the complex axis [16].

Finally it is possible to convert the four components of a unit quaternion to nine elements of the rotation

matrix, R [17] by:

R =


1− 2(q2

y + q2
z) 2(qxqy − q0qz) 2(qxqz + q0qy)

2(qxqy + q0qz) 1− 2(q2
x + q2

z) 2(qyqz − q0qx)

2(qxqz − q0qy) 2(qyqz + q0qx) 1− 2(q2
x + q2

y)

 (2.12)

2.3 Reinforcement Learning Framework

Reinforcement learning is a field of artificial intelligence that aims to solve problems through a system

of punishment and reward. Generally speaking there will be an entity that is aimed to train, the agent,

that interacts with an environment, applying an action to it, and then receives from it, a state and a

reward. The agent knows nothing about the environment but has the goal of maximizing the reward

obtained, and depending on the application there are various ways that the agent can go about it: first

the agent could use a value-based algorithm, where the agent evaluates the state and actions taken,

allowing it make decisions based on future rewards, it could take a model based approach, where it

aims to learn about the environment and simulate future outcomes before taking action, or policy based

learning where the agent maps states to actions and so it would simply generate a list of actions that

would lead a final objective [18]. The algorithm that’s going to be used in this project, the soft actor-critic,

will have both a policy approach and a value approach; as it doesn’t aim to know anything about the

environment this will be a model-free based approach. Beforehand, there will be the need to introduce

some key concepts that will help give insight to how the algorithm works.
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Figure 2.5: Diagram portraying the general idea behind reinforcement learning algorithms

2.3.1 Markov Decision Process

A Markov decision process is the mathematical framework that will serve as a basis for the learning

algorithm. This is going to be defined as a tuple (S,A, p, r), where S and A correspond to a continuous

state space and continuous action space respectively, p is the probability density of the next next state

st+1 ∈ S given the current state st ∈ S and the current action at ∈ A, and r is the reward issued by the

environment on each transition. Using this notation it is now possible to generalize the reinforcement

learning problem: the agent at each time step, t = 0, 1, ... will receive a representation of the state of the

environment st ∈ S and apply an action atinA. The environment will then output a reward r from taking

the action at at a state st - r(st, at). As the objective, the agent will want to maximize the cumulative

reward from taking each action at each state. Then it will have to learn a policy π∗ that maximizes the

sum of expected rewards:

π∗ = arg max
π

∑
t

E(st,at)∼ρπ [r(st, at)] (2.13)

where π(at|st) is a probability distribution that represents the probability of taking the action at at a

state st, and ρπ(st, at) denotes the state-action marginals of the trajectory distribution induced by a

policy π(at|st) - ρπ(st, at) = p(s0)
∏
t=0 π(at|st)p(st+1|st, at) - or in other words, the probability of (st, at)

independently of the succession of states and actions (trajectory) taken to get there [19]. This equation

2.13 defines the standard objective of reinforcement learning.

2.3.2 Value function and Q-function

The value function is something that’s used on the value based approach; it will evaluate the benefit

of being in a certain state based off a policy π [19]. Since the objective is to maximize the cumulative

sum of the expected reward, there is a need to represent this:

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =

∞∑
j=0

γjrt+j+1 (2.14)
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where rt+1 represents the reward obtained at time t + 1 and γ represents a discount factor which is in

the expression to account for future uncertainty; this is some value between 0 and 1. A value of 0 would

mean that only there is only interest in the immediate value of the reward, and a value of 1 would be that

all future would have the same importance. As such Gt is the total discounted reward from time-step t,

and so as the value function of a state st through the use of a policy π, Vπ(st) is the expected sum of

future rewards from state st:

Vπ(st) = Eπ[Gt|st] = Eπ[

∞∑
j=0

γjrt+j+1|st] (2.15)

Similar to the value function, the Q-function, Qπ(st, at), is defined as the expected reward obtained from

applying the action at to a state st, through a policy π:

Qπ(s, a) = Eπ[Gt|st, at] = Eπ[

∞∑
j=0

γjrt+j+1|st, at] (2.16)

2.3.3 Bellman Equation

The Bellman equation is a key element in reinforcement, its use simplify the computation of the

value function, by breaking down the problem into simpler recursive subproblems [20]. As such the

expressions for Value function can be rewritten as:

Vπ(st) = Eπ[rt+1 + γGt+1|st] = Eπ[rt+1 + γVπ(st+1)|st] = r(·|st) + γ
∑
st+a

ρπ(st+1|st)Vπ(st+1) (2.17)

As the reward of rt+1 is simply the the reward at state st, this is expressed as r(·|st), and the sum is just

the definition of expected value, where ρπ(st+1|st) is the probability of being at a given state st+1 from a

state st through a policy π.

Similarly the Q-function can be rewritten:

Qπ(st, at) = Eπ[rt+1 + γGt+1|st, at] = Eπ[rt+1 + γQπ(st+1, at+1)|st, at] (2.18)

As the sum of the probabilities of taking all the action possible of a policy π at state st equal to 1,∑
at
π(ta|st) = 1, the value function can be rewritten in terms of the Q function and the policy π:

Vπ(st) =
∑
at

π(at|st)Qπ(st, at) (2.19)

Similarly, it is possible to rewrite the Q-function in terms of the value function:

Qπ(st, at) = r(st, at) + γ
∑
st+1

π(st+1|st, at)Vπ(st+1) (2.20)
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By substituting equation 2.19 into 2.20:

Qπ(st, at) = r(st, at) + γ
∑
st+1

p(st+1|st, at)
∑
at

π(at+1|st+1)Qπ(st+1, at+1) (2.21)

And vice-verse:

Vπ(st) =
∑
at

π(at|st)

r(st, at) + γ
∑
st+1

p(st+1|st, at)Vπ(st+1)

 (2.22)

And so there is now two recursive expressions to obtain the value for the Q-function and value function.

2.3.4 Entropy

Entropy is defined as ’lack order or predictability’ [21], and this idea will be present in the soft actor

critic algorithm. For example, winning the coin game of heads or tails is much less predictable than

winning the lottery. Since the probability of the first one is 50% the outcome is uncertain, whereas on the

latter case the outcome of a loss is mostly certain. So, the game of heads or tails has higher entropy

than the lottery. Formally speaking the entropy H(X) is defined as:

H(X) = −
∑
x

pd(x) log(pd(x)) (2.23)

where pd(X) is the probability distribution of a random variable X, and the base of the logarithm can

vary from application to application; here it will be kept as the standard natural logarithm for consistency

reasons. In the case of the coin game, the probability of landing heads would be 0.5 (pd(heads) = 0.5)

and the probability of landing tails is 0.5 (pd(tails) = 0.5), therefore the entropy of the game would be

H = −(0.5 log(0.5) + 0.5 log(.5)) = 0.69. Assuming that the chances of winning a lottery would be 1 in

14 million [22], its entropy would be H = 1.25 × 10−6. When the name of an expression has the word

soft anterior to it it usually means that there’s the addition of this term to its standard expression.

This concepts is used in reinforcement learning to promote exploration on the agents, making their

actions less predictable, which is usually useful to avoid the agents getting stuck in sub-optimal solutions.

An easy example would be when an agent is found in the following scenario: it has two paths to follow, A

and B; if the agent chooses path A it receive a reward of 1, if it chooses path there is a 95% of receiving

nothing and a 5% change of receiving a reward of 500. If the agent had no incentive to explore, at the

beginning of the training it would most likely, try both paths and expect a constant reward from path A

and no reward from path B. So the agent would tend to have a bias to just pick path A. The addition of

entropy would incentivize the agent to try path B every so often - leading for it to conclude that there can

be an higher reward on path B.

2.4 Soft Actor Critic

This section is critical to understand the algorithm that is going to be used to train the model of the

eye that will be explained in chapter 4. The explanation of this algorithm will be based mainly off these
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two papers [23, 24], where the algorithm was firstly introduced and further developed. This section will

give a brief overview of its properties and also provide the key equations necessary for its understanding

and implementation.

2.4.1 Overview

The soft actor-critic algorithm is an efficient and stable design for a continuous state and action

space using the maximum entropy framework which has been proven to be stable and robust [25]. The

addition of this framework aims to reward exploration besides just learning the best policy, and although

the objective is altogether modified, a temperature parameter is used to regularize this entropy factor, α,

ultimately making it possible to recover the original objective.

All-in-all, the soft actor-critic is an algorithm that maximizes reward and exploration, making use of replay

buffer, from a off-policy formulation, to improve sample efficiency and a maximum entropy to enhance

stability and promote exploration. And so has a simple overview of how the algorithm works: the agent

will start with a random policy, it will use it to apply a random actions to the environment and retrieve

information about it, once it has enough samples it will be able to distinguish better actions from worse.

Then it will improve itself in a way that it will start taking better and better actions as time goes on, until

a point where it is always applying the best actions to environment.

2.4.2 Framework

We are going to start off with the standard Markov Decision Process methodology described in 2.3.1,

take the standard objective of reinforcement learning, equation 2.13, and add to it the maximum entropy

objective [25]:

π∗ = arg max
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (2.24)

where α is the temperature parameter mentioned above, which will control stochasticity of the optimal

policy; and as this tends to 0, the traditional objective is recuperated, equation 2.13. It is important to

mention that the soft actor-critic models actions for a continuous space, so the policy will output actions

that have some kind of continuous distribution, on this case this action will be modelled by a gaussian

distribution. So the policy will output a mean and a standard deviation, and a random sample off these

values would be the action applied to the environment. Moreover, for simplification, since the distribution

is known to be gaussian now, the entropy of policy will be H(π(at|st)) = − log(π(at|st))

With this all in mind, the characteristics and implementation of the algorithm can be introduced. To

model the soft value function (Vπ(st) = Eat∼π[Q(st, at)−α log(π(st|at))]), the soft Q-function (Q(st, at) =

r(st, at) + γEst+1∼ρπ [V (st+1)]) and the policy, there will be used 3 neural networks. The soft Q-functions

will be parameterized by θ and specified by Qθ(st, at) and the policy networks will be parameterized by

φ, and designated by πφ(at, |st). Also, these two neural networks can be identified as the critic and the

actor respectively. The value function V will be parametrized by θ.
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The soft Q-function parameters can be trained by minimizing the soft Bellman residual:

JQ(θ) = E(st,at)∼D[
1

2
(Qθ(st, at)− (r(st, at) + γEst+1∼p[Vθ(st+1)]))2] (2.25)

where D represents the replay pool where the values of the state (st), the action applied to the state

(at), the reward obtained r(st, at), and following state (st+1) are stored. As such this function can be

optimized through stochastic gradient descent:

∇̂θJQ(θ) = ∇θQθ(at, st)(Qθ(at, st)− (r(st, at) + γ(Qθ(st+1, at+1)− αlog(πφ(at+1|st+1))))) (2.26)

where ∇̂ is representation of the estimated gradient obtained.

For the update of the parameters of the value function, θ, it is done through an exponentiated moving

average of the parameter θ.

The policy parameters are learned through the minimization of the Kullback-Leibler divergence, an op-

erator that measures the the difference of two probability distributions [26, 27]; the new policy will be

updated towards the exponential of the new new soft Q-function since this will guarantee an improve-

ment in the soft policy in terms of the soft value [24]. Leading to a soft bellman residual of π of:

Jπ(φ) = Est∼D[Eat∼πφ [α log(πφ(at|st))−Qθ(st, at)]] (2.27)

To update the parameters φ a trick is used, which results in a lower variance estimator. The value of

the policy neural network is reparameterized using the transformation at = fφ(εt; st) where εt is an input

noise vector from some fixed distribution. From here equation 2.27 can be rewritten as:

Jπ(φ) = Est∼D,εt∼N [α log(πφ(fφ(εt; st)|st))−Qθ(st, fφ(εt; st))] (2.28)

Since πφ is defined implicitly in terms of fφ, the gradient can approximated to:

∇̂φJπ(φ) = ∇φα log(πφ(at|st)) + (∇atα log(πφ(at|st))−∇atQθ(st, at))∇φfφ(εt; st) (2.29)

Lastly the term that needs to be trained is α. Again this parameter affects how much the algorithm will

explore, and for some tasks it is better to explore than others; not only that, even within tasks, it is better

to explore in certain situations than others - so keeping this value fixed can be ill-advised and non-trivial

task to regulate manually.Instead, this parameter will be automatically adjusted by the algorithm, and

the problem is formulated such that the average entropy of the policy is constrained. The residual for the

update of this parameter is derived in [24]:

J(α) = Eat∼πt [−α log(πt(at|st))− αH] (2.30)
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where πt is the policy applied at time t, but this result was derived to obtain higher value in regions

where the optimal policy is uncertain, promoting exploration, and lower value when the algorithm is able

to make distinction between good and bad solutions.

With all these pieces is now possible to build the algorithm:

Algorithm 1 Soft Actor-Critic
Input: θ, φ . Initial parameters

θ ← θ . Initialize target networks weights

D ← ∅ . Initialize an empty replay pool

for each iteration do

for each environment step do

at ∼ πφ(at|st) . Sample action form the policy

st+1 ∼ p(st+1|st, at) . Sample transition from the environment

D ← D ∪ (st, at, r(st, at), st+1) . Store the transition in the replay pool

end for

for each gradient step do

θ ← θ − λQ∇̂θJQ(θ) . Update the Q-function parameters

φ← φ− λπ∇̂φJπ(φ) . Update policy weights

α← α− λ∇̂αJ(α) . Adjust Temperature

θ ← ιθ + (1− ι)θ . Update target network weights

end for

end for

Output: θ, φ . Optimized parameters

Above there is a simplified implementation of the algorithm, where ι represents the coefficient of

discount of the exponential moving average and the λQ, λπ and λ represent the learning rates or step

sizes when updating the parameters θ, φ and α through gradient optimization methods. As it can be seen

the algorithm alternates between collecting samples from the environment and updating the function

approximators through sampled batches stored in the replay pool.

2.5 State of the Art

For real world application the use of other previously developed algorithms would be very expensive

and difficult to obtain results. On one hand, there are on-policy deep reinforcement learning algorithms

such as TRPO [28], PPO [29] or A3C [30], albeit stable, they have the flaw of having a poor sampling

efficiency, they require new samples for each time the algorithms try to learn/ improve, which becomes

extremely as the number of step required to learn the optimal policy increases. On the other hand there

are off-policy algorithms, such as DDPG [31] and its improved version TD3 [32], which make use of a

replay buffer to make them algorithms with good sample efficiency. However these are very brittle when

it comes to hyperparameter tuning: lousy values for learning rates, exploration constants and other
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properties are enough to make algorithms unstable and unable to converge. And so new reinforcement

learning alogirthms have been emerging that work well when applied to real life robotic tasks. Moreover

the implementation of these techniques to robots with high complexity, numerous degrees of freedom

and which perform tasks considered more than intricate, are highly effective and somewhat straight for-

ward to implement, making traditional control techniques obsolete. In [33], the algorithm Policy Learning

by weighting exploration with the returns (PoWER) is showcased and is effective in performing tasks

that require an initial demonstration of the policy needed to perform, as in, the algorithm learns by re-

producing and adapting from the initial demonstration. In tasks such as the tether-ball target hitting in

simulation, the under-actuated swing-up and ball in a cup managed to have successful outcomes. In

[34], it is also successfully showcased the use of 3 expectation-maximization reinforcement learning

algorithms to perform 3 different tasks in real life robots: pancake flipping, minimization of energy on a

bipedal robot and archery.

Regarding the use of the soft actor-critic algorithm to robotics, in [24], the algorithm to 2 different robotic

tasks: the first one was a quadrupedal robot which learned the policy for walking on a flat surface, but

when this was placed on a environment with slopes, the policy managed to generalized to such scenario

and perform well. The second application was to perform a task where it was required to move a valve

like object to the correct position, where the input of the algorithm was solely the feed from a camera -

the position of the motors were not provided to the policy. There is also the application of this algorithm

on a dual arm robot which aims to make movement avoiding possible collisions.

The application of this algorithm to vision related tasks has conceived works that only study patterns

of gaze allocation: in an environment that require constant eye movement - to navigate a sidewalk with

obstructions [35] - or how it moves while reading, does it read word by word, or keeps a constant move-

ment [36].

The works that precede this one [3–7] have only focused on the control of a biomimetic eye through the

application of linear control techniques to the model. This thesis aims to provide a framework for the

control of this biomimetic eye using a free-model reinforcement learning approach.
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Chapter 3

Eye Model

This chapter will provide the context necessary to understand the model that will be used for training:

how the models that came before it are similar mechanically to the human eye, and why the simplification

that was need, wouldn’t invalidate the training of the soft actor critic algorithm on its predecessor models.

3.1 Design

The model that’s going to be first used to apply the algorithm to learn its motor primitive parameters

will be the one developed by Miguel Lucas [4], which consists of a semi-sphere attached to a ball-joint

mechanism and connected through 6 elastics to aluminum plates attached to 3 different motors - 1

horizontal and 2 vertical, form ing 3 pairs of agonists and antagonistic muscles. The elastics attached

directly to the horizontal plates are supposed to mimic the MR and LR muscles, while the other elastics

go through intermediate points and are supposed to mimic the other four muscles. The difference in the

tensions between the elastics are what is going to introduce movement to the eye, as a result of applying

rotations to the motors.

Figure 3.1: Real Biomimetic Eye Model: 1- Motor nº1 (IO SO); 2- Motor nº2 (MR LR); 3- Motor nº3 (SR

IR); 4- Motor aluminium arms; 5- Two out of six washers; 6- Compatibility part (3D printed adaptor); 7-

Top modified eye screw; 8- LPMS-CU accelerometer sensor; 9- 3D printed eyeball [4]
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3.2 Simulator

To be able to apply the algorithm in a desirable fast and accessible environment the simulator de-

veloped by Carlos Tavares [5] was essential. He took the simple approach of building the simulator on

top of Newton’s Second Law applied to rotations (equation (3.1)), and assuming the elastics behave like

simple stretched springs - Hooke’s Law [37]:

T = Iα (3.1)

F = −kx (3.2)

whre T represents a torque, I the inertial tensor of a body, and α its angular acceleration. k represents

the coefficient of restitution for a spring like object, and x its displacement from a equilibrium/relaxed

position. For an elastic referenced with the index ı, with a unstretched length of l0i of let’s call the point

where the elastic is attached to the aluminum plate Pi, and Qi the point where the elastic is attached to

eye. If an elastic goes through an intermediate point Xi, the force Fi applied to the eye is:

Fi = −k(|Pi −Xi|+ |Xi −Qi| − l0i) (3.3)

If there’s no intermediate point as a simplification Qi = Xi. For a reference frame centered at the center

of rotation of the eye, the torque applied by all the elastics Tela on the eye is:

Tela =
∑
i

Qi × Fi (3.4)

where × represents the cross product. The total torque, T is not only composed by the elastics, so it’s

necessary the addition of its other 2 components, gravitational torque Tg, and friction torque Tf :

T = Tela = Tg + Tf (3.5)

Tf = −βω (3.6)

Tg = Cm × Fg (3.7)

where β is a friction coefficient, ω is the angular velocity, Fg is its gravitational force, Cm is the position

of the center of mass of the eye, which might have to be updated if it’s off the center of rotation:

Cm = RCm0
(3.8)

where Cm0 represents the position of the center of mass in relation to the center of rotation at the start,

and R is obtained through equation 2.12, using the quaternion q representing the orientation of the

eye. Using now equation 3.1, and knowing the moment of inertia of the eye I it is now possible to

obtain its angular acceleration. Although it is also important to take into account that the inertial tensor
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will change values depending on the orientation, so this needs to be updated as well. From a certain

initial orientation with a value of I0 for the tensor, the updated initial tensor Iu can be updated using the

following equation:

Iu = RT I0R (3.9)

By integrating this value it’s possible to obtain the angular velocity ω, which in quaternions would be

equation 2.11. Where ωq is the angular velocity expressed as a quaternion (with the scalar value as 0),

q is the quaternion orientation of the eye and q̇ is its quaternion angular velocity. Finally integrating this

value will give the new eye orientation as a quaternion. Below there is a simplified algorithm on how all

of these equations come together to update the orientation of the eye:

Algorithm 2 Orientation Update
Initialize parameter vectors:

τ . Motor Position

Q . Insertion point on eye

P . Insertion point on motors

X . Intermediate points

Cm0
. Center of Mass

I . Moment of Inertia

q . Eye orientation in quaternions

ω . Eye angular velocity in rads s−1

while Simulation is running do

τ ← Update Motor Position() . Updates the Motor Position off external inputs

P ← Update Motor Insertion Points(τ) . Updates position of insertion points on motor

Q← Update Eye Insertion Points(q,Q0) . Updates position of insertion points on eye

Tela ← Compute Torque From Elastics(P,X,Q) . Equation 3.4

Tgrav ← Compute Gravitational Torque(Cm0
, q) . Equation 3.6

Tf ← Compute Friction Torque(ω) . Equation 3.7

T ← Tela + Tgrav + Tf . Equation 3.5

α← Compute Angular Acceleration(T, I, q) . Equation 2.12 and 3.1

ω ← Compute Angular V elocity(α) . Integration

q̇ ← Compute Quaternion Angular V elocity(ω, q) . Equation 2.11

q ← Update Orientation(q̇) . Integration

end while

Figure 3.2 will show a visual representation of the simulator built using Pyglet [38], along with the

identification of what elastics would represent which muscles on a human eye.
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Figure 3.2: Visual representation of the simulator built using Pyglet

3.3 Linear Approximation

It is important now to mention that, as it can be assumed, that these simulations are discretized

with a constant time step - a value which is paramount to define the precision of the simulation with a

similar model in reality as well as its speed. These two factor trade-off with each other, this is, for a

more accurate simulation with reality a longer time will be taken, simply because more time steps will be

required. With this in mind, and taking into account that it’s necessary to go through every single step

of the simulation to know the behaviour of the saccade trajectory, since the model is non-linear, it was

necessary to simplify this model. Because reinforcement learning requires thousands if not millions of

simulations to train neural networks, the following simplification was required to speed up the training.

It’s also important to mention the application of reinforcement learning on this thesis will only be applied

only to horizontal saccades, meaning that the horizontal motor will only be considered for inputs in the

system. So, from this point onwards, only pure horizontal saccade will be considered on this new model

of the system, although the methodology was design to be transferable to the simulator, to the real life

model, or even any other desired plant, changing only how the required information necessary for the

Soft Actor Critic algorithm to work would be gathered.

3.3.1 Low Pass Filter

The new model of the eye will be approached by a Low-Pass Filter (LPF), with a cutoff frequency of

ω0 and a gain, K:

H(s) = K
ω0

s+ ω0
(3.10)

These 2 parameters can be obtained by doing a system identification to the system, applying step

commands to the motor with different amplitudes and using a Least Square Estimator, it was possible to

determine K and ω0 with respect with amplitude:
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(a) Value of K vs. Step Amplitude (b) Value of ω0 vs. Step Amplitude

Figure 3.3: The values ob of K (left) and ω0 (right) as a function of the step amplitude applied as inputs

to the motor

As it can be seen above 3.3, it’s possible to recognize the non-linearity of the system in both graphs.

If the system was linear the both graphs would present horizontal lines - from the value of K, the final

orientation of the eye would be proportional to the steady state position of the motor, and from the value

of ω0, the duration of the movement would be the same independently of the step amplitude. To select

a value of K for the LPF it was decided to simply pick a value that would minimize the least square

error from all the values for each step size, giving a value of K = 1.4758. For the value of ω0 a different

strategy was applied: the time step used for these simulations was of 0.001 seconds, meaning that the

step of 10º would require a speed of 10000 s−1, which is a reasonable upper bound for the top speed

of the motor, which will be essential to determine certain parameters further ahead - giving a value of

ω0 = 17.5. So, from now on this will only be the only model considered for training, applied only for

horizontal saccades, where changes in angle of yaw will be considered.

There are 2 concepts important to mention: the first one is the irrelevancy of the values selected for

the problem, independently of what these are, the behaviour of the Soft Actor Critic Algorithm would be

the same, to maximize the reward. What would change in the end would be the values to which the

neural networks would converge to. Secondly, as it will be seen in the following sections, there will be a

parameter that is going to be trained that would deal with the non-linearity of K, and another parameter

that would deal with the non-linearity of ω0 in the non-linear system.
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Chapter 4

Implementation

In this chapter it will be given a description of the implementation of the Soft Actor Critic on the model.

Key components will be defined in order to link the algorithm to the model based off of the task that it is

wanted to perform. These components are namely the ones introduced in section 2.4: state, action, and

rewards - values that will be stored in a replay pool and will be used to train the neural networks. Lastly

there will be further concerns and properties of the algorithm used for training which will give further

insight to the algorithm.

4.1 Overview

The objective of the algorithm is to learn to perform saccades that assimilates human like behaviour,

through a process of trial and error - same way as infants do [39].

Figure 4.1: Simplified version of the interaction between the policy network and the eye plant

When we perform saccades, the brain knows the internal orientation of the eye and predetermines its

final orientation based on the position of the desired target. It then sends signals to the 6 internal ocular

muscles, to extend or contract, to move the eye to the desired position. Based on the alignment between

the final eye orientation and the target, further movements to the eye might be done. As such, figure 4.1

describes a reduced version of how the algorithm interacts with plant of the eye. Since the idea is to go

from one orientation to the next, the input of the actor network is the current/ initial orientation of the eye

and its desired orientation. The output will be the action applied to the model, which in this case would
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be a position of the motors that control the orientation of the eye. This change in orientation and based

on various factors that will be explained further ahead in this section, the eye plant will output a reward.

Even though the brain performs corrections when needed, as a simplification of the problem, the control

will be done in open-loop, which happen to yield similar results as the ones identified in humans [40, 41].

4.2 State

As mentioned before this will be simply the eye orientation and the desired eye orientation. Since the

control will be done in open loop, the state fed into the policy network will just be the initial eye orientation,

and the desired eye orientation - this will be a tuple of 2 quaternions parameters, (qa0 , qax , qay , qaz , qb0 ,

qbx , qby , qbz ), where for a quaternion qi representing the initial eye orientation it would be expressed as

qi = qa0 + (qax , qay , qaz ) · I, and another quaternion qd representing the final desired orientation, it would

be expressed as qi = qb0 + (qbx , qby , qbz ). qi is a value retrieved from the plant, a value that is always

available in any of the models that could be used, and qd is a value generated randomly from episode to

episode . For contrast, if a closed-loop approach were to be implemented, for each step in time a new

state would be fed into the network, since the eye moved its quaternion orientation changed - a new

state would have kept the parameters for the desired orientation but changed the ones about the initial

or previous orientation.

4.3 Action

The action applied on the system is what will change the orientation of the eye. In the real model, this

would represent a change in the position of the motor and since the control will be done in open-loop it

is necessary for the output of the policy network to define a movement of the motor from an initial time

until infinity. This could be done by approaching many positions of the motor in time as outputs of the

actor network, as in, the first output neuron would define the position of the motor at time = 0 s, the

second would define the position at time = 0.1 s, the third at time = 0.2 s, etc. and the position of the

motor for instances of time in-between the times defined by the output neurons, would be approached by

straight lines. This method unfortunately would require an unknown amount of neurons with an unknown

timescale, which would exponentially complicate the size and complexity of the neural networks used.

Instead the approach taken will be to define a function τ(t) which will give the position of the motor at time

t, and it will have a certain predefined overall shape which can be controlled using certain parameters

- for example, the function A sin (Bt) will ”always” have the shape of a wave, but its amplitude can be

controlled by changing the parameter A, and changing B will change its frequency - and so, in this

case, by having only two parameters as outputs of the policy network, we would have a function defined

continuously over its entire time domain. Moreover, this approach, along the linearization done the

model, will allow to have analytical solutions for its behaviour, as it will be explained further ahead.

This function τ(t) will be inspired by the model of saccades established by David A. Robinson [13], and

already described in section 2.1.2, such that when a saccade has to be done a pulse is generated which
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with the addition of the neural integrator will output a pulse-step command that will direct the gaze to the

desired position.

Figure 4.2: Pulse-step generator

Above is a diagram of the pulse step generator, where pm(t) is a function that defines a pulse, which

goes through an integrator with gain k0 and is added to itself to make the motor command τ(t), which

then applied to the model of the eye which will output a saccade with yaw θy(s). If a simple step function

was defined for the motor command of a saccade, it would follow a linear behaviour on the Low Pass

Filter model - saccades would take the same time, due to the modelling of the plant, independently of

their amplitude. The introduction of a pulse generator and an integrator is necessary to make faster

saccades than what otherwise would be possible.

τ(s) = pm(s)(1 +
k0

s
) = pm(s)

s+ k0

s
(4.1)

The equation 4.1 shows the relationship between the motor command τ applied and the pulse generated

pm in the Laplace domain which has the aim of producing faster movements than the ones allowed by

the plant. As in, when such commands are applied to the Low-Pass Filter plant, H(s), it outputs a value

for the yaw θy:

θy(s) = τ(s)H(s) = (pm(s)
s+ k0

s
)(K

ω0

s+ ω0
) = pm(s)Kω0

s+ k0

s(s+ ω0)
(4.2)

As it can be seen, if k0 = ω0, the zero that comes from the integrator and the pole that comes from the

plant cancel each other. This will give a saccade with θy(s) = Kω0
pm(s)
s which by the definition of a pulse

being a signal with an increase in amplitude from a baseline followed by a decrease in amplitude back

to the baseline line value [42], will produce a step-like function based uniquely off the pulse properties -

the speed of the saccade will be dependent only on the pulse generator, the plant will have no influence.

On the model that will be used, it’s already been defined the value of ω0 and therefore this the value of

k0 could be also set as that value, however, one of the goals of the project is to provide a framework

that would also work on a any other model, including non-linear ones, therefore k0 will be one of the

parameters of τ that will be trained by the policy network. As a preview, it is expected that on the LPF

model, the value of k0 will tend to the value ω0 for every saccade size, and if this were trained on a

non-linear model it would be expected for this value to change according to the size of the saccade -

from section 3.3, figure 3.3 (b) ω0 would decrease (won’t be verified in this work).
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Now, all that’s needed to do is to define the shape of the pulse: there are many ways that this could be

defined, such as a rectangular pulse, Gaussian pulse, sinc pulse, etc. but to simplify the problem it will

be considered a pulse with function pm(t) = Ae−Btf(t):

Figure 4.3: Qualitative plot of the function Ae−Bt

Figure 4.3, shows the shape of the function Ae−Bt which only demonstrates a decreasing behaviour

and if such function were to be applied to the real model starting at a steady state, would mean that

motors would instantaneously change orientation in a discrete manner at the beginning followed by a

smoothed decreasing movement. The function f(t) comes in to correct this unrealistic behaviour, it

will provide the smooth increase from steady state to a peak amplitude. Before defining this function

it is important to mention that there will be no parameters from this function that will be trained by the

network, as such there will only be 3 parameters estimated by the actor network: A, B and k0, where

A would correspond to the height of the pulse a value that will be positive when positive sized saccade

are produced and negative otherwise, B which would represent the decay of the exponential which will

be always a positive value which will produce faster saccades the higher this is. Since the goal would

be to produce faster saccades than the ones limited by the plant, this value would be required to be

higher than the value of the cut-off frequency of the plant ω0. Lastly k0 is the gain of the integrator which

optimally, as said before, will be the same as ω0. Now, f(t) could have also other parameters but at most

would come/be defined from these 3 parameters, which this will be clarified below. With this in mind, the

model will be trained using 3 different variants of f(t).

4.3.1 Variant 1

The first variant that will be trained is simply f(t) = t, so there are no extra parameters needed to be

calculated:

pm(t) = Ae−Btt (4.3)
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Figure 4.4: Qualitative plot of the function Ae−Btt

This type of pulse would give a function for the motor command τ(s):

τ(s) = A
s+ k0

s(s+B)2
(4.4)

Which when applied to the plant:

θy(s) = τ(s)H(s) = (A
s+ k0

s(s+B)2
)(K

ω0

s+ ω0
) = AKω0

s+ k0

s(s+B)2(s+ ω0)
(4.5)

Which in the time domain would give:

θy(t) = AKω0(
k0

B2ω0
+

2Bk0 −B2 − k0ω0

B2(B − ω0)2
e−Bt +

k0 −B
−B(ω0 −B)

te−Bt +
k0 − ω0

−ω0(B − ω0)2
e−ω0t) + θ0 (4.6)

Where θ0 would correspond to the initial orientation of the eye, which in steady state can be easily seen

that is proportional to the initial position of the motor F, through the variable K - (θ0 = KF ).

Before moving on to the next variant, it is important to note that before training it is necessary for the

parameters it is necessary for the algorithm to have boundaries for these, as in, as in the algorithm can

only look for solutions to certain parameters that are within a certain range. Unfortunately depending on

the function f(t) the maximum value of pm could vary substantially and so a different boundary would

have to be defined for the different variants. To solve this problem a easier and more intuitive approach

will be taken - transforming equation 4.4 in the Laplace domain will give:

τ(t) = A(
k0

B2
− k0

B2
e−Bt +

B − k0

B
te−Bt) + F (4.7)

Where F correspond to the initial position of the motor. This function can be separated into its pulse pm

and step sm components:

τ(t) = pm(t) + sm(t) = Ate−Bt +
Ak0

B2
(1− e−Bt −Bte−Bt) + F (4.8)

By looking at the step portion of the equation above it can be seen that the fraction Ak0
B2 represents the
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amplitude of the step and if we were to consider a final position of the motor to be D:

lim
t→∞

τ(t) = pm(t) + sm(t) = Ate−Bt +
Ak0

B2
(1− e−Bt −Bte−Bt) + F ⇒ D =

Ak0

B2
+ F (4.9)

With this method the training of the parameter D could be done instead of the parameter A, which has

clearer defined bounds - these could simply be the minimum and maximum orientations of the motors,

for example, in the real model if the motor was oriented over a certain threshold the elastics could snap

- these limit will be set to be between −80 and 80 which are values way above the ones required for the

saccade sizes that will be trained.

4.3.2 Variant 2

This variant will be characterized by the use of smooth step:

f(t) = 1− e−Ct (4.10)

pm(t) = Ae−Bt(1− e−Ct) (4.11)

Figure 4.5: Qualitative plot of the function Ae−Bt(1− e−Ct)

This will give a function for the motor command:

τ(s) = AC
s+ k0

s(s+B)(s+B + C)
(4.12)

And a function for the yaw:

θy(s) = τ(s)H(s) = ACKω0
s+ k0

s(s+B)(s+B + C)(s+ ω0)
(4.13)

θy(t) = ACKω0(
k0

B(B + C)ω0
+

k0 −B
BC(B − ω0)

e−Bt +
k0 − (B + C)

(B +G)C(ω0 − (B + C))
e−(B+C)t+

ω0 − k0

ω0(B − ω0)(B + C − ω0)
e−ω0t) + θ0

(4.14)

As mentioned on the previous variant A won’t be the parameter trained but instead it will be the parameter

D directly connected to the final motor position. To shortcut the expression that relates A and D, the Final
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Value Theorem [43] can be used:

lim
t→∞

τ(t) = lim
s→0

sτ(s)⇒ D − F =
ACk0

B(B + C)
(4.15)

As it can be seen there is this new parameter C across all expressions introduced by the function C.

This C represents rate of increase of the step f(t), the higher this value the faster will be the step, and

to avoid making this parameter another one that has to be trained by the algorithm, this value will be

constrained: C will have a value such that the maximum velocity of the motor won’t rise above a certain

value V:

τ(t) = AC(
k0

B(B + C)
+
B − k0

BC
e−Bt +

k0 − (B + C)

(B + C)C
e−(B+C)t) (4.16)

dτ

dt
= AC(−B − k0

C
e−Bt − k0 − (B + C)

C
e−(B+C)t) ≤ V (4.17)

Since the maximum will happen at t = 0:

AC ≤ V (4.18)

There is two ways to go about the problem raised by the expression above: C is going to be a parameter

that will vary depending on the value of A, this is, for every saccade the maximum velocity of the motor

will V, or C would be kept constant independently of the saccade size - the maximum velocity would only

be achieved for the longer saccades (highest A). Both of the options will be evaluated and the value of

V will be 7200, corresponding to a top speed of 20 rotations per second.

4.3.3 Variant 3

Lastly the last variant will tackle an issue that causes the model to be unrealistic in both of the

previous variants: dτ
dt |t=0 > 0 which implies that the motor doesn’t start in steady state. Therefore f(t)

has to be a function that has a first derivative equal to 0: such function will be a second order critically

damped step f(t) = (1− e−Ct − Cte−Ct).

pm(t) = Ae−Bt(1− e−Ct − Cte−Ct) (4.19)

pm(s) =
AC2

(s+B)(s+B + C)2
(4.20)

Which looks like this:
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Figure 4.6: Qualitative plot of the function Ae−Bt(1− e−Ct − Cte−Ct)

Making τ(s):

τ(s) = AC2 s+ k0

s(s+B)(s+B + C)2
(4.21)

And so the yaw θy:

θy(s) = τ(s)H(s) = AC2Kω0
s+ k0

s(s+B)(s+B + C)2(s+ ω0)
(4.22)

θy(t) = AC2Kω0(
k0

B(B + C)2ω0
+

k0 −B
−BC2(ω0 −B)

e−Bt +
−(B + C)2 + k0(B + 2C)

C2(B + C)2
e−(B+C)t

+
k0 − (B + C)

(B + C)C(ω0 − (B + C))
te−(B+C)t +

k0 − ω0

−ω0(B − ω0)(B + C − ω0)2
e−ω0t) + θ0

(4.23)

Proceeding the same way as before to find an expression in terms of D:

lim
t→∞

τ(t) = lim
s→0

sτ(s)⇒ D − F =
AC2k0

B(B + C2)
(4.24)

And lastly, the same logic as the previous variant will be done to define the parameter C. Though, in this

case the way to find a value for this parameter is less trivial. And so a different approach will be taken to

define:
dτ

dt
≤ V (4.25)

Firstly τ(t) will be separated into its pulse pm(t) and step functions sm(t):

τ(t) = pm(t) + sm(t) (4.26)

sm(t) = Ak0(
C2

B(B + C)2
− e−Bt

B
+

1 + Ct+ C(B + C)

(B + C)2
e−(B+C)t) (4.27)

And realize that:

pm(t) ≤ A(1− e−Ct − Cte−Ct) (4.28a)

sm(t) ≤ Ak0C
2

B(B + C)2
(1− e−Bt) (4.28b)
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And:

dpm(t)

dt
≤ d

dt
(A(1− e−Ct − Cte−Ct)) ≤ max(

d

dt
(A(1− e−Ct − Cte−Ct))) =

AC

e
(4.29a)

dsm(t)

dt
≤ d

dt
(

Ak0C
2

B(B + C)2
(1− e−Bt)) ≤ max(

d

dt
(

Ak0C
2

B(B + C)2
(1− e−Bt))) =

Ak0C
2

(B + C)2
(4.29b)

As such it can be constrained:

dτ(t)

dt
=
dpm(t)

dt
+
dsm(t)

dt
≤ d

dt
(A(1− e−Ct − Cte−Ct)) +

d

dt
(

Ak0C
2

B(B + C)2
(1− e−Bt)) (4.30)

And so from equations 4.25, 4.29 and 4.30 it can be said that:

dτ(t)

dt
=
dpm(t)

dt
+
dsm(t)

dt
≤ AC

e
+

Ak0C
2

(B + C)2
≤ V (4.31)

And so C is constrained to AC
e + Ak0C

2

(B(B+C)2) ≤ V which is a solvable expression that will define an upper

bound for C. Figure 4.7 demonstrates the architecture of the policy network which will should give a

better insight to the relationship between the state values as an input to the action values as an output:

Figure 4.7: Policy network architecture relating the state value to the action value
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4.4 Reward

The way to obtain the reward will be done based on the previous works on the project. In those there

were 3 main functions types of function used to define the quality of the saccades obtain, based on

cost based metric. These 3 costs were accuracy, how far from the desired position was the orientation

of the eye, energy, how much energy was used by the motors to make the saccade, and finally the

duration, how long did the saccade take - and so, the lower the sum of the costs, the better the saccade.

In reinforcement learning, what’s wanted is to obtain a policy the retrieves the maximum value for the

reward, and so the negative of these 3 costs will be the metric to obtain the reward. There will be the

need to add a cost for overshoot, which will be explained further ahead:

Rtotal = λaRa + λeRe + λdRd + λoRo (4.32)

Above is defined the overall equation that defines the reward, where Rtotal corresponds to the total

reward, Ra corresponds to the accuracy reward, Re corresponds to the energy reward, Rd corresponds

to the duration reward and finally Ro is the overshoot reward. The λs are weights that will control the

relevance of each of the rewards - depending on the values of these the optimal solutions obtained after

training would be different.

4.4.1 Energy Reward

In previous works, the energy cost Je would be the sum of the squared differences of consequent

motor positions ∆u:

Je =
∑
i=1

(∆ui)
2

∆ti
(4.33)

This was applied in discrete optimal control, but since on this work there are analytical solutions for the

motor command τ , the equation 4.33 can be transformed to a continuous domain:

Je =
∑
i=1

(∆ui)
2

(∆ti)2
∆ti ⇒ lim

∆ti→0

∑
i=1

(
∆ui
∆ti

)2

∆ti =

∫ (
dτ

dt

)2

dt (4.34)

And so the energy reward will be:

Re = −
∫ (

dτ

dt

)2

dt (4.35)

This will lead to different functions energy functions for each of the variants. So for variant 1:

Re = −A2

[(
1− 2(B − k0)t+ (B − k0)2t2

−2B
+
−2(B − k0) + 2(B − k0)2t

−4B2
+

2(B − k0)2

−8B3

)
e−2Bt

]∞
0

(4.36)

For variant 2:

Re = −A2

[
(k0 −B)2

−2B
e−2Bt +

2(k0 −B)(B +G− k0)

−(2B +G)
e−(2B+G)t +

(B +G− k0)2

−2(B +G)
e−2(B+G)t

]∞
0

(4.37)
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And finally for variant 3:

Re = −A2C4

[
a2

0

−2B
e−2Bt −

(
2a0(a1 + a2t)

−(2B + C)
− (2a0a2)

(2B + C)2

)
e−(2B+C)t

]∞
0

−A2C4

[(
(a1 + a2t)

2

−2(B + C)
− 2a2(a1 + a2t)

4(B + C)2
− 2a2

2

8(B + C)3

)
e−2(B+C)t

]∞
0

(4.38)

where a0 = k0−B
C2 , a1 = B−k0

C2 and a2 = B+C−k0
C .

Even though in the human eye this term can be considered inconsequential due to the many saccades

a person performs in a day [44], in this work this term is important because it will be the one used to

balance between all the terms, for example, if a the goal was to perform the fastest saccades possible

disregarding energy costs, intuitively by looking at the equations of τ(s) and subsequently θy(d) for the

different action variants the solution would be trivial: k0 would have the same value as the constant of

the plant, B would infinitely large, and A (or D) would be ones that would match the desired saccade

size.

4.4.2 Duration Reward

The expression for duration reward will be based on the work of Shadmehr [45], where he found the

duration cost Jd of a saccade in humans follows a hyperbolic function:

Jd = 1− 1

1 + βtd
(4.39)

Where td corresponds to the duration of a saccade and β is the temporal discount rate - which will

have a value of 0.6 [46]. The value td that’s going to be obtained from applying the motor commands

to the plant, will be the settling time of 1%, as in, it will be the time taken for the eye to reach an

orientation that is 1% off its final value. This has to be this way because since we are dealing with

continuous exponential functions, the time which the eye will take to reach exactly its final position will

be ∞. Moreover, when moving to the simulator or the real model there will be noise and drift on the

measurement of the orientation of the eye due to imperfection on the sensors, possible slack for the

elastics, or residual velocities [5, 7], making this a better metric for duration. So the reward function for

duration will simply be.

Rd = −(1− 1

1 + 0.6td
) (4.40)

Intuitively this term is necessary make faster saccades.

4.4.3 Accuracy Reward

The accuracy cost as approached by the works precedent to this work defined the cost for the ac-

curacy Ja as the squared difference between the target saccade direction and the the final saccade

orientation. In quaternions, the representation of the reward of this expression is[47]:

Ra = −(1− (qd · qf )2) (4.41)
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Where qd corresponds to the desired/ target quaternion orientation, qf corresponds to the final quater-

nion orientation of the eye and · correponds to the inner product of the two quaternions. Similarly to what

was done in 4.4.2 and for the same reasons, this final eye orientation will actually be the orientation of

the at the settling time - this will also have the extra advantage for determining the values of the weights

of each of the reward terms which will be explained in 4.4.5.

4.4.4 Overshoot Reward

Even though in previous works there’s no use for the introduction of this term, on this one it is nec-

essary because it is a saccade property that is introduced by the term k0. Besides it having some

influence in the duration and energy cost of the saccade, it majorly affects the overshoot, and since this

is something undesired in a saccade there’s a need for punishment when this happens. The overshoot

is the maximum peak value of a signal measured relative to its steady state response [48] and it will be

specially necessary to take into account when the response has an overshoot with peak value within its

settling time error band - since saccade tend to have an undershooting bias [49], because intuitively, an

overshot saccade has a greater expenditure of energy. Therefore using the current metric to measure

duration, this type of small overshoot will lead to a lower duration time. With a low energy weight and

without this overshoot, this would lead to solutions of saccades that would maximize the overshoot within

the settling time error band:

Figure 4.8: Comparison between a normal saccade with an overshot saccade trajectory

Figure 4.8 illustrates exactly this, the overshot has a lower settling time, because its peak is within

the error band, and therefore it would have had a higher reward if overshoot was unaccounted for.So,

for a saccade that has initial yaw θ0, a final yaw of θf and maximum yaw of θpeak, the equation for the
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overshoot reward would be:

Ro = −(
θpeak − θ0

θf − θ0
− 1) (4.42)

4.4.5 Weights

The value of the weights for each of the rewards is important to get to a desired solution. For instance,

the value of each of the rewards will always a value less than zero, and so theoretically the maximum

value for the total reward is zero, and so a trivial solution to get the maximum value of the total reward

would be for each of the λs to be zero - this would mean, though, that there would be no relationship

between the inputs and outputs of the system, and therefore no learning would be possible. One way to

get values for these weights would be to grab values based on literature, and apply them to the model

and verify if they work. With this method, however, the only thing that it would be possible to verify

is if the algorithm learns, or not, to make desired saccades. There would be no way to verify besides

exhaustive searching, whether or not, the solution is the optimal solution, nor, even if all this information

as known, it would be possible to control if the solution is one desired for the model. The method that

it is going to implemented will deal with both of these issues: from the beginning the optimal policy will

be selected and the weights will be calculated from that solution. The algorithm will be trained then with

those weights and if the algorithm learns and reaches an optimal policy, it will be contrasted with the one

selected at the beginning, to verify if the policy is indeed optimal.

The method will be the following: for a desired saccade the actor network will output 3 parameters, B,

D (or A) and k0 which will be part of a motor command τ , which will move the plant and consequently

output a reward, so, in essence, the reward is a function of these parameters, Rtotal(B,D, k0), and as

the individual rewards are calculated individually and then added together, they can be considered as

functions of the 3 parameters as well (Ra(V,D, k0), Re(V,D, k0), Rd(V,D, k0), Ro(V,D, k0)). And so,

basically:

Rtotal(B,D, k0) = λaRa(B,D, k0) + λeRe(B,D, k0) + λdRd(B,D, k0) + λoRo(B,D, k0) (4.43)

And so a condition for it Rtotal to be an optimum value is for the value of its derivative to be zero for all

parameters:

∇Rtotal(B,D, k0) = 0 (4.44)
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And so:

∇Rtotal(B,D, k0) = ∇(λaRa(B,D, k0) + λeRe(B,D, k0) + λdRd(B,D, k0) + λoRo(B,D, k0))

∇Rtotal(B,D, k0) = ∇
[
Ra(B,D, k0) Re(B,D, k0) Rd(B,D, k0) Ro(B,D, k0)

]

λa

λe

λd

λo

 (4.45)

0 = ∇
[
Ra(B,D, k0) Re(B,D, k0) Rd(B,D, k0) Ro(B,D, k0)

]

λa

λe

λd

λo


That system of equations seems to be unsolvable, there is an infinite number of solutions. Since,

intuitively, what matters technically is the ratio between each of the weights the optimal - the optimal

solution for the total reward function with all weights equal to one should be the same as if all the

weights would be 2, or 3, the only thing that would change would be the scale of the rewards. Knowing

this, one of the solutions would be to use a method with Langrange multipliers, with a constraint that

would fix all of the weights to the hypersphere, or similarly, something that yeilds the same results - fix

one of the values. since as mentioned before energy tends to be the most unimportant term, this will be

fixed to one:

0 = ∇
[
Ra(B,D, k0) Re(B,D, k0) Rd(B,D, k0) Ro(B,D, k0)

]

λa

1

λd

λo

 (4.46)

Which now becomes possibly solvable with one solution:

−∇Re(B,D, k0) = ∇
[
Ra(B,D, k0) Rd(B,D, k0) Ro(B,D, k0)

]
λa

λd

λo



−dRe(B,D,k0)

dB

−dRe(B,D,k0)
dD

−dRe(B,D,k0)
dk0

 =


dRa(B,D,k0)

dB
dRd(B,D,k0)

dB
dRo(B,D,k0)

dB

dRa(B,D,k0)
dD

dRd(B,D,k0)
dD

dRo(B,D,k0)
dD

dRa(B,D,k0)
dk0

dRd(B,D,k0)
dk0

dRo(B,D,k0)
dk0



λa

λd

λo

 (4.47)

One of the conditions for failure on the equation 4.47 would be for any of the columns have all derivatives

equal to zero meaning one of two things: either the change in any of the parameters has no effect on

the value of that reward and so the weight of that reward would be zero, or the function of that reward is

at a local optimum, making the importance of that reward infinitely high. And so, as mentioned before, if

the accuracy reward were to be done with the exact final position, the derivative would’ve been 0 for all

the parameters.
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So, now with this method, it is possible to pick the optimal policy, obtain the weights, and let the algorithm

train the model with those weights. The values of parameters chosen for the optimal policy will be B =

35, twice the size of the eye model, D ≈ 20.33 a value for the final position of the motor, corresponding

to 30 of yaw as the eye orientation (D × K = 30), and k0 = 17.5, corresponding to the value of the

plant. This is, if we let the algorithm train, for a desired yaw of 30 the policy network should output the

parameters B = 35, D = 20.33 and k0 = 17.5.

Something non-trivial to obtain might be the equations of each of the individual rewards with respect

to the parameters, however this issue can be easily solved by applying a finite differences method, for

values around the desired solutions, as in, obtain the value of each individual rewards around the interest

points and use numerical differences to obtain approximations of the derivatives.

4.5 Further Remarks

This part will be dedicated mainly to explain and justify some of the hyperparameter tuning and

specific training aspects. Some of these values were simply taken from advice from some machine

learning literature and others just by trial and error.

Starting with the neural networks for the policy network, for the Q-function network and for the target

value network. The policy network and the Q-function will be multilayer perceptron (MLP), with 3 hidden

layers, the first two with a size of 128 neurons each, and the last one with 32 neurons, all with an

activation function of a linear rectifier which indicated for regression [50]. For the target value network,

there won’t be a need for a MLP since the output of this should technically be always 0, since the control

is done in open-loop, once the eye reaches is final position, which would be the final state, there’s no

extra actions to be applied to the model and consequently there will be no further rewards to be obtained.

It can be argued that maybe the size of the neural networks may be to large for the problem at hand, but

since the trainings were done quickly, without issues there was no need to decrease these values.

The learning rates for the neural networks, will be set to 10−5 because it was tested to work fine and

they go well with a sizeable batch size for training of 8196 [51]. Moreover, the Adam optimizer [52] was

chosen to make the updates on the neural networks, since it is considered as the most stable and robust

optimizer amongst many others [53, 54].

Finally the training is done in a span of 300 thousand episodes, for saccades that have a random starting

position, and a random desired target orientation, both within −35 and 35 degrees, and with replay pool

of 30 thousand instances.
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Chapter 5

Results

This chapter aims to present the results obtained from using the soft actor critic algorithm to create

a open-loop control policy for the saccadic model using the implementation explained in the previous

chapter. The model will be trained for 3 different types models for action which will define the motor

commands applied to the model. The training time will for each of the action types will be done for a total

of 300 thousand episodes and with reward weights such that when a 30 saccade is desired, the output

of the policy network should be on average: B = 35, k0 = 17.5 and D = 20.33.

There will be various components that will be used to validate the results obtained. Firstly for each of

the action variants the average output of each of the parameters will be plotted against the saccade

size desired and be compared with an estimation of the optimal output. This estimation will be obtained

through a search of the best reward on the region of interest - all the space that the algorithm had access

to explore. In this context the average output will be consider, that the output will be the mean of all the

possible saccades with a certain size, for example, for a 30 saccade size this will include the policy

output from a orientation of 0 to a 30 orientation, all the way to a starting orientation of −30 all the way

to 0, including everything in between. Since D describes the final position of the motor, it doesn’t make

sense to show the average of these values, instead it would be displayed the mean of the amplitude

between the final and initial motor position (D − F ). After that, it will be displayed a visualization of

the pulse, pulse-step signal and saccade trajectory when the policy obtained is applied to the model for

different saccade sizes. Along with the main sequences, and skewness plots for those saccades it will

be possible to compare with expected qualities in human data and validate the type of action taken.

5.1 Variant 1

Off the three variants for the action this one is the simpler one: the pulse shape of the command

is pm(t) = Ate−Bt. From the equation 4.47 it was obtained the following values for the weights:

λa = 3.8 × 106, λe = 1.0, λd = 4.9 × 104 and λo = 2.3 × 108. By looking at the weights it can be

expected resulting accurate saccades, fast saccades with no overshoot. The results below show the

average output policy parameters against the desired saccade size:
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Figure 5.1: Policy output of the parameters against the desired saccade size of variant 1

As it can be seen in figure 5.1, there is a very close relationship between the estimated optimal

policy and the output policy of the actor. Both for the amplitude between the final motor position (D) and

the initial motor position (F), and k0 it can be confirmed the linearity of the model: the motor amplitude

(D − F ) shows a proportional relationship between itself and the saccade amplitude, with a value of

around 1.5 which matches the value used for K (1.4758) in the plant. k0 shows a constant relationship,

which is exactly what is expected, it matches the cut-off frequency of the plant. If a non-linear model

were to be applied using this type of pulse it could be prematurely assumed that both these parameters

would match the non-linearity of the plant. Regarding the parameter B, this is where the non-linearity of

the control system is introduced. The policy increases this parameter the smaller the desired saccade

amplitude, so it would be expected for the saccades to have a shorter duration the lower the desired

saccade amplitude. Intuitively as desired saccade size would tend to zero, this value would infinitely

increase, and that’s the root cause of the discreapancy between the policy output and the expected

optimal output for the shorter saccades. There is a set defined range of values that the algorithm

searches within for the optimal value for each of the parameters and the upper bound for parameter B

was set to 80, which where there is stop in the increase of the value of B. If a higher upper bound were to

be defined, there would be a higher matchup between the estimated optimal policy and the actor output,

however for the lowest saccade amplitudes the same ’issue’ would still be present. The next graph will

show the pulse signal generated, subsequent pulse step signal applied to the model, and the saccade

trajectories that were output.
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Figure 5.2: Pulse Signal, Pulse+Step Signal and Saccade trajectory output employed by the policy

network of variant 1

As seen the expected and wanted behaviour is present in the 3 graphs for the different saccade

amplitudes. The peak of the pulse increases with the saccade size, as well as the amplitude of the step,

and, as it can be observed, all these signals make the saccade have a step like response to the desired

orientation, or at the very least, very close to it. Moreover when compared to the output of a pure step

input:

Figure 5.3: Comparison of the response between a pulse+step signal to a pure step signal for variant 1

it can clearly be seen, as expected, the saccades produced with a pulse+step signal are faster, but

with a slower response at the start. Also it’s just shown threee saccade results to avoid clustering.

Now, by looking now at the main sequence and skewness properties it will be possible to compare the

properties of the saccades retrieved to the human data.
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Figure 5.4: Main sequence and skewness of the saccades obtained of variant 1

As it can be seen on the left part of figure 5.4, the properties obtained seems to follows partially the

same pattern has the ones found in humans - on one hand there is an increase in duration with the

increase in saccade amplitude and there seems to be a non-linear relationship between peak velocity

and amplitude. In both cases the inconsistency in the smaller amplitudes might be a consequence of the

saturation on the value of B for smaller saccades. On the other hand, on the right side, there seems to

be an increase in skewness on the top graph, although this doesn’t seem to be reflected on the bottom

graph: one of the reasons for this is due to the precision and how this value is calculated - the ratio

between the duration of the saccade and the deceleration time. Upon a zoomed in inspection on that

graph it is seen that the output for the skewness is very noisy.

5.2 Variant 2

This is one of the variants that will have the introduction of another parameter (C) in the pulse signal:

pm(t) = Ae−Bt(1− e−Ct). As such there is the need to divide the problem into 2 possible scenarios: the

scenario where the value of C is fixed or the scenario where C is movable such that the motor always

outputs its maximum defined velocity at some point during the saccade.

5.2.1 Fixed C

For the fixed C instance, this value is calculated by applying the equation 4.18 for the larger values

of saccade sizes. For a 30 degree saccade it is desired for the motor output its maximum velocity

then, knowing the desired values of B, D and k0, and applying equation 4.15 it is possible to obtain

A and therefore a value of C = 85. With this the value for the weights of the rewards calculated are:

λa = 1.7× 108, λe = 1.0, λd = 2.3× 106 and λo = 3.6× 108. Even though they have different values and
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orders of magnitude it could be safely expected a similar behaviour to what happened in the previous

example. show the average output policy parameters against the desired saccade size:

Figure 5.5: Policy output of the parameters against the desired saccade size of variant 2 with fixed C

The graph shown above the policy output for this second variant of the pulse signal with a fixed

value of C. Similar behaviour as the previous variant can be observed in figure 5.9: D and k0 follow the

expected linear behaviour and B follows the non-linear behaviour, where it gets larger the smaller the

saccade amplitude and it presents its saturation from the learning constraints.

Figure 5.6: Pulse Signal, Pulse+Step Signal and Saccade trajectory output employed by the policy

network of variant 2 with fixed C

In contrast with the results of the previous variant, the signals appear to have a higher peak and a

shorter duration resulting in overall faster saccade trajectories, which is due to naturally higher slope

values for the raising part of the pulse signal. As such B will have to be higher to compensate for

higher peak velocities - in figure 5.9 there seems to be a higher saturation region when compared to 5.1.

Regardless:
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Figure 5.7: Comparison of the response between a pulse+step signal to a pure step signal for variant 2

with fixed C

the pulse+step signal still produces a much faster saccade compared with a pure step as an input

signal.

Figure 5.8: Main sequence and skewness of the saccades obtained of variant 2 with fixed C

Just like what was presented in figure 5.4, the figure 5.8 exhibits a similar behaviour. There is the

non-linear relationship between the saccade amplitude and the duration, and between the peak velocity

and amplitude, and a apparent linear relationship and between skewness of the velocity profiles and

duration. Again inconsistencies of these values for lower saccades amplitudes and duration is due to

the saturation of B during training.
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5.2.2 Movable C

For this instance the values obtained for the weights through equation 4.47 are: λa = 1.2 × 108,

λe = 1, λd = 1.3×106 and λo = 1.8×108 - as these have similar order of magnitude it could be expected

similar results for the output parameters: As well as C, since its movable:

Figure 5.9: Policy output of the parameters against the desired saccade size of variant 2 with movable
C

Figure 5.10: Value of C with Saccade Size for variant 2

Unfortunately this was not the case, there is a mismatch between what would be expected and the

results obtained. The D parameter is the only one to follow the linear match with the plant, B seems to

be slightly undershot compared with the estimated optimal value, even though it is completely off target

for set optimal value of 35 for a 30 saccade. Likewise, for the value of k0, the obtained value is completely

off the target of 17.5 for the entire range of saccades, meaning that there isn’t a cancellation anymore

between the gain of the integrator and the constant of the plant (equation 4.12). As a consequence

there’s also the mismatch between the expecetd value of C and the value of C obtained. It is expected

then, that the output saccades will be much slower compared with what previously obtained:

45



Figure 5.11: Pulse Signal, Pulse+Step Signal and Saccade trajectory output employed by the policy

network of variant 2 with movable C

As foreseen, this is exactly what happened. The pulse plus step signals convey, specially for higher

saccade amplitudes, just a step like function - the presence of the pulse is minimal. As such it is expected

that the response of the model could be approached to just its pure step response:

Figure 5.12: Comparison of the response between a pulse+step signal to a pure step signal for variant

2 with movable C

And as seen above, figure 5.12, that is exactly what happens.

Now looking at the main sequence properties and skewness:
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Figure 5.13: Main sequence and skewness of the saccades obtained of variant 2 with movable C

Surprisingly, the main saccade properties still present non-linear characteristics and skewness still

seems to present the same poor precision problem. Nonetheless, there is a clear increase in the duration

of the saccade as a consequence as a decrease on its peak velocity. Besides the skewness of the

saccade velocity profiles seem to have have a negative trend contrary to whats wanted.

5.3 Variant 3

This variant is the other that has the parameter C with a pulse function of pm(t) = Ae−Bt(1− e−Ct −

Cte−Ct). This has the characteristic to perform a more realistic movement, since its velocity at the start

is zero, unlike the two other variants. Just like what was done for the previous variant, this will be divided

into scenarios the value of C is fixed, and the scenario C moves such that the motor velocity reaches a

defined maximum velocity, approached by equation 4.31.

5.3.1 Fixed C

For a fixed C scenario, the value obtained for this parameter was obtained using the same strategy

as what was done in 5.2.1: for a 30 saccade it is desired to have a solution with a B parameter of 35,

a D parameter of 20.33 and a k0 parameter of 17.5, which for a top velocity of 7200s−1 it give C = 3.6.

Moreover, in this situation the values obtained for the weights were: λa = 1.5×107, λe = 1, λd = 1.4×105

abd λo = 7.6× 107. With all of this, the results obtained for tehe policy output were:
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Figure 5.14: Policy output of the parameters against the desired saccade size of variant 3 with fixed C

Without the unfortunate saturation of B for lower saccades, all the parameters seem to follow the

trends of the estimated values, which in turn, they are expected to produce good saccades:

Figure 5.15: Pulse Signal, Pulse+Step Signal and Saccade trajectory output employed by the policy

network of variant 3 with fixed C

Which when compared to a pure step input:

Figure 5.16: Comparison of the response between a pulse+step signal to a pure step signal for variant

3 with fixed C
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That is clearly concluded- fast, efficient and no overshoot. Moreover the main sequence properties

and skewness:

Figure 5.17: Main sequence and skewness of the saccades obtained of variant 3 with fixed C

Show all over, the characteristic of non-linear control system similar with the properties found in

human data: upward non-linear relationship between peak saccade velocity and duration, peak velocity

and saccade amplitude and between skewness and duration.

5.3.2 Movable C

Finally for the last case, the values obtained for the weights of the rewards were under the same

conditions: λa = 1.5 × 107, λe = 1, λd = 1.5 × 105 and λo = 7.8 × 107. With these, the values of the

parameters obtained were:

Figure 5.18: Policy output of the parameters against the desired saccade size of movable 3 with movable

C

And C:
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Figure 5.19: Value of C with Saccade Size for variant 3

Similarly with what was obtained for variant 2 with movable C (5.2.2), the parameter B and D follow

the wanted trend, but k0 reaches saturates to its maximum possible value. The decrease in the value of

C for lower saccade sizes, is due to the saturation of B (which in this case happened to be increased to

100); it would have kept a vertical asymptote for saccade with 0 amplitude.

Therefore, certainly, the signals and saccades produced will be similar to 5.2.2:

Figure 5.20: Pulse Signal, Pulse+Step Signal and Saccade trajectory output employed by the policy

network of variant 3 with movable C

the pulse+step response for higher saccades, demonstrates just a step-like behaviour. And when

the saccades are compared to their pure step response:
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Figure 5.21: Comparison of the response between a pulse+step signal to a pure step signal for variant

3 with movable C

it produces even slower saccades due to the use of a second order step function for the raise of the

pulse - so the response assimilates to a second order step.

So the saccades will have the following main sequence and skewness properties:

Figure 5.22: Main sequence and skewness of the saccades obtained of variant 3 with movable C

which is very similar to the graphs in 5.2.2.

5.4 Discussion

The training done for 5.1, 5.2.1 and 5.3.1 clearly reached the outcome desired: the soft actor-critic

learned the optimal the values for the optimal solution across many saccade sizes - not accounting for
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the saturating values of B, something that doesn’t invalidate the results obtained, and although it will

something always present, it can effortlessly improved by expanding the search region of the parameter

B. They all produced faster saccades compared to a saccade from a pure step signal with a clear non-

linear control behaviour solidified by the data obtained for the main sequence and skewness properties

of the saccades. It can also be seen that the function that the variants that are less realistic (1 and 2)

for motor commands that start in steady state, produced velocity profiles with lower peak velocity and

saccades with higher duration than variant 3.

Now, that’s been identified that those three tests worked as intended, it would be important to understand

why the other two did not. There are a few causes that could explain these problems: starting first with

the training time/ number of episodes - the parameters B and D clearly reached the desired values, so

maybe it could be just a matter of time for the last parameter to reach the optimal values:

(a) Variant 2 with movable C (b) Variant 3 with movable C

Figure 5.23: Average reward of the previous 1000 episodes for the 2 variants with a movable C param-

eter. Variant 2 is on the left and variant 3 is on the right. The scale for the reward is logarithmic one; a

value of 3 would correspond to a reward of 10−3.

The graph above represents the average reward of the previous 1000 episodes done obtained during

the training process of the two variants with movable C. As it can be seen, for both cases, at the beginning

there is a small portion of episodes that don’t seem to do anything and then average of the rewards

are basically blasted upwards, which is at the point where the algorithm as enough samples to start

learning. By fifty thousand episodes both of the variants reach a point where the there are no further

improvements in the value of the reward until the end of the training, therefore it’s not lack of training.

Since the updates to the neural networks is done through stochastic gradient optimization it could be

that the gradient wants to update in a direction away from the desired value - there could be a better

solution than the one calculated. Therefore for one desired saccade, we want to see how the value of

the total reward evolves with an increase in k0, keeping the other parameters constant. Since the values

for a 30 saccade are known, with a B = 35 and D = 20.33 for both variants:
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(a) Variant 2 with movable C (b) Variant 3 with movable C

Figure 5.24: The total reward for a 30 saccade with a changing parameter k0 and fixed parameters

B = 35 and D = 20.33 for variant 2 with movable C (left) and variant 3 with movable C (right)

it can be seen that the two variants have a maximum at a value of 17.5 for k0 = 17.5, but for the case

of variant 2 there are better solution beyond a value of 25. So what it means is that during learning the

gradient steps is clearly leading the neural networks to those better values. This parameter influences

the duration, the energy and the overshoot, but for this case influence in overshoot can be neglected

because this only happens if k0 has a value lower than the lowest pole of the yaw function (θy(s)). So,

as k0 increases the energy utilized gets lower, but the saccades get slower, so it has longer duration,

which means that the duration will be higher, meaning that decreasing the energy spent is much better

than taking shorter amounts of time under this design.

Unfortunately the same cannot be concluded to the variant 3, there is a clear decrease in the reward as

the value of k0 increases after 17.5, so there is no clear justification for this behaviour in training. There

must some intricate internal behaviour that the algorithm cannot get past. It is also possible that this is

present on variant 2 with movable C because it was tested for both cases a even finer restriction in the

possible region of exploration of k0, where the gradients would point undoubtedly to an optimum at 17.5,

however even then, the value of k0 not reach the desired value and would saturate.

It is not necessarily clear why it is not possible to learn using this method, but it could be justified why

this method would not be realistic when compared to the human control system. In the human eye for

each muscle there are thousands of motor neuron, and because each has a threshold for how much

force they can use, depending on the size of the saccade, a different number of these will be recruited

to exercise some force - the largest saccades would require the recruitment of all the neurons. So the

constraints imposed on this design, every saccade makes the motor output the same maximum velocity,

is the equivalent of the human eye to require the use of all motor neurons for every saccade size.

Finally might be important to make a qualitative comparison between all the three variants that worked.

Firstly, this comparison won’t be done over the total reward obtained across all saccade sizes, simply be-

cause the values are different for all variants, nonethe less this could be done for the individual rewards:

it’s been identified that all saccades have desired accuaracy with no overshoot, and that variant 1 has
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the slowest saccade duration, followed by variant 2 and then variant 3, intuitively it might be expected

that in terms of energy they would have the same order from lowest amount of energy spent to highest:

(a) Variant 1 (b) Variant 2 with fixed C (c) Variant 3 with fixed C

Figure 5.25: Energy Reward as a function of the saccade size for variant 1 (left), variant 2 with a fixed C

(center), and variant 3 with fixed C (right)

these graphs were obtained by combining the output of the policy networks with equations 4.36,

4.37 and 4.38. Unexpectedly, variant 3 performs better in terms of duration and energy under these

conditions. Although, there are certain nuances that were not mention that might make this comparison

somewhat invalid. For variant 1, there’s no way to control the maximum velocity of the motor, and for

variant 3 the value of C was obtained through equation 4.31 which is actually a lower bound, therefore

the condition that the maximum velocity of the motor is reached (7200s−1) for a 30 saccade is not met,

whereas for variant 2 the maximum velocity of the motor can be controlled and met. The point here is

that the parameters used to define the reward weights are equal for all the variants and were picked

arbitrarily, which could mean that there might be a combination of desired parameters that could make

the saccades more time and energy efficient for both variant 1 and 2.
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Chapter 6

Conclusions

6.1 Achievements

In this work it has been designed a framework that uses the machine learning algorithm soft actor-

critic to learn a open-loop saccadic control of a biomimetic eye. Because machine learning is a time

consuming task, the model of the eye that was going to be used for training had to be simplified to speed

up this process. This new simplified version turned to be a first order low-pass filter, with constants

based off a system identification of the eye model it was based on (section 3.2).

Nonetheless the control that was design to be done to this model would mimic the same type of control

of a human eye, in a way that would be applicable to any desired model of the human eye. This control

would be a pulse+step signal that would be applied to the models has a motor command, which would

have a shape that would be controlled by different parameters. These parameters would be the values

that were intended to be learned by the algorithm, in order to shape the motor command to a shape that

would lead the model to the desired goal, in this case a orientation, and also would adapt to whatever

eye model will be used.

The soft actor-critic learns by maximizing trying to maximize the rewards obtained from applying the con-

trol to the model. These rewards were calculated using metrics, defined in previous works and deemed

important in various studies about the human eye: accuracy, energy, duration and overshoot of a sac-

cade. Depending on how much one of does metrics is more important than the others, the optimal policy

would change. So, a method was developed such that it would retrieve how much each of those rewards

weighed in regards to each, based on a desired pre-defined arbitrary optimal solution; allowing to verify

whether or not the training done would lead to the desired optimal policy. The results of the training

done were found to be overall successful. For three different pulse+step functions there was a match

between the values for the different parameters and the estimation for the optimal solution done through

exhaustive search, leading to the conclusion that the methodology used to implement this framework is

validated. It’s important to mention that 2 of those step+pulse functions had the introduction of a another

parameter, which had to be kept constant to allow the algorithm. These cases are useful because the

introduction of this new parameter could be used to reflect maximum velocities that real life components
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would have, and confine the training done to more realistic scenarios. The saccades produced also

matched the data observed in humans - the main sequence and skewness of the saccades had the

same non-linear properties. Finally that the pulse+step function that obeyed a more realistic model of a

motor behaviour, produced saccades with a more optimal results, energetically and duration wise when

compared to others, although such comparison might be unfair due to the arbitrariness of the optimal

solution picked for all models.

6.2 Future Work

The main framework for the application of the soft actor-critic algorithm has been setup, so what’s left

to do is verify its validity for the other models: applied both to the simulator version, section 3.2, and the

real life version, section 3.1, as well as the version with 6 motors, each simulating one of the 6 muscles

of the human eye [7], along with the expansion of the degrees of freedom - using more motors.

Other ways to explore the use of the soft actor-critic is by applying it in closed loop, which instead of

defining a whole shape for the trajectory of motor command, small increments for the motor commands

would be defined as the policy network output for each time step; or even follow up on the work done by

Rui [6] and explore how the addition of noise and signal dependent noise to the dynamics of the model

would impact the performance of the algorithm.
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[42] J. G. Ángela Molina. Pulse Voltammetry in Physical Electrochemistry and Electroanalysis, vol-

ume 1. Springer, 2015.

[43] U. Graf. Applied Laplace Transforms and z-Transforms for Scientists and Engineers, volume 1.
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